libsigrok/src/hardware/dslogic/protocol.c

1069 lines
28 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
* Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <math.h>
#include <glib.h>
#include <glib/gstdio.h>
#include "protocol.h"
#define DS_CMD_GET_FW_VERSION 0xb0
#define DS_CMD_GET_REVID_VERSION 0xb1
#define DS_CMD_START 0xb2
#define DS_CMD_CONFIG 0xb3
#define DS_CMD_SETTING 0xb4
#define DS_CMD_CONTROL 0xb5
#define DS_CMD_STATUS 0xb6
#define DS_CMD_STATUS_INFO 0xb7
#define DS_CMD_WR_REG 0xb8
#define DS_CMD_WR_NVM 0xb9
#define DS_CMD_RD_NVM 0xba
#define DS_CMD_RD_NVM_PRE 0xbb
#define DS_CMD_GET_HW_INFO 0xbc
#define DS_START_FLAGS_STOP (1 << 7)
#define DS_START_FLAGS_CLK_48MHZ (1 << 6)
#define DS_START_FLAGS_SAMPLE_WIDE (1 << 5)
#define DS_START_FLAGS_MODE_LA (1 << 4)
#define DS_ADDR_COMB 0x68
#define DS_ADDR_EEWP 0x70
#define DS_ADDR_VTH 0x78
#define DS_MAX_LOGIC_DEPTH SR_MHZ(16)
#define DS_MAX_LOGIC_SAMPLERATE SR_MHZ(100)
#define DS_MAX_TRIG_PERCENT 90
#define DS_MODE_TRIG_EN (1 << 0)
#define DS_MODE_CLK_TYPE (1 << 1)
#define DS_MODE_CLK_EDGE (1 << 2)
#define DS_MODE_RLE_MODE (1 << 3)
#define DS_MODE_DSO_MODE (1 << 4)
#define DS_MODE_HALF_MODE (1 << 5)
#define DS_MODE_QUAR_MODE (1 << 6)
#define DS_MODE_ANALOG_MODE (1 << 7)
#define DS_MODE_FILTER (1 << 8)
#define DS_MODE_INSTANT (1 << 9)
#define DS_MODE_STRIG_MODE (1 << 11)
#define DS_MODE_STREAM_MODE (1 << 12)
#define DS_MODE_LPB_TEST (1 << 13)
#define DS_MODE_EXT_TEST (1 << 14)
#define DS_MODE_INT_TEST (1 << 15)
#define DSLOGIC_ATOMIC_SAMPLES (sizeof(uint64_t) * 8)
#define DSLOGIC_ATOMIC_BYTES sizeof(uint64_t)
/*
* The FPGA is configured with TLV tuples. Length is specified as the
* number of 16-bit words.
*/
#define _DS_CFG(variable, wordcnt) ((variable << 8) | wordcnt)
#define DS_CFG_START 0xf5a5f5a5
#define DS_CFG_MODE _DS_CFG(0, 1)
#define DS_CFG_DIVIDER _DS_CFG(1, 2)
#define DS_CFG_COUNT _DS_CFG(3, 2)
#define DS_CFG_TRIG_POS _DS_CFG(5, 2)
#define DS_CFG_TRIG_GLB _DS_CFG(7, 1)
#define DS_CFG_CH_EN _DS_CFG(8, 1)
#define DS_CFG_TRIG _DS_CFG(64, 160)
#define DS_CFG_END 0xfa5afa5a
#pragma pack(push, 1)
struct version_info {
uint8_t major;
uint8_t minor;
};
struct cmd_start_acquisition {
uint8_t flags;
uint8_t sample_delay_h;
uint8_t sample_delay_l;
};
struct dslogic_fpga_config {
uint32_t sync;
uint16_t mode_header;
uint16_t mode;
uint16_t divider_header;
uint32_t divider;
uint16_t count_header;
uint32_t count;
uint16_t trig_pos_header;
uint32_t trig_pos;
uint16_t trig_glb_header;
uint16_t trig_glb;
uint16_t ch_en_header;
uint16_t ch_en;
uint16_t trig_header;
uint16_t trig_mask0[NUM_TRIGGER_STAGES];
uint16_t trig_mask1[NUM_TRIGGER_STAGES];
uint16_t trig_value0[NUM_TRIGGER_STAGES];
uint16_t trig_value1[NUM_TRIGGER_STAGES];
uint16_t trig_edge0[NUM_TRIGGER_STAGES];
uint16_t trig_edge1[NUM_TRIGGER_STAGES];
uint16_t trig_logic0[NUM_TRIGGER_STAGES];
uint16_t trig_logic1[NUM_TRIGGER_STAGES];
uint32_t trig_count[NUM_TRIGGER_STAGES];
uint32_t end_sync;
};
#pragma pack(pop)
/*
* This should be larger than the FPGA bitstream image so that it'll get
* uploaded in one big operation. There seem to be issues when uploading
* it in chunks.
*/
#define FW_BUFSIZE (1024 * 1024)
#define FPGA_UPLOAD_DELAY (10 * 1000)
#define USB_TIMEOUT (3 * 1000)
static int command_get_fw_version(libusb_device_handle *devhdl,
struct version_info *vi)
{
int ret;
ret = libusb_control_transfer(devhdl, LIBUSB_REQUEST_TYPE_VENDOR |
LIBUSB_ENDPOINT_IN, DS_CMD_GET_FW_VERSION, 0x0000, 0x0000,
(unsigned char *)vi, sizeof(struct version_info), USB_TIMEOUT);
if (ret < 0) {
sr_err("Unable to get version info: %s.",
libusb_error_name(ret));
return SR_ERR;
}
return SR_OK;
}
static int command_get_revid_version(struct sr_dev_inst *sdi, uint8_t *revid)
{
struct sr_usb_dev_inst *usb = sdi->conn;
libusb_device_handle *devhdl = usb->devhdl;
int ret;
ret = libusb_control_transfer(devhdl, LIBUSB_REQUEST_TYPE_VENDOR |
LIBUSB_ENDPOINT_IN, DS_CMD_GET_REVID_VERSION, 0x0000, 0x0000,
revid, 1, USB_TIMEOUT);
if (ret < 0) {
sr_err("Unable to get REVID: %s.", libusb_error_name(ret));
return SR_ERR;
}
return SR_OK;
}
static int command_start_acquisition(const struct sr_dev_inst *sdi)
{
struct sr_usb_dev_inst *usb;
struct dslogic_mode mode;
int ret;
mode.flags = DS_START_FLAGS_MODE_LA | DS_START_FLAGS_SAMPLE_WIDE;
mode.sample_delay_h = mode.sample_delay_l = 0;
usb = sdi->conn;
ret = libusb_control_transfer(usb->devhdl, LIBUSB_REQUEST_TYPE_VENDOR |
LIBUSB_ENDPOINT_OUT, DS_CMD_START, 0x0000, 0x0000,
(unsigned char *)&mode, sizeof(mode), USB_TIMEOUT);
if (ret < 0) {
sr_err("Failed to send start command: %s.", libusb_error_name(ret));
return SR_ERR;
}
return SR_OK;
}
static int command_stop_acquisition(const struct sr_dev_inst *sdi)
{
struct sr_usb_dev_inst *usb;
struct dslogic_mode mode;
int ret;
mode.flags = DS_START_FLAGS_STOP;
mode.sample_delay_h = mode.sample_delay_l = 0;
usb = sdi->conn;
ret = libusb_control_transfer(usb->devhdl, LIBUSB_REQUEST_TYPE_VENDOR |
LIBUSB_ENDPOINT_OUT, DS_CMD_START, 0x0000, 0x0000,
(unsigned char *)&mode, sizeof(struct dslogic_mode), USB_TIMEOUT);
if (ret < 0) {
sr_err("Failed to send stop command: %s.", libusb_error_name(ret));
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int dslogic_fpga_firmware_upload(const struct sr_dev_inst *sdi)
{
const char *name = NULL;
uint64_t sum;
struct sr_resource bitstream;
struct drv_context *drvc;
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
unsigned char *buf;
ssize_t chunksize;
int transferred;
int result, ret;
const uint8_t cmd[3] = {0, 0, 0};
drvc = sdi->driver->context;
devc = sdi->priv;
usb = sdi->conn;
if (!strcmp(devc->profile->model, "DSLogic")) {
if (devc->cur_threshold < 1.40)
name = DSLOGIC_FPGA_FIRMWARE_3V3;
else
name = DSLOGIC_FPGA_FIRMWARE_5V;
} else if (!strcmp(devc->profile->model, "DSLogic Pro")){
name = DSLOGIC_PRO_FPGA_FIRMWARE;
} else if (!strcmp(devc->profile->model, "DSLogic Plus")){
name = DSLOGIC_PLUS_FPGA_FIRMWARE;
} else if (!strcmp(devc->profile->model, "DSLogic Basic")){
name = DSLOGIC_BASIC_FPGA_FIRMWARE;
} else if (!strcmp(devc->profile->model, "DSCope")) {
name = DSCOPE_FPGA_FIRMWARE;
} else {
sr_err("Failed to select FPGA firmware.");
return SR_ERR;
}
sr_dbg("Uploading FPGA firmware '%s'.", name);
result = sr_resource_open(drvc->sr_ctx, &bitstream,
SR_RESOURCE_FIRMWARE, name);
if (result != SR_OK)
return result;
/* Tell the device firmware is coming. */
if ((ret = libusb_control_transfer(usb->devhdl, LIBUSB_REQUEST_TYPE_VENDOR |
LIBUSB_ENDPOINT_OUT, DS_CMD_CONFIG, 0x0000, 0x0000,
(unsigned char *)&cmd, sizeof(cmd), USB_TIMEOUT)) < 0) {
sr_err("Failed to upload FPGA firmware: %s.", libusb_error_name(ret));
sr_resource_close(drvc->sr_ctx, &bitstream);
return SR_ERR;
}
/* Give the FX2 time to get ready for FPGA firmware upload. */
g_usleep(FPGA_UPLOAD_DELAY);
buf = g_malloc(FW_BUFSIZE);
sum = 0;
result = SR_OK;
while (1) {
chunksize = sr_resource_read(drvc->sr_ctx, &bitstream,
buf, FW_BUFSIZE);
if (chunksize < 0)
result = SR_ERR;
if (chunksize <= 0)
break;
if ((ret = libusb_bulk_transfer(usb->devhdl, 2 | LIBUSB_ENDPOINT_OUT,
buf, chunksize, &transferred, USB_TIMEOUT)) < 0) {
sr_err("Unable to configure FPGA firmware: %s.",
libusb_error_name(ret));
result = SR_ERR;
break;
}
sum += transferred;
sr_spew("Uploaded %" PRIu64 "/%" PRIu64 " bytes.",
sum, bitstream.size);
if (transferred != chunksize) {
sr_err("Short transfer while uploading FPGA firmware.");
result = SR_ERR;
break;
}
}
g_free(buf);
sr_resource_close(drvc->sr_ctx, &bitstream);
if (result == SR_OK)
sr_dbg("FPGA firmware upload done.");
return result;
}
static unsigned int enabled_channel_count(const struct sr_dev_inst *sdi)
{
unsigned int count = 0;
for (const GSList *l = sdi->channels; l; l = l->next) {
const struct sr_channel *const probe = (struct sr_channel *)l->data;
if (probe->enabled)
count++;
}
return count;
}
static uint16_t enabled_channel_mask(const struct sr_dev_inst *sdi)
{
unsigned int mask = 0;
for (const GSList *l = sdi->channels; l; l = l->next) {
const struct sr_channel *const probe = (struct sr_channel *)l->data;
if (probe->enabled)
mask |= 1 << probe->index;
}
return mask;
}
/*
* Get the session trigger and configure the FPGA structure
* accordingly.
*/
static void set_trigger(const struct sr_dev_inst *sdi,
struct dslogic_fpga_config *cfg)
{
struct sr_trigger *trigger;
struct sr_trigger_stage *stage;
struct sr_trigger_match *match;
struct dev_context *devc;
const GSList *l, *m;
const unsigned int num_enabled_channels = enabled_channel_count(sdi);
int num_trigger_stages = 0;
int channelbit, i = 0;
uint32_t trigger_point;
devc = sdi->priv;
cfg->ch_en = enabled_channel_mask(sdi);
cfg->trig_mask0[0] = 0xffff;
cfg->trig_mask1[0] = 0xffff;
cfg->trig_value0[0] = 0;
cfg->trig_value1[0] = 0;
cfg->trig_edge0[0] = 0;
cfg->trig_edge1[0] = 0;
cfg->trig_logic0[0] = 2;
cfg->trig_logic1[0] = 2;
cfg->trig_count[0] = 0;
cfg->trig_glb = num_enabled_channels << 4;
for (i = 1; i < NUM_TRIGGER_STAGES; i++) {
cfg->trig_mask0[i] = 0xffff;
cfg->trig_mask1[i] = 0xffff;
cfg->trig_value0[i] = 0;
cfg->trig_value1[i] = 0;
cfg->trig_edge0[i] = 0;
cfg->trig_edge1[i] = 0;
cfg->trig_logic0[i] = 2;
cfg->trig_logic1[i] = 2;
cfg->trig_count[i] = 0;
}
trigger_point = (devc->capture_ratio * devc->limit_samples) / 100;
if (trigger_point < DSLOGIC_ATOMIC_SAMPLES)
trigger_point = DSLOGIC_ATOMIC_SAMPLES;
const uint32_t mem_depth = devc->profile->mem_depth;
const uint32_t max_trigger_point = devc->continuous_mode ? ((mem_depth * 10) / 100) :
((mem_depth * DS_MAX_TRIG_PERCENT) / 100);
if (trigger_point > max_trigger_point)
trigger_point = max_trigger_point;
cfg->trig_pos = trigger_point & ~(DSLOGIC_ATOMIC_SAMPLES - 1);
if (!(trigger = sr_session_trigger_get(sdi->session))) {
sr_dbg("No session trigger found");
return;
}
for (l = trigger->stages; l; l = l->next) {
stage = l->data;
num_trigger_stages++;
for (m = stage->matches; m; m = m->next) {
match = m->data;
if (!match->channel->enabled)
/* Ignore disabled channels with a trigger. */
continue;
channelbit = 1 << (match->channel->index);
/* Simple trigger support (event). */
if (match->match == SR_TRIGGER_ONE) {
cfg->trig_mask0[0] &= ~channelbit;
cfg->trig_mask1[0] &= ~channelbit;
cfg->trig_value0[0] |= channelbit;
cfg->trig_value1[0] |= channelbit;
} else if (match->match == SR_TRIGGER_ZERO) {
cfg->trig_mask0[0] &= ~channelbit;
cfg->trig_mask1[0] &= ~channelbit;
} else if (match->match == SR_TRIGGER_FALLING) {
cfg->trig_mask0[0] &= ~channelbit;
cfg->trig_mask1[0] &= ~channelbit;
cfg->trig_edge0[0] |= channelbit;
cfg->trig_edge1[0] |= channelbit;
} else if (match->match == SR_TRIGGER_RISING) {
cfg->trig_mask0[0] &= ~channelbit;
cfg->trig_mask1[0] &= ~channelbit;
cfg->trig_value0[0] |= channelbit;
cfg->trig_value1[0] |= channelbit;
cfg->trig_edge0[0] |= channelbit;
cfg->trig_edge1[0] |= channelbit;
} else if (match->match == SR_TRIGGER_EDGE) {
cfg->trig_edge0[0] |= channelbit;
cfg->trig_edge1[0] |= channelbit;
}
}
}
cfg->trig_glb |= num_trigger_stages;
return;
}
static int fpga_configure(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
uint8_t c[3];
struct dslogic_fpga_config cfg;
uint16_t v16;
uint32_t v32;
int transferred, len, ret;
sr_dbg("Configuring FPGA.");
usb = sdi->conn;
devc = sdi->priv;
WL32(&cfg.sync, DS_CFG_START);
WL16(&cfg.mode_header, DS_CFG_MODE);
WL16(&cfg.divider_header, DS_CFG_DIVIDER);
WL16(&cfg.count_header, DS_CFG_COUNT);
WL16(&cfg.trig_pos_header, DS_CFG_TRIG_POS);
WL16(&cfg.trig_glb_header, DS_CFG_TRIG_GLB);
WL16(&cfg.ch_en_header, DS_CFG_CH_EN);
WL16(&cfg.trig_header, DS_CFG_TRIG);
WL32(&cfg.end_sync, DS_CFG_END);
/* Pass in the length of a fixed-size struct. Really. */
len = sizeof(struct dslogic_fpga_config) / 2;
c[0] = len & 0xff;
c[1] = (len >> 8) & 0xff;
c[2] = (len >> 16) & 0xff;
ret = libusb_control_transfer(usb->devhdl, LIBUSB_REQUEST_TYPE_VENDOR |
LIBUSB_ENDPOINT_OUT, DS_CMD_SETTING, 0x0000, 0x0000,
c, sizeof(c), USB_TIMEOUT);
if (ret < 0) {
sr_err("Failed to send FPGA configure command: %s.",
libusb_error_name(ret));
return SR_ERR;
}
v16 = 0x0000;
if (devc->mode == DS_OP_INTERNAL_TEST)
v16 = DS_MODE_INT_TEST;
else if (devc->mode == DS_OP_EXTERNAL_TEST)
v16 = DS_MODE_EXT_TEST;
else if (devc->mode == DS_OP_LOOPBACK_TEST)
v16 = DS_MODE_LPB_TEST;
if (devc->cur_samplerate == DS_MAX_LOGIC_SAMPLERATE * 2)
v16 |= DS_MODE_HALF_MODE;
else if (devc->cur_samplerate == DS_MAX_LOGIC_SAMPLERATE * 4)
v16 |= DS_MODE_QUAR_MODE;
if (devc->continuous_mode)
v16 |= DS_MODE_STREAM_MODE;
if (devc->external_clock) {
v16 |= DS_MODE_CLK_TYPE;
if (devc->clock_edge == DS_EDGE_FALLING)
v16 |= DS_MODE_CLK_EDGE;
}
if (devc->limit_samples > DS_MAX_LOGIC_DEPTH *
ceil(devc->cur_samplerate * 1.0 / DS_MAX_LOGIC_SAMPLERATE)
&& !devc->continuous_mode) {
/* Enable RLE for long captures.
* Without this, captured data present errors.
*/
v16 |= DS_MODE_RLE_MODE;
}
WL16(&cfg.mode, v16);
v32 = ceil(DS_MAX_LOGIC_SAMPLERATE * 1.0 / devc->cur_samplerate);
WL32(&cfg.divider, v32);
/* Number of 16-sample units. */
WL32(&cfg.count, devc->limit_samples / 16);
set_trigger(sdi, &cfg);
len = sizeof(struct dslogic_fpga_config);
ret = libusb_bulk_transfer(usb->devhdl, 2 | LIBUSB_ENDPOINT_OUT,
(unsigned char *)&cfg, len, &transferred, USB_TIMEOUT);
if (ret < 0 || transferred != len) {
sr_err("Failed to send FPGA configuration: %s.", libusb_error_name(ret));
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int dslogic_set_voltage_threshold(const struct sr_dev_inst *sdi, double threshold)
{
int ret;
struct dev_context *const devc = sdi->priv;
const struct sr_usb_dev_inst *const usb = sdi->conn;
const uint8_t value = (threshold / 5.0) * 255;
const uint16_t cmd = value | (DS_ADDR_VTH << 8);
/* Send the control command. */
ret = libusb_control_transfer(usb->devhdl,
LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
DS_CMD_WR_REG, 0x0000, 0x0000,
(unsigned char *)&cmd, sizeof(cmd), 3000);
if (ret < 0) {
sr_err("Unable to set voltage-threshold register: %s.",
libusb_error_name(ret));
return SR_ERR;
}
devc->cur_threshold = threshold;
return SR_OK;
}
SR_PRIV int dslogic_dev_open(struct sr_dev_inst *sdi, struct sr_dev_driver *di)
{
libusb_device **devlist;
struct sr_usb_dev_inst *usb;
struct libusb_device_descriptor des;
struct dev_context *devc;
struct drv_context *drvc;
struct version_info vi;
int ret, i, device_count;
uint8_t revid;
char connection_id[64];
drvc = di->context;
devc = sdi->priv;
usb = sdi->conn;
if (sdi->status == SR_ST_ACTIVE)
/* Device is already in use. */
return SR_ERR;
device_count = libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
if (device_count < 0) {
sr_err("Failed to get device list: %s.",
libusb_error_name(device_count));
return SR_ERR;
}
for (i = 0; i < device_count; i++) {
libusb_get_device_descriptor(devlist[i], &des);
if (des.idVendor != devc->profile->vid
|| des.idProduct != devc->profile->pid)
continue;
if ((sdi->status == SR_ST_INITIALIZING) ||
(sdi->status == SR_ST_INACTIVE)) {
/*
* Check device by its physical USB bus/port address.
*/
usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
if (strcmp(sdi->connection_id, connection_id))
/* This is not the one. */
continue;
}
if (!(ret = libusb_open(devlist[i], &usb->devhdl))) {
if (usb->address == 0xff)
/*
* First time we touch this device after FW
* upload, so we don't know the address yet.
*/
usb->address = libusb_get_device_address(devlist[i]);
} else {
sr_err("Failed to open device: %s.",
libusb_error_name(ret));
break;
}
if (libusb_has_capability(LIBUSB_CAP_SUPPORTS_DETACH_KERNEL_DRIVER)) {
if (libusb_kernel_driver_active(usb->devhdl, USB_INTERFACE) == 1) {
if ((ret = libusb_detach_kernel_driver(usb->devhdl, USB_INTERFACE)) < 0) {
sr_err("Failed to detach kernel driver: %s.",
libusb_error_name(ret));
return SR_ERR;
}
}
}
ret = command_get_fw_version(usb->devhdl, &vi);
if (ret != SR_OK) {
sr_err("Failed to get firmware version.");
break;
}
ret = command_get_revid_version(sdi, &revid);
if (ret != SR_OK) {
sr_err("Failed to get REVID.");
break;
}
/*
* Changes in major version mean incompatible/API changes, so
* bail out if we encounter an incompatible version.
* Different minor versions are OK, they should be compatible.
*/
if (vi.major != DSLOGIC_REQUIRED_VERSION_MAJOR) {
sr_err("Expected firmware version %d.x, "
"got %d.%d.", DSLOGIC_REQUIRED_VERSION_MAJOR,
vi.major, vi.minor);
break;
}
sdi->status = SR_ST_ACTIVE;
sr_info("Opened device on %d.%d (logical) / %s (physical), "
"interface %d, firmware %d.%d.",
usb->bus, usb->address, connection_id,
USB_INTERFACE, vi.major, vi.minor);
sr_info("Detected REVID=%d, it's a Cypress CY7C68013%s.",
revid, (revid != 1) ? " (FX2)" : "A (FX2LP)");
break;
}
libusb_free_device_list(devlist, 1);
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
return SR_OK;
}
SR_PRIV struct dev_context *dslogic_dev_new(void)
{
struct dev_context *devc;
devc = g_malloc0(sizeof(struct dev_context));
devc->profile = NULL;
devc->fw_updated = 0;
devc->cur_samplerate = 0;
devc->limit_samples = 0;
devc->capture_ratio = 0;
devc->continuous_mode = FALSE;
devc->clock_edge = DS_EDGE_RISING;
return devc;
}
static void abort_acquisition(struct dev_context *devc)
{
int i;
devc->acq_aborted = TRUE;
for (i = devc->num_transfers - 1; i >= 0; i--) {
if (devc->transfers[i])
libusb_cancel_transfer(devc->transfers[i]);
}
}
static void finish_acquisition(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
devc = sdi->priv;
std_session_send_df_end(sdi);
usb_source_remove(sdi->session, devc->ctx);
devc->num_transfers = 0;
g_free(devc->transfers);
}
static void free_transfer(struct libusb_transfer *transfer)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
unsigned int i;
sdi = transfer->user_data;
devc = sdi->priv;
g_free(transfer->buffer);
transfer->buffer = NULL;
libusb_free_transfer(transfer);
for (i = 0; i < devc->num_transfers; i++) {
if (devc->transfers[i] == transfer) {
devc->transfers[i] = NULL;
break;
}
}
devc->submitted_transfers--;
if (devc->submitted_transfers == 0)
finish_acquisition(sdi);
}
static void resubmit_transfer(struct libusb_transfer *transfer)
{
int ret;
if ((ret = libusb_submit_transfer(transfer)) == LIBUSB_SUCCESS)
return;
sr_err("%s: %s", __func__, libusb_error_name(ret));
free_transfer(transfer);
}
static void send_data(struct sr_dev_inst *sdi,
uint8_t *data, size_t length, size_t sample_width)
{
const struct sr_datafeed_logic logic = {
.length = length,
.unitsize = sample_width,
.data = data
};
const struct sr_datafeed_packet packet = {
.type = SR_DF_LOGIC,
.payload = &logic
};
sr_session_send(sdi, &packet);
}
static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
gboolean packet_has_error = FALSE;
struct sr_datafeed_packet packet;
unsigned int num_samples;
int trigger_offset, cur_sample_count;
const int unitsize = 2;
sdi = transfer->user_data;
devc = sdi->priv;
/*
* If acquisition has already ended, just free any queued up
* transfer that come in.
*/
if (devc->acq_aborted) {
free_transfer(transfer);
return;
}
sr_dbg("receive_transfer(): status %s received %d bytes.",
libusb_error_name(transfer->status), transfer->actual_length);
/* Save incoming transfer before reusing the transfer struct. */
cur_sample_count = transfer->actual_length / unitsize;
switch (transfer->status) {
case LIBUSB_TRANSFER_NO_DEVICE:
abort_acquisition(devc);
free_transfer(transfer);
return;
case LIBUSB_TRANSFER_COMPLETED:
case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */
break;
default:
packet_has_error = TRUE;
break;
}
if (transfer->actual_length == 0 || packet_has_error) {
devc->empty_transfer_count++;
if (devc->empty_transfer_count > MAX_EMPTY_TRANSFERS) {
/*
* The FX2 gave up. End the acquisition, the frontend
* will work out that the samplecount is short.
*/
abort_acquisition(devc);
free_transfer(transfer);
} else {
resubmit_transfer(transfer);
}
return;
} else {
devc->empty_transfer_count = 0;
}
if (!devc->limit_samples || devc->sent_samples < devc->limit_samples) {
/* Send the incoming transfer to the session bus. */
if (devc->limit_samples && devc->sent_samples + cur_sample_count > devc->limit_samples)
num_samples = devc->limit_samples - devc->sent_samples;
else
num_samples = cur_sample_count;
if (devc->trigger_pos > devc->sent_samples
&& devc->trigger_pos <= devc->sent_samples + num_samples) {
/* DSLogic trigger in this block. Send trigger position. */
trigger_offset = devc->trigger_pos - devc->sent_samples;
/* Pre-trigger samples. */
send_data(sdi, (uint8_t *)transfer->buffer,
trigger_offset * unitsize, unitsize);
devc->sent_samples += trigger_offset;
/* Trigger position. */
devc->trigger_pos = 0;
packet.type = SR_DF_TRIGGER;
packet.payload = NULL;
sr_session_send(sdi, &packet);
/* Post trigger samples. */
num_samples -= trigger_offset;
send_data(sdi, (uint8_t *)transfer->buffer
+ trigger_offset * unitsize, num_samples * unitsize, unitsize);
devc->sent_samples += num_samples;
} else {
send_data(sdi, (uint8_t *)transfer->buffer,
num_samples * unitsize, unitsize);
devc->sent_samples += num_samples;
}
}
if (devc->limit_samples && devc->sent_samples >= devc->limit_samples) {
abort_acquisition(devc);
free_transfer(transfer);
} else
resubmit_transfer(transfer);
}
static int receive_data(int fd, int revents, void *cb_data)
{
struct timeval tv;
struct drv_context *drvc;
(void)fd;
(void)revents;
drvc = (struct drv_context *)cb_data;
tv.tv_sec = tv.tv_usec = 0;
libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
return TRUE;
}
static size_t to_bytes_per_ms(const struct sr_dev_inst *sdi)
{
const struct dev_context *const devc = sdi->priv;
const size_t ch_count = enabled_channel_count(sdi);
if (devc->continuous_mode)
return (devc->cur_samplerate * ch_count) / (1000 * 8);
/* If we're in buffered mode, the transfer rate is not so important,
* but we expect to get at least 10% of the high-speed USB bandwidth.
*/
return 35000000 / (1000 * 10);
}
static size_t get_buffer_size(const struct sr_dev_inst *sdi)
{
/*
* The buffer should be large enough to hold 10ms of data and
* a multiple of the size of a data atom.
*/
const size_t block_size = enabled_channel_count(sdi) * 512;
const size_t s = 10 * to_bytes_per_ms(sdi);
return ((s + block_size - 1) / block_size) * block_size;
}
static unsigned int get_number_of_transfers(const struct sr_dev_inst *sdi)
{
/* Total buffer size should be able to hold about 100ms of data. */
const unsigned int s = get_buffer_size(sdi);
const unsigned int n = (100 * to_bytes_per_ms(sdi) + s - 1) / s;
return (n > NUM_SIMUL_TRANSFERS) ? NUM_SIMUL_TRANSFERS : n;
}
static unsigned int get_timeout(const struct sr_dev_inst *sdi)
{
const size_t total_size = get_buffer_size(sdi) *
get_number_of_transfers(sdi);
const unsigned int timeout = total_size / to_bytes_per_ms(sdi);
return timeout + timeout / 4; /* Leave a headroom of 25% percent. */
}
static int start_transfers(const struct sr_dev_inst *sdi)
{
const size_t size = get_buffer_size(sdi);
const unsigned int num_transfers = get_number_of_transfers(sdi);
const unsigned int timeout = get_timeout(sdi);
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
struct libusb_transfer *transfer;
unsigned int i;
int ret;
unsigned char *buf;
devc = sdi->priv;
usb = sdi->conn;
devc->sent_samples = 0;
devc->acq_aborted = FALSE;
devc->empty_transfer_count = 0;
devc->submitted_transfers = 0;
g_free(devc->transfers);
devc->transfers = g_try_malloc0(sizeof(*devc->transfers) * num_transfers);
if (!devc->transfers) {
sr_err("USB transfers malloc failed.");
return SR_ERR_MALLOC;
}
devc->num_transfers = num_transfers;
for (i = 0; i < num_transfers; i++) {
if (!(buf = g_try_malloc(size))) {
sr_err("USB transfer buffer malloc failed.");
return SR_ERR_MALLOC;
}
transfer = libusb_alloc_transfer(0);
libusb_fill_bulk_transfer(transfer, usb->devhdl,
6 | LIBUSB_ENDPOINT_IN, buf, size,
receive_transfer, (void *)sdi, timeout);
sr_info("submitting transfer: %d", i);
if ((ret = libusb_submit_transfer(transfer)) != 0) {
sr_err("Failed to submit transfer: %s.",
libusb_error_name(ret));
libusb_free_transfer(transfer);
g_free(buf);
abort_acquisition(devc);
return SR_ERR;
}
devc->transfers[i] = transfer;
devc->submitted_transfers++;
}
std_session_send_df_header(sdi);
return SR_OK;
}
static void LIBUSB_CALL trigger_receive(struct libusb_transfer *transfer)
{
const struct sr_dev_inst *sdi;
struct dslogic_trigger_pos *tpos;
struct dev_context *devc;
sdi = transfer->user_data;
devc = sdi->priv;
if (transfer->status == LIBUSB_TRANSFER_CANCELLED) {
sr_dbg("Trigger transfer canceled.");
/* Terminate session. */
std_session_send_df_end(sdi);
usb_source_remove(sdi->session, devc->ctx);
devc->num_transfers = 0;
g_free(devc->transfers);
} else if (transfer->status == LIBUSB_TRANSFER_COMPLETED
&& transfer->actual_length == sizeof(struct dslogic_trigger_pos)) {
tpos = (struct dslogic_trigger_pos *)transfer->buffer;
sr_info("tpos real_pos %d ram_saddr %d cnt %d", tpos->real_pos,
tpos->ram_saddr, tpos->remain_cnt);
devc->trigger_pos = tpos->real_pos;
g_free(tpos);
start_transfers(sdi);
}
libusb_free_transfer(transfer);
}
SR_PRIV int dslogic_acquisition_start(const struct sr_dev_inst *sdi)
{
const unsigned int timeout = get_timeout(sdi);
struct sr_dev_driver *di;
struct drv_context *drvc;
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
struct dslogic_trigger_pos *tpos;
struct libusb_transfer *transfer;
int ret;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
di = sdi->driver;
drvc = di->context;
devc = sdi->priv;
usb = sdi->conn;
devc->ctx = drvc->sr_ctx;
devc->sent_samples = 0;
devc->empty_transfer_count = 0;
devc->acq_aborted = FALSE;
usb_source_add(sdi->session, devc->ctx, timeout, receive_data, drvc);
if ((ret = command_stop_acquisition(sdi)) != SR_OK)
return ret;
if ((ret = fpga_configure(sdi)) != SR_OK)
return ret;
if ((ret = command_start_acquisition(sdi)) != SR_OK)
return ret;
sr_dbg("Getting trigger.");
tpos = g_malloc(sizeof(struct dslogic_trigger_pos));
transfer = libusb_alloc_transfer(0);
libusb_fill_bulk_transfer(transfer, usb->devhdl, 6 | LIBUSB_ENDPOINT_IN,
(unsigned char *)tpos, sizeof(struct dslogic_trigger_pos),
trigger_receive, (void *)sdi, 0);
if ((ret = libusb_submit_transfer(transfer)) < 0) {
sr_err("Failed to request trigger: %s.", libusb_error_name(ret));
libusb_free_transfer(transfer);
g_free(tpos);
return SR_ERR;
}
devc->transfers = g_try_malloc0(sizeof(*devc->transfers));
if (!devc->transfers) {
sr_err("USB trigger_pos transfer malloc failed.");
return SR_ERR_MALLOC;
}
devc->num_transfers = 1;
devc->submitted_transfers++;
devc->transfers[0] = transfer;
return ret;
}
SR_PRIV int dslogic_acquisition_stop(struct sr_dev_inst *sdi)
{
command_stop_acquisition(sdi);
abort_acquisition(sdi->priv);
return SR_OK;
}