libsigrok/hardware/rigol-ds/api.c

902 lines
25 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2012 Martin Ling <martin-git@earth.li>
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
* Copyright (C) 2013 Mathias Grimmberger <mgri@zaphod.sax.de>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <glib.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "protocol.h"
static const int32_t hwopts[] = {
SR_CONF_CONN,
SR_CONF_SERIALCOMM
};
static const int32_t hwcaps[] = {
SR_CONF_OSCILLOSCOPE,
SR_CONF_TIMEBASE,
SR_CONF_TRIGGER_SOURCE,
SR_CONF_TRIGGER_SLOPE,
SR_CONF_HORIZ_TRIGGERPOS,
SR_CONF_NUM_TIMEBASE,
};
static const int32_t analog_hwcaps[] = {
SR_CONF_NUM_VDIV,
SR_CONF_VDIV,
SR_CONF_COUPLING,
SR_CONF_DATA_SOURCE,
};
static const uint64_t timebases[][2] = {
/* nanoseconds */
{ 2, 1000000000 },
{ 5, 1000000000 },
{ 10, 1000000000 },
{ 20, 1000000000 },
{ 50, 1000000000 },
{ 100, 1000000000 },
{ 500, 1000000000 },
/* microseconds */
{ 1, 1000000 },
{ 2, 1000000 },
{ 5, 1000000 },
{ 10, 1000000 },
{ 20, 1000000 },
{ 50, 1000000 },
{ 100, 1000000 },
{ 200, 1000000 },
{ 500, 1000000 },
/* milliseconds */
{ 1, 1000 },
{ 2, 1000 },
{ 5, 1000 },
{ 10, 1000 },
{ 20, 1000 },
{ 50, 1000 },
{ 100, 1000 },
{ 200, 1000 },
{ 500, 1000 },
/* seconds */
{ 1, 1 },
{ 2, 1 },
{ 5, 1 },
{ 10, 1 },
{ 20, 1 },
{ 50, 1 },
{ 100, 1 },
{ 200, 1 },
{ 500, 1 },
/* { 1000, 1 }, Confuses other code? */
};
static const uint64_t vdivs[][2] = {
/* microvolts */
{ 500, 1000000 },
/* millivolts */
{ 1, 1000 },
{ 2, 1000 },
{ 5, 1000 },
{ 10, 1000 },
{ 20, 1000 },
{ 50, 1000 },
{ 100, 1000 },
{ 200, 1000 },
{ 500, 1000 },
/* volts */
{ 1, 1 },
{ 2, 1 },
{ 5, 1 },
{ 10, 1 },
};
#define NUM_TIMEBASE ARRAY_SIZE(timebases)
#define NUM_VDIV ARRAY_SIZE(vdivs)
static const char *trigger_sources[] = {
"CH1",
"CH2",
"CH3",
"CH4",
"EXT",
"AC Line",
"D0",
"D1",
"D2",
"D3",
"D4",
"D5",
"D6",
"D7",
"D8",
"D9",
"D10",
"D11",
"D12",
"D13",
"D14",
"D15",
};
static const char *coupling[] = {
"AC",
"DC",
"GND",
};
/* Do not change the order of entries */
static const char *data_sources[] = {
"Live",
"Memory",
"Segmented",
};
/*
* name, series, protocol flavor, min timebase, max timebase, min vdiv,
* digital channels, number of horizontal divs
*/
#define RIGOL "Rigol Technologies"
#define AGILENT "Agilent Technologies"
static const struct rigol_ds_model supported_models[] = {
{RIGOL, "DS1052E", RIGOL_DS1000, PROTOCOL_LEGACY, {5, 1000000000}, {50, 1}, {2, 1000}, 2, false, 12},
{RIGOL, "DS1102E", RIGOL_DS1000, PROTOCOL_LEGACY, {2, 1000000000}, {50, 1}, {2, 1000}, 2, false, 12},
{RIGOL, "DS1152E", RIGOL_DS1000, PROTOCOL_LEGACY, {2, 1000000000}, {50, 1}, {2, 1000}, 2, false, 12},
{RIGOL, "DS1052D", RIGOL_DS1000, PROTOCOL_LEGACY, {5, 1000000000}, {50, 1}, {2, 1000}, 2, true, 12},
{RIGOL, "DS1102D", RIGOL_DS1000, PROTOCOL_LEGACY, {2, 1000000000}, {50, 1}, {2, 1000}, 2, true, 12},
{RIGOL, "DS1152D", RIGOL_DS1000, PROTOCOL_LEGACY, {2, 1000000000}, {50, 1}, {2, 1000}, 2, true, 12},
{RIGOL, "DS2072", RIGOL_DS2000, PROTOCOL_IEEE488_2, {5, 1000000000}, {500, 1}, {500, 1000000}, 2, false, 14},
{RIGOL, "DS2102", RIGOL_DS2000, PROTOCOL_IEEE488_2, {5, 1000000000}, {500, 1}, {500, 1000000}, 2, false, 14},
{RIGOL, "DS2202", RIGOL_DS2000, PROTOCOL_IEEE488_2, {2, 1000000000}, {500, 1}, {500, 1000000}, 2, false, 14},
{RIGOL, "DS2302", RIGOL_DS2000, PROTOCOL_IEEE488_2, {1, 1000000000}, {1000, 1}, {500, 1000000}, 2, false, 14},
{RIGOL, "DS2072A", RIGOL_DS2000, PROTOCOL_IEEE488_2, {5, 1000000000}, {1000, 1}, {500, 1000000}, 2, false, 14},
{RIGOL, "DS2102A", RIGOL_DS2000, PROTOCOL_IEEE488_2, {5, 1000000000}, {1000, 1}, {500, 1000000}, 2, false, 14},
{RIGOL, "DS2202A", RIGOL_DS2000, PROTOCOL_IEEE488_2, {2, 1000000000}, {1000, 1}, {500, 1000000}, 2, false, 14},
{RIGOL, "DS2302A", RIGOL_DS2000, PROTOCOL_IEEE488_2, {1, 1000000000}, {1000, 1}, {500, 1000000}, 2, false, 14},
{RIGOL, "VS5022", RIGOL_VS5000, PROTOCOL_LEGACY, {20, 1000000000}, {50, 1}, {2, 1000}, 2, false, 14},
{RIGOL, "VS5022D", RIGOL_VS5000, PROTOCOL_LEGACY, {20, 1000000000}, {50, 1}, {2, 1000}, 2, true, 14},
{RIGOL, "VS5042", RIGOL_VS5000, PROTOCOL_LEGACY, {10, 1000000000}, {50, 1}, {2, 1000}, 2, false, 14},
{RIGOL, "VS5042D", RIGOL_VS5000, PROTOCOL_LEGACY, {10, 1000000000}, {50, 1}, {2, 1000}, 2, true, 14},
{RIGOL, "VS5062", RIGOL_VS5000, PROTOCOL_LEGACY, {5, 1000000000}, {50, 1}, {2, 1000}, 2, false, 14},
{RIGOL, "VS5062D", RIGOL_VS5000, PROTOCOL_LEGACY, {5, 1000000000}, {50, 1}, {2, 1000}, 2, true, 14},
{RIGOL, "VS5102", RIGOL_VS5000, PROTOCOL_LEGACY, {2, 1000000000}, {50, 1}, {2, 1000}, 2, false, 14},
{RIGOL, "VS5102D", RIGOL_VS5000, PROTOCOL_LEGACY, {2, 1000000000}, {50, 1}, {2, 1000}, 2, true, 14},
{RIGOL, "VS5202", RIGOL_VS5000, PROTOCOL_LEGACY, {2, 1000000000}, {50, 1}, {2, 1000}, 2, false, 14},
{RIGOL, "VS5202D", RIGOL_VS5000, PROTOCOL_LEGACY, {2, 1000000000}, {50, 1}, {2, 1000}, 2, true, 14},
{AGILENT, "DSO1002A", AGILENT_DSO1000, PROTOCOL_IEEE488_2, {5, 1000000000}, {50, 1}, {2, 1000}, 2, false, 12},
{AGILENT, "DSO1004A", AGILENT_DSO1000, PROTOCOL_IEEE488_2, {5, 1000000000}, {50, 1}, {2, 1000}, 4, false, 12},
{AGILENT, "DSO1012A", AGILENT_DSO1000, PROTOCOL_IEEE488_2, {2, 1000000000}, {50, 1}, {2, 1000}, 2, false, 12},
{AGILENT, "DSO1014A", AGILENT_DSO1000, PROTOCOL_IEEE488_2, {2, 1000000000}, {50, 1}, {2, 1000}, 4, false, 12},
{AGILENT, "DSO1022A", AGILENT_DSO1000, PROTOCOL_IEEE488_2, {2, 1000000000}, {50, 1}, {2, 1000}, 2, false, 12},
{AGILENT, "DSO1024A", AGILENT_DSO1000, PROTOCOL_IEEE488_2, {2, 1000000000}, {50, 1}, {2, 1000}, 4, false, 12},
};
SR_PRIV struct sr_dev_driver rigol_ds_driver_info;
static struct sr_dev_driver *di = &rigol_ds_driver_info;
static void clear_helper(void *priv)
{
struct dev_context *devc;
devc = priv;
g_free(devc->data);
g_free(devc->buffer);
g_free(devc->coupling[0]);
g_free(devc->coupling[1]);
g_free(devc->trigger_source);
g_free(devc->trigger_slope);
g_slist_free(devc->analog_groups[0].probes);
g_slist_free(devc->analog_groups[1].probes);
g_slist_free(devc->digital_group.probes);
}
static int dev_clear(void)
{
return std_dev_clear(di, clear_helper);
}
static int set_cfg(const struct sr_dev_inst *sdi, const char *format, ...)
{
va_list args;
int ret;
va_start(args, format);
ret = sr_scpi_send_variadic(sdi->conn, format, args);
va_end(args);
if (ret != SR_OK)
return SR_ERR;
/* When setting a bunch of parameters in a row, the DS1052E scrambles
* some of them unless there is at least 100ms delay in between. */
sr_spew("delay %dms", 100);
g_usleep(100000);
return SR_OK;
}
static int init(struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
static int probe_port(const char *resource, const char *serialcomm, GSList **devices)
{
struct dev_context *devc;
struct sr_dev_inst *sdi;
struct sr_scpi_dev_inst *scpi;
struct sr_scpi_hw_info *hw_info;
struct sr_probe *probe;
unsigned int i;
const struct rigol_ds_model *model = NULL;
gchar *channel_name;
*devices = NULL;
if (!(scpi = scpi_dev_inst_new(resource, serialcomm)))
return SR_ERR;
if (sr_scpi_open(scpi) != SR_OK) {
sr_info("Couldn't open SCPI device.");
sr_scpi_free(scpi);
return SR_ERR;
};
if (sr_scpi_get_hw_id(scpi, &hw_info) != SR_OK) {
sr_info("Couldn't get IDN response.");
sr_scpi_close(scpi);
sr_scpi_free(scpi);
return SR_ERR;
}
for (i = 0; i < ARRAY_SIZE(supported_models); i++) {
if (!strcasecmp(hw_info->manufacturer, supported_models[i].vendor) &&
!strcmp(hw_info->model, supported_models[i].name)) {
model = &supported_models[i];
break;
}
}
if (!model || !(sdi = sr_dev_inst_new(0, SR_ST_ACTIVE,
hw_info->manufacturer, hw_info->model,
hw_info->firmware_version))) {
sr_scpi_hw_info_free(hw_info);
sr_scpi_close(scpi);
sr_scpi_free(scpi);
return SR_ERR_NA;
}
sr_scpi_hw_info_free(hw_info);
sr_scpi_close(scpi);
sdi->conn = scpi;
sdi->driver = di;
sdi->inst_type = SR_INST_SCPI;
if (!(devc = g_try_malloc0(sizeof(struct dev_context))))
return SR_ERR_MALLOC;
devc->limit_frames = 0;
devc->model = model;
for (i = 0; i < model->analog_channels; i++) {
if (!(channel_name = g_strdup_printf("CH%d", i + 1)))
return SR_ERR_MALLOC;
probe = sr_probe_new(i, SR_PROBE_ANALOG, TRUE, channel_name);
sdi->probes = g_slist_append(sdi->probes, probe);
devc->analog_groups[i].name = channel_name;
devc->analog_groups[i].probes = g_slist_append(NULL, probe);
sdi->probe_groups = g_slist_append(sdi->probe_groups,
&devc->analog_groups[i]);
}
if (devc->model->has_digital) {
for (i = 0; i < 16; i++) {
if (!(channel_name = g_strdup_printf("D%d", i)))
return SR_ERR_MALLOC;
probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE, channel_name);
g_free(channel_name);
if (!probe)
return SR_ERR_MALLOC;
sdi->probes = g_slist_append(sdi->probes, probe);
devc->digital_group.probes = g_slist_append(
devc->digital_group.probes, probe);
}
devc->digital_group.name = "LA";
sdi->probe_groups = g_slist_append(sdi->probe_groups,
&devc->digital_group);
}
for (i = 0; i < NUM_TIMEBASE; i++) {
if (!memcmp(&devc->model->min_timebase, &timebases[i], sizeof(uint64_t[2])))
devc->timebases = &timebases[i];
if (!memcmp(&devc->model->max_timebase, &timebases[i], sizeof(uint64_t[2])))
devc->num_timebases = &timebases[i] - devc->timebases + 1;
}
for (i = 0; i < NUM_VDIV; i++)
if (!memcmp(&devc->model->min_vdiv, &vdivs[i], sizeof(uint64_t[2])))
devc->vdivs = &vdivs[i];
if (!(devc->buffer = g_try_malloc(ACQ_BUFFER_SIZE)))
return SR_ERR_MALLOC;
if (!(devc->data = g_try_malloc(ACQ_BUFFER_SIZE * sizeof(float))))
return SR_ERR_MALLOC;
devc->data_source = DATA_SOURCE_LIVE;
sdi->priv = devc;
*devices = g_slist_append(NULL, sdi);
return SR_OK;
}
static GSList *scan(GSList *options)
{
struct drv_context *drvc;
struct sr_config *src;
GSList *l, *devices;
GDir *dir;
int ret;
const gchar *dev_name;
gchar *port = NULL;
gchar *serialcomm = NULL;
drvc = di->priv;
for (l = options; l; l = l->next) {
src = l->data;
switch (src->key) {
case SR_CONF_CONN:
port = (char *)g_variant_get_string(src->data, NULL);
break;
case SR_CONF_SERIALCOMM:
serialcomm = (char *)g_variant_get_string(src->data, NULL);
break;
}
}
devices = NULL;
if (port) {
if (probe_port(port, serialcomm, &devices) == SR_ERR_MALLOC) {
g_free(port);
if (serialcomm)
g_free(serialcomm);
return NULL;
}
} else {
if (!(dir = g_dir_open("/sys/class/usbmisc/", 0, NULL)))
if (!(dir = g_dir_open("/sys/class/usb/", 0, NULL)))
return NULL;
while ((dev_name = g_dir_read_name(dir))) {
if (strncmp(dev_name, "usbtmc", 6))
continue;
port = g_strconcat("/dev/", dev_name, NULL);
ret = probe_port(port, serialcomm, &devices);
g_free(port);
if (serialcomm)
g_free(serialcomm);
if (ret == SR_ERR_MALLOC) {
g_dir_close(dir);
return NULL;
}
}
g_dir_close(dir);
}
/* Tack a copy of the newly found devices onto the driver list. */
l = g_slist_copy(devices);
drvc->instances = g_slist_concat(drvc->instances, l);
return devices;
}
static GSList *dev_list(void)
{
return ((struct drv_context *)(di->priv))->instances;
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct sr_scpi_dev_inst *scpi = sdi->conn;
if (sr_scpi_open(scpi) < 0)
return SR_ERR;
if (rigol_ds_get_dev_cfg(sdi) != SR_OK)
return SR_ERR;
sdi->status = SR_ST_ACTIVE;
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
struct sr_scpi_dev_inst *scpi;
scpi = sdi->conn;
if (scpi) {
if (sr_scpi_close(scpi) < 0)
return SR_ERR;
sdi->status = SR_ST_INACTIVE;
}
return SR_OK;
}
static int cleanup(void)
{
return dev_clear();
}
static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
struct dev_context *devc;
if (!sdi || !(devc = sdi->priv))
return SR_ERR_ARG;
/* If a probe group is specified, it must be a valid one. */
if (probe_group) {
if (probe_group != &devc->analog_groups[0]
&& probe_group != &devc->analog_groups[1]) {
sr_err("Invalid probe group specified.");
return SR_ERR;
}
}
switch (id) {
case SR_CONF_NUM_TIMEBASE:
*data = g_variant_new_int32(devc->model->num_horizontal_divs);
break;
case SR_CONF_NUM_VDIV:
*data = g_variant_new_int32(8);
case SR_CONF_DATA_SOURCE:
if (devc->data_source == DATA_SOURCE_LIVE)
*data = g_variant_new_string("Live");
else if (devc->data_source == DATA_SOURCE_MEMORY)
*data = g_variant_new_string("Memory");
else
*data = g_variant_new_string("Segmented");
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
struct dev_context *devc;
uint64_t tmp_u64, p, q;
double t_dbl;
unsigned int i, j;
int ret;
const char *tmp_str;
if (!(devc = sdi->priv))
return SR_ERR_ARG;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
/* If a probe group is specified, it must be a valid one. */
if (probe_group) {
if (probe_group != &devc->analog_groups[0]
&& probe_group != &devc->analog_groups[1]) {
sr_err("Invalid probe group specified.");
return SR_ERR;
}
}
ret = SR_OK;
switch (id) {
case SR_CONF_LIMIT_FRAMES:
devc->limit_frames = g_variant_get_uint64(data);
break;
case SR_CONF_TRIGGER_SLOPE:
tmp_u64 = g_variant_get_uint64(data);
if (tmp_u64 != 0 && tmp_u64 != 1)
return SR_ERR;
g_free(devc->trigger_slope);
devc->trigger_slope = g_strdup(tmp_u64 ? "POS" : "NEG");
ret = set_cfg(sdi, ":TRIG:EDGE:SLOP %s", devc->trigger_slope);
break;
case SR_CONF_HORIZ_TRIGGERPOS:
t_dbl = g_variant_get_double(data);
if (t_dbl < 0.0 || t_dbl > 1.0)
return SR_ERR;
devc->horiz_triggerpos = t_dbl;
/* We have the trigger offset as a percentage of the frame, but
* need to express this in seconds. */
t_dbl = -(devc->horiz_triggerpos - 0.5) * devc->timebase * devc->num_timebases;
ret = set_cfg(sdi, ":TIM:OFFS %.6f", t_dbl);
break;
case SR_CONF_TIMEBASE:
g_variant_get(data, "(tt)", &p, &q);
for (i = 0; i < devc->num_timebases; i++) {
if (devc->timebases[i][0] == p && devc->timebases[i][1] == q) {
devc->timebase = (float)p / q;
ret = set_cfg(sdi, ":TIM:SCAL %.9f", devc->timebase);
break;
}
}
if (i == devc->num_timebases)
ret = SR_ERR_ARG;
break;
case SR_CONF_TRIGGER_SOURCE:
tmp_str = g_variant_get_string(data, NULL);
for (i = 0; i < ARRAY_SIZE(trigger_sources); i++) {
if (!strcmp(trigger_sources[i], tmp_str)) {
g_free(devc->trigger_source);
devc->trigger_source = g_strdup(trigger_sources[i]);
if (!strcmp(devc->trigger_source, "AC Line"))
tmp_str = "ACL";
else if (!strcmp(devc->trigger_source, "CH1"))
tmp_str = "CHAN1";
else if (!strcmp(devc->trigger_source, "CH2"))
tmp_str = "CHAN2";
else if (!strcmp(devc->trigger_source, "CH3"))
tmp_str = "CHAN3";
else if (!strcmp(devc->trigger_source, "CH4"))
tmp_str = "CHAN4";
else
tmp_str = (char *)devc->trigger_source;
ret = set_cfg(sdi, ":TRIG:EDGE:SOUR %s", tmp_str);
break;
}
}
if (i == ARRAY_SIZE(trigger_sources))
ret = SR_ERR_ARG;
break;
case SR_CONF_VDIV:
if (!probe_group) {
sr_err("No probe group specified.");
return SR_ERR_PROBE_GROUP;
}
g_variant_get(data, "(tt)", &p, &q);
for (i = 0; i < 2; i++) {
if (probe_group == &devc->analog_groups[i]) {
for (j = 0; j < ARRAY_SIZE(vdivs); j++) {
if (vdivs[j][0] != p || vdivs[j][1] != q)
continue;
devc->vdiv[i] = (float)p / q;
return set_cfg(sdi, ":CHAN%d:SCAL %.3f", i + 1,
devc->vdiv[i]);
}
return SR_ERR_ARG;
}
}
return SR_ERR_NA;
case SR_CONF_COUPLING:
if (!probe_group) {
sr_err("No probe group specified.");
return SR_ERR_PROBE_GROUP;
}
tmp_str = g_variant_get_string(data, NULL);
for (i = 0; i < 2; i++) {
if (probe_group == &devc->analog_groups[i]) {
for (j = 0; j < ARRAY_SIZE(coupling); j++) {
if (!strcmp(tmp_str, coupling[j])) {
g_free(devc->coupling[i]);
devc->coupling[i] = g_strdup(coupling[j]);
return set_cfg(sdi, ":CHAN%d:COUP %s", i + 1,
devc->coupling[i]);
}
}
return SR_ERR_ARG;
}
}
return SR_ERR_NA;
case SR_CONF_DATA_SOURCE:
tmp_str = g_variant_get_string(data, NULL);
if (!strcmp(tmp_str, "Live"))
devc->data_source = DATA_SOURCE_LIVE;
else if (!strcmp(tmp_str, "Memory"))
devc->data_source = DATA_SOURCE_MEMORY;
else if (devc->model->protocol == PROTOCOL_IEEE488_2
&& !strcmp(tmp_str, "Segmented"))
devc->data_source = DATA_SOURCE_SEGMENTED;
else
return SR_ERR;
break;
default:
ret = SR_ERR_NA;
break;
}
return ret;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
GVariant *tuple, *rational[2];
GVariantBuilder gvb;
unsigned int i;
struct dev_context *devc = NULL;
if (sdi)
devc = sdi->priv;
if (key == SR_CONF_SCAN_OPTIONS) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
hwopts, ARRAY_SIZE(hwopts), sizeof(int32_t));
return SR_OK;
} else if (key == SR_CONF_DEVICE_OPTIONS && probe_group == NULL) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
return SR_OK;
}
/* Every other option requires a valid device instance. */
if (!sdi || !(devc = sdi->priv))
return SR_ERR_ARG;
/* If a probe group is specified, it must be a valid one. */
if (probe_group) {
if (probe_group != &devc->analog_groups[0]
&& probe_group != &devc->analog_groups[1]) {
sr_err("Invalid probe group specified.");
return SR_ERR;
}
}
switch (key) {
break;
case SR_CONF_DEVICE_OPTIONS:
if (!probe_group) {
sr_err("No probe group specified.");
return SR_ERR_PROBE_GROUP;
}
if (probe_group == &devc->digital_group) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
NULL, 0, sizeof(int32_t));
return SR_OK;
} else {
for (i = 0; i < 2; i++) {
if (probe_group == &devc->analog_groups[i]) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
analog_hwcaps, ARRAY_SIZE(analog_hwcaps), sizeof(int32_t));
return SR_OK;
}
}
return SR_ERR_NA;
}
break;
case SR_CONF_COUPLING:
if (!probe_group) {
sr_err("No probe group specified.");
return SR_ERR_PROBE_GROUP;
}
*data = g_variant_new_strv(coupling, ARRAY_SIZE(coupling));
break;
case SR_CONF_VDIV:
if (!devc)
/* Can't know this until we have the exact model. */
return SR_ERR_ARG;
if (!probe_group) {
sr_err("No probe group specified.");
return SR_ERR_PROBE_GROUP;
}
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
for (i = 0; i < NUM_VDIV; i++) {
rational[0] = g_variant_new_uint64(devc->vdivs[i][0]);
rational[1] = g_variant_new_uint64(devc->vdivs[i][1]);
tuple = g_variant_new_tuple(rational, 2);
g_variant_builder_add_value(&gvb, tuple);
}
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TIMEBASE:
if (!devc)
/* Can't know this until we have the exact model. */
return SR_ERR_ARG;
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
for (i = 0; i < devc->num_timebases; i++) {
rational[0] = g_variant_new_uint64(devc->timebases[i][0]);
rational[1] = g_variant_new_uint64(devc->timebases[i][1]);
tuple = g_variant_new_tuple(rational, 2);
g_variant_builder_add_value(&gvb, tuple);
}
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TRIGGER_SOURCE:
if (!devc)
/* Can't know this until we have the exact model. */
return SR_ERR_ARG;
*data = g_variant_new_strv(trigger_sources,
devc->model->has_digital ? ARRAY_SIZE(trigger_sources) : 4);
break;
case SR_CONF_DATA_SOURCE:
if (!devc)
/* Can't know this until we have the exact model. */
return SR_ERR_ARG;
/* This needs tweaking by series/model! */
if (devc->model->series == RIGOL_DS2000)
*data = g_variant_new_strv(data_sources, ARRAY_SIZE(data_sources));
else
*data = g_variant_new_strv(data_sources, ARRAY_SIZE(data_sources) - 1);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
struct sr_scpi_dev_inst *scpi;
struct dev_context *devc;
struct sr_probe *probe;
GSList *l;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
scpi = sdi->conn;
devc = sdi->priv;
for (l = sdi->probes; l; l = l->next) {
probe = l->data;
sr_dbg("handling probe %s", probe->name);
if (probe->type == SR_PROBE_ANALOG) {
if (probe->enabled)
devc->enabled_analog_probes = g_slist_append(
devc->enabled_analog_probes, probe);
if (probe->enabled != devc->analog_channels[probe->index]) {
/* Enabled channel is currently disabled, or vice versa. */
if (set_cfg(sdi, ":CHAN%d:DISP %s", probe->index + 1,
probe->enabled ? "ON" : "OFF") != SR_OK)
return SR_ERR;
}
} else if (probe->type == SR_PROBE_LOGIC) {
if (probe->enabled)
devc->enabled_digital_probes = g_slist_append(
devc->enabled_digital_probes, probe);
if (probe->enabled != devc->digital_channels[probe->index]) {
/* Enabled channel is currently disabled, or vice versa. */
if (set_cfg(sdi, ":DIG%d:TURN %s", probe->index,
probe->enabled ? "ON" : "OFF") != SR_OK)
return SR_ERR;
}
}
}
if (!devc->enabled_analog_probes && !devc->enabled_digital_probes)
return SR_ERR;
if (devc->data_source == DATA_SOURCE_LIVE) {
if (set_cfg(sdi, ":RUN") != SR_OK)
return SR_ERR;
} else if (devc->data_source == DATA_SOURCE_MEMORY) {
if (devc->model->series != RIGOL_DS2000) {
sr_err("Data source 'Memory' not supported for this device");
return SR_ERR;
}
} else if (devc->data_source == DATA_SOURCE_SEGMENTED) {
sr_err("Data source 'Segmented' not yet supported");
return SR_ERR;
}
sr_scpi_source_add(scpi, G_IO_IN, 50, rigol_ds_receive, (void *)sdi);
/* Send header packet to the session bus. */
std_session_send_df_header(cb_data, LOG_PREFIX);
if (devc->enabled_analog_probes)
devc->channel_entry = devc->enabled_analog_probes;
else
devc->channel_entry = devc->enabled_digital_probes;
if (devc->model->protocol == PROTOCOL_LEGACY) {
devc->analog_frame_size = (devc->model->series == RIGOL_VS5000 ?
VS5000_ANALOG_LIVE_WAVEFORM_SIZE :
DS1000_ANALOG_LIVE_WAVEFORM_SIZE);
/* Fetch the first frame. */
if (rigol_ds_channel_start(sdi) != SR_OK)
return SR_ERR;
} else {
if (devc->enabled_analog_probes) {
if (devc->data_source == DATA_SOURCE_MEMORY)
{
if (g_slist_length(devc->enabled_analog_probes) == 1)
devc->analog_frame_size = DS2000_ANALOG_MEM_WAVEFORM_SIZE_1C;
else
devc->analog_frame_size = DS2000_ANALOG_MEM_WAVEFORM_SIZE_2C;
/* Apparently for the DS2000 the memory
* depth can only be set in Running state -
* this matches the behaviour of the UI. */
if (set_cfg(sdi, ":RUN") != SR_OK)
return SR_ERR;
if (set_cfg(sdi, "ACQ:MDEP %d", devc->analog_frame_size) != SR_OK)
return SR_ERR;
if (set_cfg(sdi, ":STOP") != SR_OK)
return SR_ERR;
} else {
if (devc->model->series == AGILENT_DSO1000)
devc->analog_frame_size = DSO1000_ANALOG_LIVE_WAVEFORM_SIZE;
else
devc->analog_frame_size = DS2000_ANALOG_LIVE_WAVEFORM_SIZE;
}
if (rigol_ds_capture_start(sdi) != SR_OK)
return SR_ERR;
}
}
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
struct sr_scpi_dev_inst *scpi;
(void)cb_data;
devc = sdi->priv;
if (sdi->status != SR_ST_ACTIVE) {
sr_err("Device inactive, can't stop acquisition.");
return SR_ERR;
}
g_slist_free(devc->enabled_analog_probes);
g_slist_free(devc->enabled_digital_probes);
devc->enabled_analog_probes = NULL;
devc->enabled_digital_probes = NULL;
scpi = sdi->conn;
sr_scpi_source_remove(scpi);
return SR_OK;
}
SR_PRIV struct sr_dev_driver rigol_ds_driver_info = {
.name = "rigol-ds",
.longname = "Rigol DS",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};