All those options are currently applied only to power-supplies
but they could apply as well to electronic loads, except for the
fact that electronic loads channels are called inputs and not
outputs.
Also when you think about an SMU (or any kind of 4-quadrants
power-supply), their channels can both source and sink current,
so they can be considered as input as much as output.
Those SR_CONF_* are thus renamed so that they can be used in all
those situations.
Use g_malloc0() for small allocations and assume they always
succeed. Simplify error handling in a few places accordingly.
Don't always sanity-check parameters for non-public (SR_PRIV)
functions, we require the developers to invoke them correctly.
This allows further error handling simplifications.
Every driver now publishes its device option config keys, i.e. the
list fetched with sr_config_list(SR_CONF_DEVICE_OPTIONS), with a
set of flags indicating which methods are implemented by the driver
for that key.
The config keys are OR'ed with any combination of SR_CONF_GET,
SR_CONF_SET and SR_CONF_LIST. These are defined as the high bits
of the uint32_t config key. Clients can OR config keys with
SR_CONF_MASK to strip out these bits. This mask will be kept up to
date if other bits are added to the capabilities list; clients MUST
therefore use SR_CONF_MASK for this.
Some keys don't have capability bits added, such as the informative
device type keys (SR_CONF_MULTIMETER, SR_CONF_OSCILLOSCOPE, ...) and
SR_CONF_CONTINUOUS.
Scan options do not have capabilities bits.