libsigrok/hardware/hantek-dso/api.c

929 lines
23 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <sys/time.h>
#include <inttypes.h>
#include <glib.h>
#include <libusb.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "dso.h"
/* Max time in ms before we want to check on USB events */
/* TODO tune this properly */
#define TICK 1
static const int hwcaps[] = {
SR_HWCAP_OSCILLOSCOPE,
SR_HWCAP_LIMIT_SAMPLES,
SR_HWCAP_CONTINUOUS,
SR_HWCAP_TIMEBASE,
SR_HWCAP_BUFFERSIZE,
SR_HWCAP_TRIGGER_SOURCE,
SR_HWCAP_TRIGGER_SLOPE,
SR_HWCAP_HORIZ_TRIGGERPOS,
SR_HWCAP_FILTER,
SR_HWCAP_VDIV,
SR_HWCAP_COUPLING,
0,
};
static const char *probe_names[] = {
"CH1",
"CH2",
NULL,
};
static const struct dso_profile dev_profiles[] = {
{ 0x04b4, 0x2090, 0x04b5, 0x2090,
"Hantek", "DSO-2090",
FIRMWARE_DIR "/hantek-dso-2xxx.fw" },
{ 0x04b4, 0x2150, 0x04b5, 0x2150,
"Hantek", "DSO-2150",
FIRMWARE_DIR "/hantek-dso-2xxx.fw" },
{ 0x04b4, 0x2250, 0x04b5, 0x2250,
"Hantek", "DSO-2250",
FIRMWARE_DIR "/hantek-dso-2xxx.fw" },
{ 0x04b4, 0x5200, 0x04b5, 0x5200,
"Hantek", "DSO-5200",
FIRMWARE_DIR "/hantek-dso-5xxx.fw" },
{ 0x04b4, 0x520a, 0x04b5, 0x520a,
"Hantek", "DSO-5200A",
FIRMWARE_DIR "/hantek-dso-5xxx.fw" },
{ 0, 0, 0, 0, 0, 0, 0 },
};
static const uint64_t buffersizes[] = {
10240,
32768,
/* TODO: 65535 */
0,
};
static const struct sr_rational timebases[] = {
/* microseconds */
{ 10, 1000000 },
{ 20, 1000000 },
{ 40, 1000000 },
{ 100, 1000000 },
{ 200, 1000000 },
{ 400, 1000000 },
/* milliseconds */
{ 1, 1000 },
{ 2, 1000 },
{ 4, 1000 },
{ 10, 1000 },
{ 20, 1000 },
{ 40, 1000 },
{ 100, 1000 },
{ 200, 1000 },
{ 400, 1000 },
{ 0, 0},
};
static const struct sr_rational vdivs[] = {
/* millivolts */
{ 10, 1000 },
{ 20, 1000 },
{ 50, 1000 },
{ 100, 1000 },
{ 200, 1000 },
{ 500, 1000 },
/* volts */
{ 1, 1 },
{ 2, 1 },
{ 5, 1 },
{ 0, 0 },
};
static const char *trigger_sources[] = {
"CH1",
"CH2",
"EXT",
/* TODO: forced */
NULL,
};
static const char *filter_targets[] = {
"CH1",
"CH2",
/* TODO: "TRIGGER", */
NULL,
};
static const char *coupling[] = {
"AC",
"DC",
"GND",
NULL,
};
SR_PRIV struct sr_dev_driver hantek_dso_driver_info;
static struct sr_dev_driver *di = &hantek_dso_driver_info;
static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
static struct sr_dev_inst *dso_dev_new(int index, const struct dso_profile *prof)
{
struct sr_dev_inst *sdi;
struct sr_probe *probe;
struct drv_context *drvc;
struct dev_context *devc;
int i;
sdi = sr_dev_inst_new(index, SR_ST_INITIALIZING,
prof->vendor, prof->model, NULL);
if (!sdi)
return NULL;
sdi->driver = di;
/*
* Add only the real probes -- EXT isn't a source of data, only
* a trigger source internal to the device.
*/
for (i = 0; probe_names[i]; i++) {
if (!(probe = sr_probe_new(i, SR_PROBE_ANALOG, TRUE,
probe_names[i])))
return NULL;
sdi->probes = g_slist_append(sdi->probes, probe);
}
if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) {
sr_err("Device context malloc failed.");
return NULL;
}
devc->profile = prof;
devc->dev_state = IDLE;
devc->timebase = DEFAULT_TIMEBASE;
devc->ch1_enabled = TRUE;
devc->ch2_enabled = TRUE;
devc->voltage_ch1 = DEFAULT_VOLTAGE;
devc->voltage_ch2 = DEFAULT_VOLTAGE;
devc->coupling_ch1 = DEFAULT_COUPLING;
devc->coupling_ch2 = DEFAULT_COUPLING;
devc->voffset_ch1 = DEFAULT_VERT_OFFSET;
devc->voffset_ch2 = DEFAULT_VERT_OFFSET;
devc->voffset_trigger = DEFAULT_VERT_TRIGGERPOS;
devc->framesize = DEFAULT_FRAMESIZE;
devc->triggerslope = SLOPE_POSITIVE;
devc->triggersource = g_strdup(DEFAULT_TRIGGER_SOURCE);
devc->triggerposition = DEFAULT_HORIZ_TRIGGERPOS;
sdi->priv = devc;
drvc = di->priv;
drvc->instances = g_slist_append(drvc->instances, sdi);
return sdi;
}
static int configure_probes(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
const struct sr_probe *probe;
const GSList *l;
devc = sdi->priv;
devc->ch1_enabled = devc->ch2_enabled = FALSE;
for (l = sdi->probes; l; l = l->next) {
probe = (struct sr_probe *)l->data;
if (probe->index == 0)
devc->ch1_enabled = probe->enabled;
else if (probe->index == 1)
devc->ch2_enabled = probe->enabled;
}
return SR_OK;
}
/* Properly close and free all devices. */
static int clear_instances(void)
{
struct sr_dev_inst *sdi;
struct drv_context *drvc;
struct dev_context *devc;
GSList *l;
drvc = di->priv;
for (l = drvc->instances; l; l = l->next) {
if (!(sdi = l->data)) {
/* Log error, but continue cleaning up the rest. */
sr_err("%s: sdi was NULL, continuing", __func__);
continue;
}
if (!(devc = sdi->priv)) {
/* Log error, but continue cleaning up the rest. */
sr_err("%s: sdi->priv was NULL, continuing", __func__);
continue;
}
dso_close(sdi);
sr_usb_dev_inst_free(devc->usb);
g_free(devc->triggersource);
sr_dev_inst_free(sdi);
}
g_slist_free(drvc->instances);
drvc->instances = NULL;
return SR_OK;
}
static int hw_init(struct sr_context *sr_ctx)
{
struct drv_context *drvc;
if (!(drvc = g_try_malloc0(sizeof(struct drv_context)))) {
sr_err("Driver context malloc failed.");
return SR_ERR_MALLOC;
}
drvc->sr_ctx = sr_ctx;
di->priv = drvc;
return SR_OK;
}
static GSList *hw_scan(GSList *options)
{
struct sr_dev_inst *sdi;
const struct dso_profile *prof;
struct drv_context *drvc;
struct dev_context *devc;
GSList *devices;
struct libusb_device_descriptor des;
libusb_device **devlist;
int devcnt, ret, i, j;
(void)options;
devcnt = 0;
devices = 0;
drvc = di->priv;
drvc->instances = NULL;
clear_instances();
/* Find all Hantek DSO devices and upload firmware to all of them. */
libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
for (i = 0; devlist[i]; i++) {
if ((ret = libusb_get_device_descriptor(devlist[i], &des))) {
sr_err("Failed to get device descriptor: %s.",
libusb_error_name(ret));
continue;
}
prof = NULL;
for (j = 0; dev_profiles[j].orig_vid; j++) {
if (des.idVendor == dev_profiles[j].orig_vid
&& des.idProduct == dev_profiles[j].orig_pid) {
/* Device matches the pre-firmware profile. */
prof = &dev_profiles[j];
sr_dbg("Found a %s %s.", prof->vendor, prof->model);
sdi = dso_dev_new(devcnt, prof);
devices = g_slist_append(devices, sdi);
devc = sdi->priv;
if (ezusb_upload_firmware(devlist[i], USB_CONFIGURATION,
prof->firmware) == SR_OK)
/* Remember when the firmware on this device was updated */
devc->fw_updated = g_get_monotonic_time();
else
sr_err("Firmware upload failed for "
"device %d.", devcnt);
/* Dummy USB address of 0xff will get overwritten later. */
devc->usb = sr_usb_dev_inst_new(
libusb_get_bus_number(devlist[i]), 0xff, NULL);
devcnt++;
break;
} else if (des.idVendor == dev_profiles[j].fw_vid
&& des.idProduct == dev_profiles[j].fw_pid) {
/* Device matches the post-firmware profile. */
prof = &dev_profiles[j];
sr_dbg("Found a %s %s.", prof->vendor, prof->model);
sdi = dso_dev_new(devcnt, prof);
sdi->status = SR_ST_INACTIVE;
devices = g_slist_append(devices, sdi);
devc = sdi->priv;
devc->usb = sr_usb_dev_inst_new(
libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), NULL);
devcnt++;
break;
}
}
if (!prof)
/* not a supported VID/PID */
continue;
}
libusb_free_device_list(devlist, 1);
return devices;
}
static GSList *hw_dev_list(void)
{
struct drv_context *drvc;
drvc = di->priv;
return drvc->instances;
}
static int hw_dev_open(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int64_t timediff_us, timediff_ms;
int err;
devc = sdi->priv;
/*
* If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS
* for the FX2 to renumerate.
*/
err = SR_ERR;
if (devc->fw_updated > 0) {
sr_info("Waiting for device to reset.");
/* Takes >= 300ms for the FX2 to be gone from the USB bus. */
g_usleep(300 * 1000);
timediff_ms = 0;
while (timediff_ms < MAX_RENUM_DELAY_MS) {
if ((err = dso_open(sdi)) == SR_OK)
break;
g_usleep(100 * 1000);
timediff_us = g_get_monotonic_time() - devc->fw_updated;
timediff_ms = timediff_us / 1000;
sr_spew("Waited %" PRIi64 " ms.", timediff_ms);
}
sr_info("Device came back after %d ms.", timediff_ms);
} else {
err = dso_open(sdi);
}
if (err != SR_OK) {
sr_err("Unable to open device.");
return SR_ERR;
}
err = libusb_claim_interface(devc->usb->devhdl, USB_INTERFACE);
if (err != 0) {
sr_err("Unable to claim interface: %s.",
libusb_error_name(err));
return SR_ERR;
}
return SR_OK;
}
static int hw_dev_close(struct sr_dev_inst *sdi)
{
dso_close(sdi);
return SR_OK;
}
static int hw_cleanup(void)
{
struct drv_context *drvc;
if (!(drvc = di->priv))
return SR_OK;
clear_instances();
return SR_OK;
}
static int hw_info_get(int info_id, const void **data,
const struct sr_dev_inst *sdi)
{
uint64_t tmp;
(void)sdi;
switch (info_id) {
case SR_DI_HWCAPS:
*data = hwcaps;
break;
case SR_DI_NUM_PROBES:
*data = GINT_TO_POINTER(NUM_PROBES);
break;
case SR_DI_PROBE_NAMES:
*data = probe_names;
break;
case SR_DI_BUFFERSIZES:
*data = buffersizes;
break;
case SR_DI_TIMEBASES:
*data = timebases;
break;
case SR_DI_TRIGGER_SOURCES:
*data = trigger_sources;
break;
case SR_DI_FILTERS:
*data = filter_targets;
break;
case SR_DI_VDIVS:
*data = vdivs;
break;
case SR_DI_COUPLING:
*data = coupling;
break;
/* TODO remove this */
case SR_DI_CUR_SAMPLERATE:
*data = &tmp;
break;
default:
return SR_ERR_ARG;
}
return SR_OK;
}
static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap,
const void *value)
{
struct dev_context *devc;
struct sr_rational tmp_rat;
float tmp_float;
uint64_t tmp_u64;
int ret, i;
char **targets;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
ret = SR_OK;
devc = sdi->priv;
switch (hwcap) {
case SR_HWCAP_LIMIT_FRAMES:
devc->limit_frames = *(const uint64_t *)value;
break;
case SR_HWCAP_TRIGGER_SLOPE:
tmp_u64 = *(const int *)value;
if (tmp_u64 != SLOPE_NEGATIVE && tmp_u64 != SLOPE_POSITIVE)
ret = SR_ERR_ARG;
devc->triggerslope = tmp_u64;
break;
case SR_HWCAP_HORIZ_TRIGGERPOS:
tmp_float = *(const float *)value;
if (tmp_float < 0.0 || tmp_float > 1.0) {
sr_err("Trigger position should be between 0.0 and 1.0.");
ret = SR_ERR_ARG;
} else
devc->triggerposition = tmp_float;
break;
case SR_HWCAP_BUFFERSIZE:
tmp_u64 = *(const int *)value;
for (i = 0; buffersizes[i]; i++) {
if (buffersizes[i] == tmp_u64) {
devc->framesize = tmp_u64;
break;
}
}
if (buffersizes[i] == 0)
ret = SR_ERR_ARG;
break;
case SR_HWCAP_TIMEBASE:
tmp_rat = *(const struct sr_rational *)value;
for (i = 0; timebases[i].p && timebases[i].q; i++) {
if (timebases[i].p == tmp_rat.p
&& timebases[i].q == tmp_rat.q) {
devc->timebase = i;
break;
}
}
if (timebases[i].p == 0 && timebases[i].q == 0)
ret = SR_ERR_ARG;
break;
case SR_HWCAP_TRIGGER_SOURCE:
for (i = 0; trigger_sources[i]; i++) {
if (!strcmp(value, trigger_sources[i])) {
devc->triggersource = g_strdup(value);
break;
}
}
if (trigger_sources[i] == 0)
ret = SR_ERR_ARG;
break;
case SR_HWCAP_FILTER:
devc->filter_ch1 = devc->filter_ch2 = devc->filter_trigger = 0;
targets = g_strsplit(value, ",", 0);
for (i = 0; targets[i]; i++) {
if (targets[i] == '\0')
/* Empty filter string can be used to clear them all. */
;
else if (!strcmp(targets[i], "CH1"))
devc->filter_ch1 = TRUE;
else if (!strcmp(targets[i], "CH2"))
devc->filter_ch2 = TRUE;
else if (!strcmp(targets[i], "TRIGGER"))
devc->filter_trigger = TRUE;
else {
sr_err("Invalid filter target %s.", targets[i]);
ret = SR_ERR_ARG;
}
}
g_strfreev(targets);
break;
case SR_HWCAP_VDIV:
/* TODO: Not supporting vdiv per channel yet. */
tmp_rat = *(const struct sr_rational *)value;
for (i = 0; vdivs[i].p && vdivs[i].q; i++) {
if (vdivs[i].p == tmp_rat.p
&& vdivs[i].q == tmp_rat.q) {
devc->voltage_ch1 = i;
devc->voltage_ch2 = i;
break;
}
}
if (vdivs[i].p == 0 && vdivs[i].q == 0)
ret = SR_ERR_ARG;
break;
case SR_HWCAP_COUPLING:
/* TODO: Not supporting coupling per channel yet. */
for (i = 0; coupling[i]; i++) {
if (!strcmp(value, coupling[i])) {
devc->coupling_ch1 = i;
devc->coupling_ch2 = i;
break;
}
}
if (coupling[i] == 0)
ret = SR_ERR_ARG;
break;
default:
ret = SR_ERR_ARG;
break;
}
return ret;
}
static void send_chunk(struct dev_context *devc, unsigned char *buf,
int num_samples)
{
struct sr_datafeed_packet packet;
struct sr_datafeed_analog analog;
float ch1, ch2, range;
int num_probes, data_offset, i;
num_probes = (devc->ch1_enabled && devc->ch2_enabled) ? 2 : 1;
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
/* TODO: support for 5xxx series 9-bit samples */
analog.num_samples = num_samples;
analog.mq = SR_MQ_VOLTAGE;
analog.unit = SR_UNIT_VOLT;
/* TODO: Check malloc return value. */
analog.data = g_try_malloc(analog.num_samples * sizeof(float) * num_probes);
data_offset = 0;
for (i = 0; i < analog.num_samples; i++) {
/*
* The device always sends data for both channels. If a channel
* is disabled, it contains a copy of the enabled channel's
* data. However, we only send the requested channels to
* the bus.
*
* Voltage values are encoded as a value 0-255 (0-512 on the
* DSO-5200*), where the value is a point in the range
* represented by the vdiv setting. There are 8 vertical divs,
* so e.g. 500mV/div represents 4V peak-to-peak where 0 = -2V
* and 255 = +2V.
*/
/* TODO: Support for DSO-5xxx series 9-bit samples. */
if (devc->ch1_enabled) {
range = ((float)vdivs[devc->voltage_ch1].p / vdivs[devc->voltage_ch1].q) * 8;
ch1 = range / 255 * *(buf + i * 2 + 1);
/* Value is centered around 0V. */
ch1 -= range / 2;
analog.data[data_offset++] = ch1;
}
if (devc->ch2_enabled) {
range = ((float)vdivs[devc->voltage_ch2].p / vdivs[devc->voltage_ch2].q) * 8;
ch2 = range / 255 * *(buf + i * 2);
ch2 -= range / 2;
analog.data[data_offset++] = ch2;
}
}
sr_session_send(devc->cb_data, &packet);
}
/*
* Called by libusb (as triggered by handle_event()) when a transfer comes in.
* Only channel data comes in asynchronously, and all transfers for this are
* queued up beforehand, so this just needs to chuck the incoming data onto
* the libsigrok session bus.
*/
static void receive_transfer(struct libusb_transfer *transfer)
{
struct sr_datafeed_packet packet;
struct dev_context *devc;
int num_samples, pre;
devc = transfer->user_data;
sr_dbg("receive_transfer(): status %d received %d bytes.",
transfer->status, transfer->actual_length);
if (transfer->actual_length == 0)
/* Nothing to send to the bus. */
return;
num_samples = transfer->actual_length / 2;
sr_dbg("Got %d-%d/%d samples in frame.", devc->samp_received + 1,
devc->samp_received + num_samples, devc->framesize);
/*
* The device always sends a full frame, but the beginning of the frame
* doesn't represent the trigger point. The offset at which the trigger
* happened came in with the capture state, so we need to start sending
* from there up the session bus. The samples in the frame buffer
* before that trigger point came after the end of the device's frame
* buffer was reached, and it wrapped around to overwrite up until the
* trigger point.
*/
if (devc->samp_received < devc->trigger_offset) {
/* Trigger point not yet reached. */
if (devc->samp_received + num_samples < devc->trigger_offset) {
/* The entire chunk is before the trigger point. */
memcpy(devc->framebuf + devc->samp_buffered * 2,
transfer->buffer, num_samples * 2);
devc->samp_buffered += num_samples;
} else {
/*
* This chunk hits or overruns the trigger point.
* Store the part before the trigger fired, and
* send the rest up to the session bus.
*/
pre = devc->trigger_offset - devc->samp_received;
memcpy(devc->framebuf + devc->samp_buffered * 2,
transfer->buffer, pre * 2);
devc->samp_buffered += pre;
/* The rest of this chunk starts with the trigger point. */
sr_dbg("Reached trigger point, %d samples buffered.",
devc->samp_buffered);
/* Avoid the corner case where the chunk ended at
* exactly the trigger point. */
if (num_samples > pre)
send_chunk(devc, transfer->buffer + pre * 2,
num_samples - pre);
}
} else {
/* Already past the trigger point, just send it all out. */
send_chunk(devc, transfer->buffer,
num_samples);
}
devc->samp_received += num_samples;
/* Everything in this transfer was either copied to the buffer or
* sent to the session bus. */
g_free(transfer->buffer);
libusb_free_transfer(transfer);
if (devc->samp_received >= devc->framesize) {
/* That was the last chunk in this frame. Send the buffered
* pre-trigger samples out now, in one big chunk. */
sr_dbg("End of frame, sending %d pre-trigger buffered samples.",
devc->samp_buffered);
send_chunk(devc, devc->framebuf, devc->samp_buffered);
/* Mark the end of this frame. */
packet.type = SR_DF_FRAME_END;
sr_session_send(devc->cb_data, &packet);
if (devc->limit_frames && ++devc->num_frames == devc->limit_frames) {
/* Terminate session */
devc->dev_state = STOPPING;
} else {
devc->dev_state = NEW_CAPTURE;
}
}
}
static int handle_event(int fd, int revents, void *cb_data)
{
const struct sr_dev_inst *sdi;
struct sr_datafeed_packet packet;
struct timeval tv;
struct dev_context *devc;
struct drv_context *drvc = di->priv;
const struct libusb_pollfd **lupfd;
int num_probes, i;
uint32_t trigger_offset;
uint8_t capturestate;
(void)fd;
(void)revents;
sdi = cb_data;
devc = sdi->priv;
if (devc->dev_state == STOPPING) {
/* We've been told to wind up the acquisition. */
sr_dbg("Stopping acquisition.");
/*
* TODO: Doesn't really cancel pending transfers so they might
* come in after SR_DF_END is sent.
*/
lupfd = libusb_get_pollfds(drvc->sr_ctx->libusb_ctx);
for (i = 0; lupfd[i]; i++)
sr_source_remove(lupfd[i]->fd);
free(lupfd);
packet.type = SR_DF_END;
sr_session_send(sdi, &packet);
devc->dev_state = IDLE;
return TRUE;
}
/* Always handle pending libusb events. */
tv.tv_sec = tv.tv_usec = 0;
libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
/* TODO: ugh */
if (devc->dev_state == NEW_CAPTURE) {
if (dso_capture_start(devc) != SR_OK)
return TRUE;
if (dso_enable_trigger(devc) != SR_OK)
return TRUE;
// if (dso_force_trigger(devc) != SR_OK)
// return TRUE;
sr_dbg("Successfully requested next chunk.");
devc->dev_state = CAPTURE;
return TRUE;
}
if (devc->dev_state != CAPTURE)
return TRUE;
if ((dso_get_capturestate(devc, &capturestate, &trigger_offset)) != SR_OK)
return TRUE;
sr_dbg("Capturestate %d.", capturestate);
sr_dbg("Trigger offset 0x%.6x.", trigger_offset);
switch (capturestate) {
case CAPTURE_EMPTY:
if (++devc->capture_empty_count >= MAX_CAPTURE_EMPTY) {
devc->capture_empty_count = 0;
if (dso_capture_start(devc) != SR_OK)
break;
if (dso_enable_trigger(devc) != SR_OK)
break;
// if (dso_force_trigger(devc) != SR_OK)
// break;
sr_dbg("Successfully requested next chunk.");
}
break;
case CAPTURE_FILLING:
/* No data yet. */
break;
case CAPTURE_READY_8BIT:
/* Remember where in the captured frame the trigger is. */
devc->trigger_offset = trigger_offset;
num_probes = (devc->ch1_enabled && devc->ch2_enabled) ? 2 : 1;
/* TODO: Check malloc return value. */
devc->framebuf = g_try_malloc(devc->framesize * num_probes * 2);
devc->samp_buffered = devc->samp_received = 0;
/* Tell the scope to send us the first frame. */
if (dso_get_channeldata(devc, receive_transfer) != SR_OK)
break;
/*
* Don't hit the state machine again until we're done fetching
* the data we just told the scope to send.
*/
devc->dev_state = FETCH_DATA;
/* Tell the frontend a new frame is on the way. */
packet.type = SR_DF_FRAME_BEGIN;
sr_session_send(sdi, &packet);
break;
case CAPTURE_READY_9BIT:
/* TODO */
sr_err("Not yet supported.");
break;
case CAPTURE_TIMEOUT:
/* Doesn't matter, we'll try again next time. */
break;
default:
sr_dbg("Unknown capture state: %d.", capturestate);
break;
}
return TRUE;
}
static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
void *cb_data)
{
const struct libusb_pollfd **lupfd;
struct sr_datafeed_packet packet;
struct sr_datafeed_header header;
struct sr_datafeed_meta_analog meta;
struct dev_context *devc;
struct drv_context *drvc = di->priv;
int i;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
devc = sdi->priv;
devc->cb_data = cb_data;
if (configure_probes(sdi) != SR_OK) {
sr_err("Failed to configure probes.");
return SR_ERR;
}
if (dso_init(devc) != SR_OK)
return SR_ERR;
if (dso_capture_start(devc) != SR_OK)
return SR_ERR;
devc->dev_state = CAPTURE;
lupfd = libusb_get_pollfds(drvc->sr_ctx->libusb_ctx);
for (i = 0; lupfd[i]; i++)
sr_source_add(lupfd[i]->fd, lupfd[i]->events, TICK,
handle_event, (void *)sdi);
free(lupfd);
/* Send header packet to the session bus. */
packet.type = SR_DF_HEADER;
packet.payload = (unsigned char *)&header;
header.feed_version = 1;
gettimeofday(&header.starttime, NULL);
sr_session_send(cb_data, &packet);
/* Send metadata about the SR_DF_ANALOG packets to come. */
packet.type = SR_DF_META_ANALOG;
packet.payload = &meta;
meta.num_probes = NUM_PROBES;
sr_session_send(cb_data, &packet);
return SR_OK;
}
static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
(void)cb_data;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
devc = sdi->priv;
devc->dev_state = STOPPING;
return SR_OK;
}
SR_PRIV struct sr_dev_driver hantek_dso_driver_info = {
.name = "hantek-dso",
.longname = "Hantek DSO",
.api_version = 1,
.init = hw_init,
.cleanup = hw_cleanup,
.scan = hw_scan,
.dev_list = hw_dev_list,
.dev_clear = clear_instances,
.dev_open = hw_dev_open,
.dev_close = hw_dev_close,
.info_get = hw_info_get,
.dev_config_set = hw_dev_config_set,
.dev_acquisition_start = hw_dev_acquisition_start,
.dev_acquisition_stop = hw_dev_acquisition_stop,
.priv = NULL,
};