libsigrok/src/analog.c

553 lines
14 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2014 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <ctype.h>
#include <libsigrok/libsigrok.h>
#include "libsigrok-internal.h"
/** @cond PRIVATE */
#define LOG_PREFIX "analog"
/** @endcond */
/**
* @file
*
* Handling and converting analog data.
*/
/**
* @defgroup grp_analog Analog data handling
*
* Handling and converting analog data.
*
* @{
*/
struct unit_mq_string {
uint64_t value;
const char *str;
};
/* Please use the same order as in enum sr_unit (libsigrok.h). */
static struct unit_mq_string unit_strings[] = {
{ SR_UNIT_VOLT, "V" },
{ SR_UNIT_AMPERE, "A" },
{ SR_UNIT_OHM, "\xe2\x84\xa6" },
{ SR_UNIT_FARAD, "F" },
{ SR_UNIT_KELVIN, "K" },
{ SR_UNIT_CELSIUS, "\xc2\xb0""C" },
{ SR_UNIT_FAHRENHEIT, "\xc2\xb0""F" },
{ SR_UNIT_HERTZ, "Hz" },
{ SR_UNIT_PERCENTAGE, "%" },
{ SR_UNIT_BOOLEAN, "" },
{ SR_UNIT_SECOND, "s" },
{ SR_UNIT_SIEMENS, "S" },
{ SR_UNIT_DECIBEL_MW, "dBu" },
{ SR_UNIT_DECIBEL_VOLT, "dBv" },
{ SR_UNIT_UNITLESS, "" },
{ SR_UNIT_DECIBEL_SPL, "dB" },
{ SR_UNIT_CONCENTRATION, "ppm" },
{ SR_UNIT_REVOLUTIONS_PER_MINUTE, "RPM" },
{ SR_UNIT_VOLT_AMPERE, "VA" },
{ SR_UNIT_WATT, "W" },
{ SR_UNIT_WATT_HOUR, "Wh" },
{ SR_UNIT_METER_SECOND, "m/s" },
{ SR_UNIT_HECTOPASCAL, "hPa" },
{ SR_UNIT_HUMIDITY_293K, "%rF" },
{ SR_UNIT_DEGREE, "\xc2\xb0" },
{ SR_UNIT_HENRY, "H" },
{ SR_UNIT_GRAM, "g" },
{ SR_UNIT_CARAT, "ct" },
{ SR_UNIT_OUNCE, "oz" },
{ SR_UNIT_TROY_OUNCE, "oz t" },
{ SR_UNIT_POUND, "lb" },
{ SR_UNIT_PENNYWEIGHT, "dwt" },
{ SR_UNIT_GRAIN, "gr" },
{ SR_UNIT_TAEL, "tael" },
{ SR_UNIT_MOMME, "momme" },
{ SR_UNIT_TOLA, "tola" },
{ SR_UNIT_PIECE, "pcs" },
ALL_ZERO
};
/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
static struct unit_mq_string mq_strings[] = {
{ SR_MQFLAG_AC, " AC" },
{ SR_MQFLAG_DC, " DC" },
{ SR_MQFLAG_RMS, " RMS" },
{ SR_MQFLAG_DIODE, " DIODE" },
{ SR_MQFLAG_HOLD, " HOLD" },
{ SR_MQFLAG_MAX, " MAX" },
{ SR_MQFLAG_MIN, " MIN" },
{ SR_MQFLAG_AUTORANGE, " AUTO" },
{ SR_MQFLAG_RELATIVE, " REL" },
{ SR_MQFLAG_SPL_FREQ_WEIGHT_A, "(A)" },
{ SR_MQFLAG_SPL_FREQ_WEIGHT_C, "(C)" },
{ SR_MQFLAG_SPL_FREQ_WEIGHT_Z, "(Z)" },
{ SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, "(SPL)" },
{ SR_MQFLAG_SPL_TIME_WEIGHT_S, " S" },
{ SR_MQFLAG_SPL_TIME_WEIGHT_F, " F" },
{ SR_MQFLAG_SPL_LAT, " LAT" },
/* Not a standard function for SLMs, so this is a made-up notation. */
{ SR_MQFLAG_SPL_PCT_OVER_ALARM, "%oA" },
{ SR_MQFLAG_DURATION, " DURATION" },
{ SR_MQFLAG_AVG, " AVG" },
{ SR_MQFLAG_REFERENCE, " REF" },
{ SR_MQFLAG_UNSTABLE, " UNSTABLE" },
{ SR_MQFLAG_FOUR_WIRE, " 4-WIRE" },
ALL_ZERO
};
SR_PRIV int sr_analog_init(struct sr_datafeed_analog *analog,
struct sr_analog_encoding *encoding,
struct sr_analog_meaning *meaning,
struct sr_analog_spec *spec,
int digits)
{
memset(analog, 0, sizeof(*analog));
memset(encoding, 0, sizeof(*encoding));
memset(meaning, 0, sizeof(*meaning));
memset(spec, 0, sizeof(*spec));
analog->encoding = encoding;
analog->meaning = meaning;
analog->spec = spec;
encoding->unitsize = sizeof(float);
encoding->is_float = TRUE;
#ifdef WORDS_BIGENDIAN
encoding->is_bigendian = TRUE;
#else
encoding->is_bigendian = FALSE;
#endif
encoding->digits = digits;
encoding->is_digits_decimal = TRUE;
encoding->scale.p = 1;
encoding->scale.q = 1;
encoding->offset.p = 0;
encoding->offset.q = 1;
spec->spec_digits = digits;
return SR_OK;
}
/**
* Convert an analog datafeed payload to an array of floats.
*
* @param[in] analog The analog payload to convert. Must not be NULL.
* analog->data, analog->meaning, and analog->encoding
* must not be NULL.
* @param[out] outbuf Memory where to store the result. Must not be NULL.
*
* Sufficient memory for outbuf must have been pre-allocated by the caller,
* who is also responsible for freeing it when no longer needed.
*
* @retval SR_OK Success.
* @retval SR_ERR Unsupported encoding.
* @retval SR_ERR_ARG Invalid argument.
*
* @since 0.4.0
*/
SR_API int sr_analog_to_float(const struct sr_datafeed_analog *analog,
float *outbuf)
{
float offset;
unsigned int b, i, count;
gboolean bigendian;
if (!analog || !(analog->data) || !(analog->meaning)
|| !(analog->encoding) || !outbuf)
return SR_ERR_ARG;
count = analog->num_samples * g_slist_length(analog->meaning->channels);
#ifdef WORDS_BIGENDIAN
bigendian = TRUE;
#else
bigendian = FALSE;
#endif
if (!analog->encoding->is_float) {
float offset = analog->encoding->offset.p / (float)analog->encoding->offset.q;
float scale = analog->encoding->scale.p / (float)analog->encoding->scale.q;
gboolean is_signed = analog->encoding->is_signed;
gboolean is_bigendian = analog->encoding->is_bigendian;
int8_t *data8 = (int8_t *)(analog->data);
int16_t *data16 = (int16_t *)(analog->data);
int32_t *data32 = (int32_t *)(analog->data);
switch (analog->encoding->unitsize) {
case 1:
if (is_signed) {
for (unsigned int i = 0; i < count; i++) {
outbuf[i] = scale * data8[i];
outbuf[i] += offset;
}
} else {
for (unsigned int i = 0; i < count; i++) {
outbuf[i] = scale * R8(data8 + i);
outbuf[i] += offset;
}
}
break;
case 2:
if (is_signed && is_bigendian) {
for (unsigned int i = 0; i < count; i++) {
outbuf[i] = scale * RB16S(&data16[i]);
outbuf[i] += offset;
}
} else if (is_bigendian) {
for (unsigned int i = 0; i < count; i++) {
outbuf[i] = scale * RB16(&data16[i]);
outbuf[i] += offset;
}
} else if (is_signed) {
for (unsigned int i = 0; i < count; i++) {
outbuf[i] = scale * RL16S(&data16[i]);
outbuf[i] += offset;
}
} else {
for (unsigned int i = 0; i < count; i++) {
outbuf[i] = scale * RL16(&data16[i]);
outbuf[i] += offset;
}
}
break;
case 4:
if (is_signed && is_bigendian) {
for (unsigned int i = 0; i < count; i++) {
outbuf[i] = scale * RB32S(&data32[i]);
outbuf[i] += offset;
}
} else if (is_bigendian) {
for (unsigned int i = 0; i < count; i++) {
outbuf[i] = scale * RB32(&data32[i]);
outbuf[i] += offset;
}
} else if (is_signed) {
for (unsigned int i = 0; i < count; i++) {
outbuf[i] = scale * RL32S(&data32[i]);
outbuf[i] += offset;
}
} else {
for (unsigned int i = 0; i < count; i++) {
outbuf[i] = scale * RL32(&data32[i]);
outbuf[i] += offset;
}
}
break;
default:
sr_err("Unsupported unit size '%d' for analog-to-float conversion.",
analog->encoding->unitsize);
return SR_ERR;
}
return SR_OK;
}
if (analog->encoding->unitsize == sizeof(float)
&& analog->encoding->is_bigendian == bigendian
&& analog->encoding->scale.p == 1
&& analog->encoding->scale.q == 1
&& analog->encoding->offset.p / (float)analog->encoding->offset.q == 0) {
/* The data is already in the right format. */
memcpy(outbuf, analog->data, count * sizeof(float));
} else {
for (i = 0; i < count; i += analog->encoding->unitsize) {
for (b = 0; b < analog->encoding->unitsize; b++) {
if (analog->encoding->is_bigendian == bigendian)
((uint8_t *)outbuf)[i + b] =
((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
else
((uint8_t *)outbuf)[i + (analog->encoding->unitsize - b)] =
((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
}
if (analog->encoding->scale.p != 1
|| analog->encoding->scale.q != 1)
outbuf[i] = (outbuf[i] * analog->encoding->scale.p) / analog->encoding->scale.q;
offset = ((float)analog->encoding->offset.p / (float)analog->encoding->offset.q);
outbuf[i] += offset;
}
}
return SR_OK;
}
/**
* Convert the unit/MQ/MQ flags in the analog struct to a string.
*
* @param[in] analog Struct containing the unit, MQ and MQ flags.
* Must not be NULL. analog->meaning must not be NULL.
* @param[out] result Pointer to store result. Must not be NULL.
*
* The string is allocated by the function and must be freed by the caller
* after use by calling g_free().
*
* @retval SR_OK Success.
* @retval SR_ERR_ARG Invalid argument.
*
* @since 0.4.0
*/
SR_API int sr_analog_unit_to_string(const struct sr_datafeed_analog *analog,
char **result)
{
int i;
GString *buf;
if (!analog || !(analog->meaning) || !result)
return SR_ERR_ARG;
buf = g_string_new(NULL);
for (i = 0; unit_strings[i].value; i++) {
if (analog->meaning->unit == unit_strings[i].value) {
g_string_assign(buf, unit_strings[i].str);
break;
}
}
/* More than one MQ flag may apply. */
for (i = 0; mq_strings[i].value; i++)
if (analog->meaning->mqflags & mq_strings[i].value)
g_string_append(buf, mq_strings[i].str);
*result = buf->str;
g_string_free(buf, FALSE);
return SR_OK;
}
/**
* Set sr_rational r to the given value.
*
* @param[out] r Rational number struct to set. Must not be NULL.
* @param[in] p Numerator.
* @param[in] q Denominator.
*
* @since 0.4.0
*/
SR_API void sr_rational_set(struct sr_rational *r, int64_t p, uint64_t q)
{
if (!r)
return;
r->p = p;
r->q = q;
}
#ifndef HAVE___INT128_T
struct sr_int128_t {
int64_t high;
uint64_t low;
};
struct sr_uint128_t {
uint64_t high;
uint64_t low;
};
static void mult_int64(struct sr_int128_t *res, const int64_t a,
const int64_t b)
{
uint64_t t1, t2, t3, t4;
t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
t2 = (UINT32_MAX & a) * (b >> 32);
t3 = (a >> 32) * (UINT32_MAX & b);
t4 = (a >> 32) * (b >> 32);
res->low = t1 + (t2 << 32) + (t3 << 32);
res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
res->high >>= 32;
res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
}
static void mult_uint64(struct sr_uint128_t *res, const uint64_t a,
const uint64_t b)
{
uint64_t t1, t2, t3, t4;
// (x1 + x2) * (y1 + y2) = x1*y1 + x1*y2 + x2*y1 + x2*y2
t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
t2 = (UINT32_MAX & a) * (b >> 32);
t3 = (a >> 32) * (UINT32_MAX & b);
t4 = (a >> 32) * (b >> 32);
res->low = t1 + (t2 << 32) + (t3 << 32);
res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
res->high >>= 32;
res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
}
#endif
/**
* Compare two sr_rational for equality
*
* @param[in] a First value
* @param[in] b Second value
*
* The values are compared for numerical equality, i.e. 2/10 == 1/5
*
* @retval 1 if both values are equal
* @retval 0 otherwise
*
* @since 0.5.0
*/
SR_API int sr_rational_eq(const struct sr_rational *a, const struct sr_rational *b)
{
#ifdef HAVE___INT128_T
__int128_t m1, m2;
/* p1/q1 = p2/q2 <=> p1*q2 = p2*q1 */
m1 = ((__int128_t)(b->p)) * ((__uint128_t)a->q);
m2 = ((__int128_t)(a->p)) * ((__uint128_t)b->q);
return (m1 == m2);
#else
struct sr_int128_t m1, m2;
mult_int64(&m1, a->q, b->p);
mult_int64(&m2, a->p, b->q);
return (m1.high == m2.high) && (m1.low == m2.low);
#endif
}
/**
* Multiply two sr_rational
*
* @param[in] a First value
* @param[in] b Second value
* @param[out] res Result
*
* The resulting nominator/denominator are reduced if the result would not fit
* otherwise. If the resulting nominator/denominator are relatively prime,
* this may not be possible.
*
* It is save to use the same variable for result and input values
*
* @retval SR_OK Success.
* @retval SR_ERR_ARG Resulting value to large
*
* @since 0.5.0
*/
SR_API int sr_rational_mult(struct sr_rational *res, const struct sr_rational *a,
const struct sr_rational *b)
{
#ifdef HAVE___INT128_T
__int128_t p;
__uint128_t q;
p = (__int128_t)(a->p) * (__int128_t)(b->p);
q = (__uint128_t)(a->q) * (__uint128_t)(b->q);
if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
while (!((p & 1) || (q & 1))) {
p /= 2;
q /= 2;
}
}
if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
// TODO: determine gcd to do further reduction
return SR_ERR_ARG;
}
res->p = (int64_t)(p);
res->q = (uint64_t)(q);
return SR_OK;
#else
struct sr_int128_t p;
struct sr_uint128_t q;
mult_int64(&p, a->p, b->p);
mult_uint64(&q, a->q, b->q);
while (!(p.low & 1) && !(q.low & 1)) {
p.low /= 2;
if (p.high & 1) p.low |= (1ll << 63);
p.high >>= 1;
q.low /= 2;
if (q.high & 1) q.low |= (1ll << 63);
q.high >>= 1;
}
if (q.high)
return SR_ERR_ARG;
if ((p.high >= 0) && (p.low > INT64_MAX))
return SR_ERR_ARG;
if (p.high < -1)
return SR_ERR_ARG;
res->p = (int64_t)p.low;
res->q = q.low;
return SR_OK;
#endif
}
/**
* Divide rational a by rational b
*
* @param[in] num numerator
* @param[in] div divisor
* @param[out] res Result
*
* The resulting nominator/denominator are reduced if the result would not fit
* otherwise. If the resulting nominator/denominator are relatively prime,
* this may not be possible.
*
* It is save to use the same variable for result and input values
*
* @retval SR_OK Success.
* @retval SR_ERR_ARG Division by zero
* @retval SR_ERR_ARG Denominator of divisor to large
* @retval SR_ERR_ARG Resulting value to large
*
* @since 0.5.0
*/
SR_API int sr_rational_div(struct sr_rational *res, const struct sr_rational *num,
const struct sr_rational *div)
{
struct sr_rational t;
if (div->q > INT64_MAX)
return SR_ERR_ARG;
if (div->p == 0)
return SR_ERR_ARG;
if (div->p > 0) {
t.p = div->q;
t.q = div->p;
} else {
t.p = -div->q;
t.q = -div->p;
}
return sr_rational_mult(res, num, &t);
}
/** @} */