libsigrok/src/hardware/asix-sigma/protocol.c

1917 lines
53 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
* Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
* Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
* Copyright (C) 2020 Gerhard Sittig <gerhard.sittig@gmx.net>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* ASIX SIGMA/SIGMA2 logic analyzer driver
*/
#include <config.h>
#include "protocol.h"
/*
* The ASIX SIGMA hardware supports fixed 200MHz and 100MHz sample rates
* (by means of separate firmware images). As well as 50MHz divided by
* an integer divider in the 1..256 range (by the "typical" firmware).
* Which translates to a strict lower boundary of around 195kHz.
*
* This driver "suggests" a subset of the available rates by listing a
* few discrete values, while setter routines accept any user specified
* rate that is supported by the hardware.
*/
static const uint64_t samplerates[] = {
/* 50MHz and integer divider. 1/2/5 steps (where possible). */
SR_KHZ(200), SR_KHZ(500),
SR_MHZ(1), SR_MHZ(2), SR_MHZ(5),
SR_MHZ(10), SR_MHZ(25), SR_MHZ(50),
/* 100MHz/200MHz, fixed rates in special firmware. */
SR_MHZ(100), SR_MHZ(200),
};
SR_PRIV GVariant *sigma_get_samplerates_list(void)
{
return std_gvar_samplerates(samplerates, ARRAY_SIZE(samplerates));
}
static const char *firmware_files[] = {
[SIGMA_FW_50MHZ] = "asix-sigma-50.fw", /* 50MHz, 8bit divider. */
[SIGMA_FW_100MHZ] = "asix-sigma-100.fw", /* 100MHz, fixed. */
[SIGMA_FW_200MHZ] = "asix-sigma-200.fw", /* 200MHz, fixed. */
[SIGMA_FW_SYNC] = "asix-sigma-50sync.fw", /* Sync from external pin. */
[SIGMA_FW_FREQ] = "asix-sigma-phasor.fw", /* Frequency counter. */
};
#define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024)
static int sigma_ftdi_open(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int vid, pid;
const char *serno;
int ret;
devc = sdi->priv;
if (!devc)
return SR_ERR_ARG;
if (devc->ftdi.is_open)
return SR_OK;
vid = devc->id.vid;
pid = devc->id.pid;
serno = sdi->serial_num;
if (!vid || !pid || !serno || !*serno)
return SR_ERR_ARG;
ret = ftdi_init(&devc->ftdi.ctx);
if (ret < 0) {
sr_err("Cannot initialize FTDI context (%d): %s.",
ret, ftdi_get_error_string(&devc->ftdi.ctx));
return SR_ERR_IO;
}
ret = ftdi_usb_open_desc_index(&devc->ftdi.ctx,
vid, pid, NULL, serno, 0);
if (ret < 0) {
sr_err("Cannot open device (%d): %s.",
ret, ftdi_get_error_string(&devc->ftdi.ctx));
return SR_ERR_IO;
}
devc->ftdi.is_open = TRUE;
return SR_OK;
}
static int sigma_ftdi_close(struct dev_context *devc)
{
int ret;
ret = ftdi_usb_close(&devc->ftdi.ctx);
devc->ftdi.is_open = FALSE;
devc->ftdi.must_close = FALSE;
ftdi_deinit(&devc->ftdi.ctx);
return ret == 0 ? SR_OK : SR_ERR_IO;
}
SR_PRIV int sigma_check_open(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int ret;
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
if (!devc)
return SR_ERR_ARG;
if (devc->ftdi.is_open)
return SR_OK;
ret = sigma_ftdi_open(sdi);
if (ret != SR_OK)
return ret;
devc->ftdi.must_close = TRUE;
return ret;
}
SR_PRIV int sigma_check_close(struct dev_context *devc)
{
int ret;
if (!devc)
return SR_ERR_ARG;
if (devc->ftdi.must_close) {
ret = sigma_ftdi_close(devc);
if (ret != SR_OK)
return ret;
devc->ftdi.must_close = FALSE;
}
return SR_OK;
}
SR_PRIV int sigma_force_open(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int ret;
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
if (!devc)
return SR_ERR_ARG;
ret = sigma_ftdi_open(sdi);
if (ret != SR_OK)
return ret;
devc->ftdi.must_close = FALSE;
return SR_OK;
}
SR_PRIV int sigma_force_close(struct dev_context *devc)
{
return sigma_ftdi_close(devc);
}
/*
* BEWARE! Error propagation is important, as are kinds of return values.
*
* - Raw USB tranport communicates the number of sent or received bytes,
* or negative error codes in the external library's(!) range of codes.
* - Internal routines at the "sigrok driver level" communicate success
* or failure in terms of SR_OK et al error codes.
* - Main loop style receive callbacks communicate booleans which arrange
* for repeated calls to drive progress during acquisition.
*
* Careful consideration by maintainers is essential, because all of the
* above kinds of values are assignment compatbile from the compiler's
* point of view. Implementation errors will go unnoticed at build time.
*/
static int sigma_read_raw(struct dev_context *devc, void *buf, size_t size)
{
int ret;
ret = ftdi_read_data(&devc->ftdi.ctx, (unsigned char *)buf, size);
if (ret < 0) {
sr_err("USB data read failed: %s",
ftdi_get_error_string(&devc->ftdi.ctx));
}
return ret;
}
static int sigma_write_raw(struct dev_context *devc, const void *buf, size_t size)
{
int ret;
ret = ftdi_write_data(&devc->ftdi.ctx, buf, size);
if (ret < 0) {
sr_err("USB data write failed: %s",
ftdi_get_error_string(&devc->ftdi.ctx));
} else if ((size_t)ret != size) {
sr_err("USB data write length mismatch.");
}
return ret;
}
static int sigma_read_sr(struct dev_context *devc, void *buf, size_t size)
{
int ret;
ret = sigma_read_raw(devc, buf, size);
if (ret < 0 || (size_t)ret != size)
return SR_ERR_IO;
return SR_OK;
}
static int sigma_write_sr(struct dev_context *devc, const void *buf, size_t size)
{
int ret;
ret = sigma_write_raw(devc, buf, size);
if (ret < 0 || (size_t)ret != size)
return SR_ERR_IO;
return SR_OK;
}
/*
* Implementor's note: The local write buffer's size shall suffice for
* any know FPGA register transaction that is involved in the supported
* feature set of this sigrok device driver. If the length check trips,
* that's a programmer's error and needs adjustment in the complete call
* stack of the respective code path.
*/
#define SIGMA_MAX_REG_DEPTH 32
/*
* Implementor's note: The FPGA command set supports register access
* with automatic address adjustment. This operation is documented to
* wrap within a 16-address range, it cannot cross boundaries where the
* register address' nibble overflows. An internal helper assumes that
* callers remain within this auto-adjustment range, and thus multi
* register access requests can never exceed that count.
*/
#define SIGMA_MAX_REG_COUNT 16
SR_PRIV int sigma_write_register(struct dev_context *devc,
uint8_t reg, uint8_t *data, size_t len)
{
uint8_t buf[2 + SIGMA_MAX_REG_DEPTH * 2], *wrptr;
size_t idx;
if (len > SIGMA_MAX_REG_DEPTH) {
sr_err("Short write buffer for %zu bytes to reg %u.", len, reg);
return SR_ERR_BUG;
}
wrptr = buf;
write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
for (idx = 0; idx < len; idx++) {
write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data[idx]));
write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data[idx]));
}
return sigma_write_sr(devc, buf, wrptr - buf);
}
SR_PRIV int sigma_set_register(struct dev_context *devc,
uint8_t reg, uint8_t value)
{
return sigma_write_register(devc, reg, &value, sizeof(value));
}
static int sigma_read_register(struct dev_context *devc,
uint8_t reg, uint8_t *data, size_t len)
{
uint8_t buf[3], *wrptr;
int ret;
wrptr = buf;
write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
write_u8_inc(&wrptr, REG_READ_ADDR);
ret = sigma_write_sr(devc, buf, wrptr - buf);
if (ret != SR_OK)
return ret;
return sigma_read_sr(devc, data, len);
}
static int sigma_get_register(struct dev_context *devc,
uint8_t reg, uint8_t *data)
{
return sigma_read_register(devc, reg, data, sizeof(*data));
}
static int sigma_get_registers(struct dev_context *devc,
uint8_t reg, uint8_t *data, size_t count)
{
uint8_t buf[2 + SIGMA_MAX_REG_COUNT], *wrptr;
size_t idx;
int ret;
if (count > SIGMA_MAX_REG_COUNT) {
sr_err("Short command buffer for %zu reg reads at %u.", count, reg);
return SR_ERR_BUG;
}
wrptr = buf;
write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
for (idx = 0; idx < count; idx++)
write_u8_inc(&wrptr, REG_READ_ADDR | REG_ADDR_INC);
ret = sigma_write_sr(devc, buf, wrptr - buf);
if (ret != SR_OK)
return ret;
return sigma_read_sr(devc, data, count);
}
static int sigma_read_pos(struct dev_context *devc,
uint32_t *stoppos, uint32_t *triggerpos, uint8_t *mode)
{
uint8_t result[7];
const uint8_t *rdptr;
uint32_t v32;
uint8_t v8;
int ret;
/*
* Read 7 registers starting at trigger position LSB.
* Which yields two 24bit counter values, and mode flags.
*/
ret = sigma_get_registers(devc, READ_TRIGGER_POS_LOW,
result, sizeof(result));
if (ret != SR_OK)
return ret;
rdptr = &result[0];
v32 = read_u24le_inc(&rdptr);
if (triggerpos)
*triggerpos = v32;
v32 = read_u24le_inc(&rdptr);
if (stoppos)
*stoppos = v32;
v8 = read_u8_inc(&rdptr);
if (mode)
*mode = v8;
/*
* These positions consist of "the memory row" in the MSB fields,
* and "an event index" within the row in the LSB fields. Part
* of the memory row's content is sample data, another part is
* timestamps.
*
* The retrieved register values point to after the captured
* position. So they need to get decremented, and adjusted to
* cater for the timestamps when the decrement carries over to
* a different memory row.
*/
if (stoppos && (--*stoppos & ROW_MASK) == ROW_MASK)
*stoppos -= CLUSTERS_PER_ROW;
if (triggerpos && (--*triggerpos & ROW_MASK) == ROW_MASK)
*triggerpos -= CLUSTERS_PER_ROW;
return SR_OK;
}
static int sigma_read_dram(struct dev_context *devc,
uint16_t startchunk, size_t numchunks, uint8_t *data)
{
uint8_t buf[128], *wrptr, regval;
size_t chunk;
int sel, ret;
gboolean is_last;
if (2 + 3 * numchunks > ARRAY_SIZE(buf)) {
sr_err("Short write buffer for %zu DRAM row reads.", numchunks);
return SR_ERR_BUG;
}
/* Communicate DRAM start address (memory row, aka samples line). */
wrptr = buf;
write_u16be_inc(&wrptr, startchunk);
ret = sigma_write_register(devc, WRITE_MEMROW, buf, wrptr - buf);
if (ret != SR_OK)
return ret;
/*
* Access DRAM content. Fetch from DRAM to FPGA's internal RAM,
* then transfer via USB. Interleave the FPGA's DRAM access and
* USB transfer, use alternating buffers (0/1) in the process.
*/
wrptr = buf;
write_u8_inc(&wrptr, REG_DRAM_BLOCK);
write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
for (chunk = 0; chunk < numchunks; chunk++) {
sel = chunk % 2;
is_last = chunk == numchunks - 1;
if (!is_last) {
regval = REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel);
write_u8_inc(&wrptr, regval);
}
regval = REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel);
write_u8_inc(&wrptr, regval);
if (!is_last)
write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
}
ret = sigma_write_sr(devc, buf, wrptr - buf);
if (ret != SR_OK)
return ret;
return sigma_read_sr(devc, data, numchunks * ROW_LENGTH_BYTES);
}
/* Upload trigger look-up tables to Sigma. */
SR_PRIV int sigma_write_trigger_lut(struct dev_context *devc,
struct triggerlut *lut)
{
int lut_addr;
uint16_t bit;
uint8_t m3d, m2d, m1d, m0d;
uint8_t buf[6], *wrptr;
uint16_t selreg;
int ret;
/*
* Translate the LUT part of the trigger configuration from the
* application's perspective to the hardware register's bitfield
* layout. Send the LUT to the device. This configures the logic
* which combines pin levels or edges.
*/
for (lut_addr = 0; lut_addr < 16; lut_addr++) {
bit = 1 << lut_addr;
/* - M4 M3S M3Q */
m3d = 0;
if (lut->m4 & bit)
m3d |= 1 << 2;
if (lut->m3s & bit)
m3d |= 1 << 1;
if (lut->m3q & bit)
m3d |= 1 << 0;
/* M2D3 M2D2 M2D1 M2D0 */
m2d = 0;
if (lut->m2d[3] & bit)
m2d |= 1 << 3;
if (lut->m2d[2] & bit)
m2d |= 1 << 2;
if (lut->m2d[1] & bit)
m2d |= 1 << 1;
if (lut->m2d[0] & bit)
m2d |= 1 << 0;
/* M1D3 M1D2 M1D1 M1D0 */
m1d = 0;
if (lut->m1d[3] & bit)
m1d |= 1 << 3;
if (lut->m1d[2] & bit)
m1d |= 1 << 2;
if (lut->m1d[1] & bit)
m1d |= 1 << 1;
if (lut->m1d[0] & bit)
m1d |= 1 << 0;
/* M0D3 M0D2 M0D1 M0D0 */
m0d = 0;
if (lut->m0d[3] & bit)
m0d |= 1 << 3;
if (lut->m0d[2] & bit)
m0d |= 1 << 2;
if (lut->m0d[1] & bit)
m0d |= 1 << 1;
if (lut->m0d[0] & bit)
m0d |= 1 << 0;
/*
* Send 16bits with M3D/M2D and M1D/M0D bit masks to the
* TriggerSelect register, then strobe the LUT write by
* passing A3-A0 to TriggerSelect2. Hold RESET during LUT
* programming.
*/
wrptr = buf;
write_u8_inc(&wrptr, (m3d << 4) | (m2d << 0));
write_u8_inc(&wrptr, (m1d << 4) | (m0d << 0));
ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT,
buf, wrptr - buf);
if (ret != SR_OK)
return ret;
ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2,
TRGSEL2_RESET | TRGSEL2_LUT_WRITE |
(lut_addr & TRGSEL2_LUT_ADDR_MASK));
if (ret != SR_OK)
return ret;
}
/*
* Send the parameters. This covers counters and durations.
*/
wrptr = buf;
selreg = 0;
selreg |= (lut->params.selinc & TRGSEL_SELINC_MASK) << TRGSEL_SELINC_SHIFT;
selreg |= (lut->params.selres & TRGSEL_SELRES_MASK) << TRGSEL_SELRES_SHIFT;
selreg |= (lut->params.sela & TRGSEL_SELA_MASK) << TRGSEL_SELA_SHIFT;
selreg |= (lut->params.selb & TRGSEL_SELB_MASK) << TRGSEL_SELB_SHIFT;
selreg |= (lut->params.selc & TRGSEL_SELC_MASK) << TRGSEL_SELC_SHIFT;
selreg |= (lut->params.selpresc & TRGSEL_SELPRESC_MASK) << TRGSEL_SELPRESC_SHIFT;
write_u16be_inc(&wrptr, selreg);
write_u16be_inc(&wrptr, lut->params.cmpb);
write_u16be_inc(&wrptr, lut->params.cmpa);
ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
if (ret != SR_OK)
return ret;
return SR_OK;
}
/*
* See Xilinx UG332 for Spartan-3 FPGA configuration. The SIGMA device
* uses FTDI bitbang mode for netlist download in slave serial mode.
* (LATER: The OMEGA device's cable contains a more capable FTDI chip
* and uses MPSSE mode for bitbang. -- Can we also use FT232H in FT245
* compatible bitbang mode? For maximum code re-use and reduced libftdi
* dependency? See section 3.5.5 of FT232H: D0 clk, D1 data (out), D2
* data (in), D3 select, D4-7 GPIOL. See section 3.5.7 for MCU FIFO.)
*
* 750kbps rate (four times the speed of sigmalogan) works well for
* netlist download. All pins except INIT_B are output pins during
* configuration download.
*
* Some pins are inverted as a byproduct of level shifting circuitry.
* That's why high CCLK level (from the cable's point of view) is idle
* from the FPGA's perspective.
*
* The vendor's literature discusses a "suicide sequence" which ends
* regular FPGA execution and should be sent before entering bitbang
* mode and sending configuration data. Set D7 and toggle D2, D3, D4
* a few times.
*/
#define BB_PIN_CCLK (1 << 0) /* D0, CCLK */
#define BB_PIN_PROG (1 << 1) /* D1, PROG */
#define BB_PIN_D2 (1 << 2) /* D2, (part of) SUICIDE */
#define BB_PIN_D3 (1 << 3) /* D3, (part of) SUICIDE */
#define BB_PIN_D4 (1 << 4) /* D4, (part of) SUICIDE (unused?) */
#define BB_PIN_INIT (1 << 5) /* D5, INIT, input pin */
#define BB_PIN_DIN (1 << 6) /* D6, DIN */
#define BB_PIN_D7 (1 << 7) /* D7, (part of) SUICIDE */
#define BB_BITRATE (750 * 1000)
#define BB_PINMASK (0xff & ~BB_PIN_INIT)
/*
* Initiate slave serial mode for configuration download. Which is done
* by pulsing PROG_B and sensing INIT_B. Make sure CCLK is idle before
* initiating the configuration download.
*
* Run a "suicide sequence" first to terminate the regular FPGA operation
* before reconfiguration. The FTDI cable is single channel, and shares
* pins which are used for data communication in FIFO mode with pins that
* are used for FPGA configuration in bitbang mode. Hardware defaults for
* unconfigured hardware, and runtime conditions after FPGA configuration
* need to cooperate such that re-configuration of the FPGA can start.
*/
static int sigma_fpga_init_bitbang_once(struct dev_context *devc)
{
const uint8_t suicide[] = {
BB_PIN_D7 | BB_PIN_D2,
BB_PIN_D7 | BB_PIN_D2,
BB_PIN_D7 | BB_PIN_D3,
BB_PIN_D7 | BB_PIN_D2,
BB_PIN_D7 | BB_PIN_D3,
BB_PIN_D7 | BB_PIN_D2,
BB_PIN_D7 | BB_PIN_D3,
BB_PIN_D7 | BB_PIN_D2,
};
const uint8_t init_array[] = {
BB_PIN_CCLK,
BB_PIN_CCLK | BB_PIN_PROG,
BB_PIN_CCLK | BB_PIN_PROG,
BB_PIN_CCLK,
BB_PIN_CCLK,
BB_PIN_CCLK,
BB_PIN_CCLK,
BB_PIN_CCLK,
BB_PIN_CCLK,
BB_PIN_CCLK,
};
int retries, ret;
uint8_t data;
/* Section 2. part 1), do the FPGA suicide. */
ret = SR_OK;
ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
if (ret != SR_OK)
return SR_ERR_IO;
g_usleep(10 * 1000);
/* Section 2. part 2), pulse PROG. */
ret = sigma_write_sr(devc, init_array, sizeof(init_array));
if (ret != SR_OK)
return ret;
g_usleep(10 * 1000);
ftdi_usb_purge_buffers(&devc->ftdi.ctx);
/*
* Wait until the FPGA asserts INIT_B. Check in a maximum number
* of bursts with a given delay between them. Read as many pin
* capture results as the combination of FTDI chip and FTID lib
* may provide. Cope with absence of pin capture data in a cycle.
* This approach shall result in fast reponse in case of success,
* low cost of execution during wait, reliable error handling in
* the transport layer, and robust response to failure or absence
* of result data (hardware inactivity after stimulus).
*/
retries = 10;
while (retries--) {
do {
ret = sigma_read_raw(devc, &data, sizeof(data));
if (ret < 0)
return SR_ERR_IO;
if (ret == sizeof(data) && (data & BB_PIN_INIT))
return SR_OK;
} while (ret == sizeof(data));
if (retries)
g_usleep(10 * 1000);
}
return SR_ERR_TIMEOUT;
}
/*
* This is belt and braces. Re-run the bitbang initiation sequence a few
* times should first attempts fail. Failure is rare but can happen (was
* observed during driver development).
*/
static int sigma_fpga_init_bitbang(struct dev_context *devc)
{
size_t retries;
int ret;
retries = 10;
while (retries--) {
ret = sigma_fpga_init_bitbang_once(devc);
if (ret == SR_OK)
return ret;
if (ret != SR_ERR_TIMEOUT)
return ret;
}
return ret;
}
/*
* Configure the FPGA for logic-analyzer mode.
*/
static int sigma_fpga_init_la(struct dev_context *devc)
{
uint8_t buf[20], *wrptr;
uint8_t data_55, data_aa, mode;
uint8_t result[3];
const uint8_t *rdptr;
int ret;
wrptr = buf;
/* Read ID register. */
write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(READ_ID));
write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(READ_ID));
write_u8_inc(&wrptr, REG_READ_ADDR);
/* Write 0x55 to scratch register, read back. */
data_55 = 0x55;
write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST));
write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST));
write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_55));
write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_55));
write_u8_inc(&wrptr, REG_READ_ADDR);
/* Write 0xaa to scratch register, read back. */
data_aa = 0xaa;
write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST));
write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST));
write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_aa));
write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_aa));
write_u8_inc(&wrptr, REG_READ_ADDR);
/* Initiate SDRAM initialization in mode register. */
mode = WMR_SDRAMINIT;
write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_MODE));
write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_MODE));
write_u8_inc(&wrptr, REG_DATA_LOW | LO4(mode));
write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(mode));
/*
* Send the command sequence which contains 3 READ requests.
* Expect to see the corresponding 3 response bytes.
*/
ret = sigma_write_sr(devc, buf, wrptr - buf);
if (ret != SR_OK) {
sr_err("Could not request LA start response.");
return ret;
}
ret = sigma_read_sr(devc, result, ARRAY_SIZE(result));
if (ret != SR_OK) {
sr_err("Could not receive LA start response.");
return SR_ERR_IO;
}
rdptr = result;
if (read_u8_inc(&rdptr) != 0xa6) {
sr_err("Unexpected ID response.");
return SR_ERR_DATA;
}
if (read_u8_inc(&rdptr) != data_55) {
sr_err("Unexpected scratch read-back (55).");
return SR_ERR_DATA;
}
if (read_u8_inc(&rdptr) != data_aa) {
sr_err("Unexpected scratch read-back (aa).");
return SR_ERR_DATA;
}
return SR_OK;
}
/*
* Read the firmware from a file and transform it into a series of bitbang
* pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
* by the caller of this function.
*/
static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
uint8_t **bb_cmd, gsize *bb_cmd_size)
{
uint8_t *firmware;
size_t file_size;
uint8_t *p;
size_t l;
uint32_t imm;
size_t bb_size;
uint8_t *bb_stream, *bbs, byte, mask, v;
/* Retrieve the on-disk firmware file content. */
firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE, name,
&file_size, SIGMA_FIRMWARE_SIZE_LIMIT);
if (!firmware)
return SR_ERR_IO;
/* Unscramble the file content (XOR with "random" sequence). */
p = firmware;
l = file_size;
imm = 0x3f6df2ab;
while (l--) {
imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
*p++ ^= imm & 0xff;
}
/*
* Generate a sequence of bitbang samples. With two samples per
* FPGA configuration bit, providing the level for the DIN signal
* as well as two edges for CCLK. See Xilinx UG332 for details
* ("slave serial" mode).
*
* Note that CCLK is inverted in hardware. That's why the
* respective bit is first set and then cleared in the bitbang
* sample sets. So that the DIN level will be stable when the
* data gets sampled at the rising CCLK edge, and the signals'
* setup time constraint will be met.
*
* The caller will put the FPGA into download mode, will send
* the bitbang samples, and release the allocated memory.
*/
bb_size = file_size * 8 * 2;
bb_stream = g_try_malloc(bb_size);
if (!bb_stream) {
sr_err("Memory allocation failed during firmware upload.");
g_free(firmware);
return SR_ERR_MALLOC;
}
bbs = bb_stream;
p = firmware;
l = file_size;
while (l--) {
byte = *p++;
mask = 0x80;
while (mask) {
v = (byte & mask) ? BB_PIN_DIN : 0;
mask >>= 1;
*bbs++ = v | BB_PIN_CCLK;
*bbs++ = v;
}
}
g_free(firmware);
/* The transformation completed successfully, return the result. */
*bb_cmd = bb_stream;
*bb_cmd_size = bb_size;
return SR_OK;
}
static int upload_firmware(struct sr_context *ctx, struct dev_context *devc,
enum sigma_firmware_idx firmware_idx)
{
int ret;
uint8_t *buf;
uint8_t pins;
size_t buf_size;
const char *firmware;
/* Check for valid firmware file selection. */
if (firmware_idx >= ARRAY_SIZE(firmware_files))
return SR_ERR_ARG;
firmware = firmware_files[firmware_idx];
if (!firmware || !*firmware)
return SR_ERR_ARG;
/* Avoid downloading the same firmware multiple times. */
if (devc->firmware_idx == firmware_idx) {
sr_info("Not uploading firmware file '%s' again.", firmware);
return SR_OK;
}
devc->state.state = SIGMA_CONFIG;
/* Set the cable to bitbang mode. */
ret = ftdi_set_bitmode(&devc->ftdi.ctx, BB_PINMASK, BITMODE_BITBANG);
if (ret < 0) {
sr_err("Could not setup cable mode for upload: %s",
ftdi_get_error_string(&devc->ftdi.ctx));
return SR_ERR;
}
ret = ftdi_set_baudrate(&devc->ftdi.ctx, BB_BITRATE);
if (ret < 0) {
sr_err("Could not setup bitrate for upload: %s",
ftdi_get_error_string(&devc->ftdi.ctx));
return SR_ERR;
}
/* Initiate FPGA configuration mode. */
ret = sigma_fpga_init_bitbang(devc);
if (ret) {
sr_err("Could not initiate firmware upload to hardware");
return ret;
}
/* Prepare wire format of the firmware image. */
ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
if (ret != SR_OK) {
sr_err("Could not prepare file %s for upload.", firmware);
return ret;
}
/* Write the FPGA netlist to the cable. */
sr_info("Uploading firmware file '%s'.", firmware);
ret = sigma_write_sr(devc, buf, buf_size);
g_free(buf);
if (ret != SR_OK) {
sr_err("Could not upload firmware file '%s'.", firmware);
return ret;
}
/* Leave bitbang mode and discard pending input data. */
ret = ftdi_set_bitmode(&devc->ftdi.ctx, 0, BITMODE_RESET);
if (ret < 0) {
sr_err("Could not setup cable mode after upload: %s",
ftdi_get_error_string(&devc->ftdi.ctx));
return SR_ERR;
}
ftdi_usb_purge_buffers(&devc->ftdi.ctx);
while (sigma_read_raw(devc, &pins, sizeof(pins)) > 0)
;
/* Initialize the FPGA for logic-analyzer mode. */
ret = sigma_fpga_init_la(devc);
if (ret != SR_OK) {
sr_err("Hardware response after firmware upload failed.");
return ret;
}
/* Keep track of successful firmware download completion. */
devc->state.state = SIGMA_IDLE;
devc->firmware_idx = firmware_idx;
sr_info("Firmware uploaded.");
return SR_OK;
}
/*
* The driver supports user specified time or sample count limits. The
* device's hardware supports neither, and hardware compression prevents
* reliable detection of "fill levels" (currently reached sample counts)
* from register values during acquisition. That's why the driver needs
* to apply some heuristics:
*
* - The (optional) sample count limit and the (normalized) samplerate
* get mapped to an estimated duration for these samples' acquisition.
* - The (optional) time limit gets checked as well. The lesser of the
* two limits will terminate the data acquisition phase. The exact
* sample count limit gets enforced in session feed submission paths.
* - Some slack needs to be given to account for hardware pipelines as
* well as late storage of last chunks after compression thresholds
* are tripped. The resulting data set will span at least the caller
* specified period of time, which shall be perfectly acceptable.
*
* With RLE compression active, up to 64K sample periods can pass before
* a cluster accumulates. Which translates to 327ms at 200kHz. Add two
* times that period for good measure, one is not enough to flush the
* hardware pipeline (observation from an earlier experiment).
*/
SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc)
{
int ret;
GVariant *data;
uint64_t user_count, user_msecs;
uint64_t worst_cluster_time_ms;
uint64_t count_msecs, acquire_msecs;
sr_sw_limits_init(&devc->acq_limits);
/* Get sample count limit, convert to msecs. */
ret = sr_sw_limits_config_get(&devc->cfg_limits,
SR_CONF_LIMIT_SAMPLES, &data);
if (ret != SR_OK)
return ret;
user_count = g_variant_get_uint64(data);
g_variant_unref(data);
count_msecs = 0;
if (user_count)
count_msecs = 1000 * user_count / devc->samplerate + 1;
/* Get time limit, which is in msecs. */
ret = sr_sw_limits_config_get(&devc->cfg_limits,
SR_CONF_LIMIT_MSEC, &data);
if (ret != SR_OK)
return ret;
user_msecs = g_variant_get_uint64(data);
g_variant_unref(data);
/* Get the lesser of them, with both being optional. */
acquire_msecs = ~0ull;
if (user_count && count_msecs < acquire_msecs)
acquire_msecs = count_msecs;
if (user_msecs && user_msecs < acquire_msecs)
acquire_msecs = user_msecs;
if (acquire_msecs == ~0ull)
return SR_OK;
/* Add some slack, and use that timeout for acquisition. */
worst_cluster_time_ms = 1000 * 65536 / devc->samplerate;
acquire_msecs += 2 * worst_cluster_time_ms;
data = g_variant_new_uint64(acquire_msecs);
ret = sr_sw_limits_config_set(&devc->acq_limits,
SR_CONF_LIMIT_MSEC, data);
g_variant_unref(data);
if (ret != SR_OK)
return ret;
sr_sw_limits_acquisition_start(&devc->acq_limits);
return SR_OK;
}
/*
* Check whether a caller specified samplerate matches the device's
* hardware constraints (can be used for acquisition). Optionally yield
* a value that approximates the original spec.
*
* This routine assumes that input specs are in the 200kHz to 200MHz
* range of supported rates, and callers typically want to normalize a
* given value to the hardware capabilities. Values in the 50MHz range
* get rounded up by default, to avoid a more expensive check for the
* closest match, while higher sampling rate is always desirable during
* measurement. Input specs which exactly match hardware capabilities
* remain unaffected. Because 100/200MHz rates also limit the number of
* available channels, they are not suggested by this routine, instead
* callers need to pick them consciously.
*/
SR_PRIV int sigma_normalize_samplerate(uint64_t want_rate, uint64_t *have_rate)
{
uint64_t div, rate;
/* Accept exact matches for 100/200MHz. */
if (want_rate == SR_MHZ(200) || want_rate == SR_MHZ(100)) {
if (have_rate)
*have_rate = want_rate;
return SR_OK;
}
/* Accept 200kHz to 50MHz range, and map to near value. */
if (want_rate >= SR_KHZ(200) && want_rate <= SR_MHZ(50)) {
div = SR_MHZ(50) / want_rate;
rate = SR_MHZ(50) / div;
if (have_rate)
*have_rate = rate;
return SR_OK;
}
return SR_ERR_ARG;
}
SR_PRIV uint64_t sigma_get_samplerate(const struct sr_dev_inst *sdi)
{
/* TODO Retrieve value from hardware. */
(void)sdi;
return samplerates[0];
}
SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct drv_context *drvc;
uint64_t samplerate;
int ret;
int num_channels;
devc = sdi->priv;
drvc = sdi->driver->context;
/* Accept any caller specified rate which the hardware supports. */
ret = sigma_normalize_samplerate(devc->samplerate, &samplerate);
if (ret != SR_OK)
return ret;
/*
* Depending on the samplerates of 200/100/50- MHz, specific
* firmware is required and higher rates might limit the set
* of available channels.
*/
num_channels = devc->num_channels;
if (samplerate <= SR_MHZ(50)) {
ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_50MHZ);
num_channels = 16;
} else if (samplerate == SR_MHZ(100)) {
ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_100MHZ);
num_channels = 8;
} else if (samplerate == SR_MHZ(200)) {
ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_200MHZ);
num_channels = 4;
}
/*
* The samplerate affects the number of available logic channels
* as well as a sample memory layout detail (the number of samples
* which the device will communicate within an "event").
*/
if (ret == SR_OK) {
devc->num_channels = num_channels;
devc->samples_per_event = 16 / devc->num_channels;
}
return ret;
}
/*
* Arrange for a session feed submit buffer. A queue where a number of
* samples gets accumulated to reduce the number of send calls. Which
* also enforces an optional sample count limit for data acquisition.
*
* The buffer holds up to CHUNK_SIZE bytes. The unit size is fixed (the
* driver provides a fixed channel layout regardless of samplerate).
*/
#define CHUNK_SIZE (4 * 1024 * 1024)
struct submit_buffer {
size_t unit_size;
size_t max_samples, curr_samples;
uint8_t *sample_data;
uint8_t *write_pointer;
struct sr_dev_inst *sdi;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
};
static int alloc_submit_buffer(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct submit_buffer *buffer;
size_t size;
devc = sdi->priv;
buffer = g_malloc0(sizeof(*buffer));
devc->buffer = buffer;
buffer->unit_size = sizeof(uint16_t);
size = CHUNK_SIZE;
size /= buffer->unit_size;
buffer->max_samples = size;
size *= buffer->unit_size;
buffer->sample_data = g_try_malloc0(size);
if (!buffer->sample_data)
return SR_ERR_MALLOC;
buffer->write_pointer = buffer->sample_data;
sr_sw_limits_init(&devc->feed_limits);
buffer->sdi = sdi;
memset(&buffer->logic, 0, sizeof(buffer->logic));
buffer->logic.unitsize = buffer->unit_size;
buffer->logic.data = buffer->sample_data;
memset(&buffer->packet, 0, sizeof(buffer->packet));
buffer->packet.type = SR_DF_LOGIC;
buffer->packet.payload = &buffer->logic;
return SR_OK;
}
static int setup_submit_limit(struct dev_context *devc)
{
struct sr_sw_limits *limits;
int ret;
GVariant *data;
uint64_t total;
limits = &devc->feed_limits;
ret = sr_sw_limits_config_get(&devc->cfg_limits,
SR_CONF_LIMIT_SAMPLES, &data);
if (ret != SR_OK)
return ret;
total = g_variant_get_uint64(data);
g_variant_unref(data);
sr_sw_limits_init(limits);
if (total) {
data = g_variant_new_uint64(total);
ret = sr_sw_limits_config_set(limits,
SR_CONF_LIMIT_SAMPLES, data);
g_variant_unref(data);
if (ret != SR_OK)
return ret;
}
sr_sw_limits_acquisition_start(limits);
return SR_OK;
}
static void free_submit_buffer(struct dev_context *devc)
{
struct submit_buffer *buffer;
if (!devc)
return;
buffer = devc->buffer;
if (!buffer)
return;
devc->buffer = NULL;
g_free(buffer->sample_data);
g_free(buffer);
}
static int flush_submit_buffer(struct dev_context *devc)
{
struct submit_buffer *buffer;
int ret;
buffer = devc->buffer;
/* Is queued sample data available? */
if (!buffer->curr_samples)
return SR_OK;
/* Submit to the session feed. */
buffer->logic.length = buffer->curr_samples * buffer->unit_size;
ret = sr_session_send(buffer->sdi, &buffer->packet);
if (ret != SR_OK)
return ret;
/* Rewind queue position. */
buffer->curr_samples = 0;
buffer->write_pointer = buffer->sample_data;
return SR_OK;
}
static int addto_submit_buffer(struct dev_context *devc,
uint16_t sample, size_t count)
{
struct submit_buffer *buffer;
struct sr_sw_limits *limits;
int ret;
buffer = devc->buffer;
limits = &devc->feed_limits;
if (sr_sw_limits_check(limits))
count = 0;
/*
* Individually accumulate and check each sample, such that
* accumulation between flushes won't exceed local storage, and
* enforcement of user specified limits is exact.
*/
while (count--) {
write_u16le_inc(&buffer->write_pointer, sample);
buffer->curr_samples++;
if (buffer->curr_samples == buffer->max_samples) {
ret = flush_submit_buffer(devc);
if (ret != SR_OK)
return ret;
}
sr_sw_limits_update_samples_read(limits, 1);
if (sr_sw_limits_check(limits))
break;
}
return SR_OK;
}
/*
* In 100 and 200 MHz mode, only a single pin rising/falling can be
* set as trigger. In other modes, two rising/falling triggers can be set,
* in addition to value/mask trigger for any number of channels.
*
* The Sigma supports complex triggers using boolean expressions, but this
* has not been implemented yet.
*/
SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_trigger *trigger;
struct sr_trigger_stage *stage;
struct sr_trigger_match *match;
const GSList *l, *m;
int channelbit, trigger_set;
devc = sdi->priv;
memset(&devc->trigger, 0, sizeof(devc->trigger));
trigger = sr_session_trigger_get(sdi->session);
if (!trigger)
return SR_OK;
trigger_set = 0;
for (l = trigger->stages; l; l = l->next) {
stage = l->data;
for (m = stage->matches; m; m = m->next) {
match = m->data;
/* Ignore disabled channels with a trigger. */
if (!match->channel->enabled)
continue;
channelbit = 1 << match->channel->index;
if (devc->samplerate >= SR_MHZ(100)) {
/* Fast trigger support. */
if (trigger_set) {
sr_err("100/200MHz modes limited to single trigger pin.");
return SR_ERR;
}
if (match->match == SR_TRIGGER_FALLING) {
devc->trigger.fallingmask |= channelbit;
} else if (match->match == SR_TRIGGER_RISING) {
devc->trigger.risingmask |= channelbit;
} else {
sr_err("100/200MHz modes limited to edge trigger.");
return SR_ERR;
}
trigger_set++;
} else {
/* Simple trigger support (event). */
if (match->match == SR_TRIGGER_ONE) {
devc->trigger.simplevalue |= channelbit;
devc->trigger.simplemask |= channelbit;
} else if (match->match == SR_TRIGGER_ZERO) {
devc->trigger.simplevalue &= ~channelbit;
devc->trigger.simplemask |= channelbit;
} else if (match->match == SR_TRIGGER_FALLING) {
devc->trigger.fallingmask |= channelbit;
trigger_set++;
} else if (match->match == SR_TRIGGER_RISING) {
devc->trigger.risingmask |= channelbit;
trigger_set++;
}
/*
* Actually, Sigma supports 2 rising/falling triggers,
* but they are ORed and the current trigger syntax
* does not permit ORed triggers.
*/
if (trigger_set > 1) {
sr_err("Limited to 1 edge trigger.");
return SR_ERR;
}
}
}
}
return SR_OK;
}
/* Software trigger to determine exact trigger position. */
static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
struct sigma_trigger *t)
{
const uint8_t *rdptr;
int i;
uint16_t sample;
rdptr = samples;
sample = 0;
for (i = 0; i < 8; i++) {
if (i > 0)
last_sample = sample;
sample = read_u16le_inc(&rdptr);
/* Simple triggers. */
if ((sample & t->simplemask) != t->simplevalue)
continue;
/* Rising edge. */
if (((last_sample & t->risingmask) != 0) ||
((sample & t->risingmask) != t->risingmask))
continue;
/* Falling edge. */
if ((last_sample & t->fallingmask) != t->fallingmask ||
(sample & t->fallingmask) != 0)
continue;
break;
}
/* If we did not match, return original trigger pos. */
return i & 0x7;
}
static gboolean sample_matches_trigger(struct dev_context *devc, uint16_t sample)
{
/* TODO
* Check whether the combination of this very sample and the
* previous state match the configured trigger condition. This
* improves the resolution of the trigger marker's position.
* The hardware provided position is coarse, and may point to
* a position before the actual match.
*
* See the previous get_trigger_offset() implementation. This
* code needs to get re-used here.
*/
(void)devc;
(void)sample;
(void)get_trigger_offset;
return FALSE;
}
static int check_and_submit_sample(struct dev_context *devc,
uint16_t sample, size_t count, gboolean check_trigger)
{
gboolean triggered;
int ret;
triggered = check_trigger && sample_matches_trigger(devc, sample);
if (triggered) {
ret = flush_submit_buffer(devc);
if (ret != SR_OK)
return ret;
ret = std_session_send_df_trigger(devc->buffer->sdi);
if (ret != SR_OK)
return ret;
}
ret = addto_submit_buffer(devc, sample, count);
if (ret != SR_OK)
return ret;
return SR_OK;
}
/*
* Return the timestamp of "DRAM cluster".
*/
static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
{
return read_u16le((const uint8_t *)&cluster->timestamp);
}
/*
* Return one 16bit data entity of a DRAM cluster at the specified index.
*/
static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
{
return read_u16le((const uint8_t *)&cl->samples[idx]);
}
/*
* Deinterlace sample data that was retrieved at 100MHz samplerate.
* One 16bit item contains two samples of 8bits each. The bits of
* multiple samples are interleaved.
*/
static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx)
{
uint16_t outdata;
indata >>= idx;
outdata = 0;
outdata |= (indata >> (0 * 2 - 0)) & (1 << 0);
outdata |= (indata >> (1 * 2 - 1)) & (1 << 1);
outdata |= (indata >> (2 * 2 - 2)) & (1 << 2);
outdata |= (indata >> (3 * 2 - 3)) & (1 << 3);
outdata |= (indata >> (4 * 2 - 4)) & (1 << 4);
outdata |= (indata >> (5 * 2 - 5)) & (1 << 5);
outdata |= (indata >> (6 * 2 - 6)) & (1 << 6);
outdata |= (indata >> (7 * 2 - 7)) & (1 << 7);
return outdata;
}
/*
* Deinterlace sample data that was retrieved at 200MHz samplerate.
* One 16bit item contains four samples of 4bits each. The bits of
* multiple samples are interleaved.
*/
static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx)
{
uint16_t outdata;
indata >>= idx;
outdata = 0;
outdata |= (indata >> (0 * 4 - 0)) & (1 << 0);
outdata |= (indata >> (1 * 4 - 1)) & (1 << 1);
outdata |= (indata >> (2 * 4 - 2)) & (1 << 2);
outdata |= (indata >> (3 * 4 - 3)) & (1 << 3);
return outdata;
}
static void sigma_decode_dram_cluster(struct dev_context *devc,
struct sigma_dram_cluster *dram_cluster,
size_t events_in_cluster, gboolean triggered)
{
struct sigma_state *ss;
uint16_t tsdiff, ts, sample, item16;
unsigned int i;
if (!devc->use_triggers || !ASIX_SIGMA_WITH_TRIGGER)
triggered = FALSE;
/*
* If this cluster is not adjacent to the previously received
* cluster, then send the appropriate number of samples with the
* previous values to the sigrok session. This "decodes RLE".
*
* These samples cannot match the trigger since they just repeat
* the previously submitted data pattern. (This assumption holds
* for simple level and edge triggers. It would not for timed or
* counted conditions, which currently are not supported.)
*/
ss = &devc->state;
ts = sigma_dram_cluster_ts(dram_cluster);
tsdiff = ts - ss->lastts;
if (tsdiff > 0) {
size_t count;
sample = ss->lastsample;
count = tsdiff * devc->samples_per_event;
(void)check_and_submit_sample(devc, sample, count, FALSE);
}
ss->lastts = ts + EVENTS_PER_CLUSTER;
/*
* Grab sample data from the current cluster and prepare their
* submission to the session feed. Handle samplerate dependent
* memory layout of sample data. Accumulation of data chunks
* before submission is transparent to this code path, specific
* buffer depth is neither assumed nor required here.
*/
sample = 0;
for (i = 0; i < events_in_cluster; i++) {
item16 = sigma_dram_cluster_data(dram_cluster, i);
if (devc->samplerate == SR_MHZ(200)) {
sample = sigma_deinterlace_200mhz_data(item16, 0);
check_and_submit_sample(devc, sample, 1, triggered);
sample = sigma_deinterlace_200mhz_data(item16, 1);
check_and_submit_sample(devc, sample, 1, triggered);
sample = sigma_deinterlace_200mhz_data(item16, 2);
check_and_submit_sample(devc, sample, 1, triggered);
sample = sigma_deinterlace_200mhz_data(item16, 3);
check_and_submit_sample(devc, sample, 1, triggered);
} else if (devc->samplerate == SR_MHZ(100)) {
sample = sigma_deinterlace_100mhz_data(item16, 0);
check_and_submit_sample(devc, sample, 1, triggered);
sample = sigma_deinterlace_100mhz_data(item16, 1);
check_and_submit_sample(devc, sample, 1, triggered);
} else {
sample = item16;
check_and_submit_sample(devc, sample, 1, triggered);
}
}
ss->lastsample = sample;
}
/*
* Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
* Each event is 20ns apart, and can contain multiple samples.
*
* For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
* For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
* For 50 MHz and below, events contain one sample for each channel,
* spread 20 ns apart.
*/
static int decode_chunk_ts(struct dev_context *devc,
struct sigma_dram_line *dram_line,
size_t events_in_line, size_t trigger_event)
{
struct sigma_dram_cluster *dram_cluster;
unsigned int clusters_in_line;
unsigned int events_in_cluster;
unsigned int i;
uint32_t trigger_cluster;
clusters_in_line = events_in_line;
clusters_in_line += EVENTS_PER_CLUSTER - 1;
clusters_in_line /= EVENTS_PER_CLUSTER;
trigger_cluster = ~0;
/* Check if trigger is in this chunk. */
if (trigger_event < EVENTS_PER_ROW) {
if (devc->samplerate <= SR_MHZ(50)) {
trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
trigger_event);
}
/* Find in which cluster the trigger occurred. */
trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
}
/* For each full DRAM cluster. */
for (i = 0; i < clusters_in_line; i++) {
dram_cluster = &dram_line->cluster[i];
/* The last cluster might not be full. */
if ((i == clusters_in_line - 1) &&
(events_in_line % EVENTS_PER_CLUSTER)) {
events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
} else {
events_in_cluster = EVENTS_PER_CLUSTER;
}
sigma_decode_dram_cluster(devc, dram_cluster,
events_in_cluster, i == trigger_cluster);
}
return SR_OK;
}
static int download_capture(struct sr_dev_inst *sdi)
{
const uint32_t chunks_per_read = 32;
struct dev_context *devc;
struct sigma_dram_line *dram_line;
uint32_t stoppos, triggerpos;
uint8_t modestatus;
uint32_t i;
uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
uint32_t dl_first_line, dl_line;
uint32_t dl_events_in_line, trigger_event;
uint32_t trg_line, trg_event;
int ret;
devc = sdi->priv;
sr_info("Downloading sample data.");
devc->state.state = SIGMA_DOWNLOAD;
/*
* Ask the hardware to stop data acquisition. Reception of the
* FORCESTOP request makes the hardware "disable RLE" (store
* clusters to DRAM regardless of whether pin state changes) and
* raise the POSTTRIGGERED flag.
*/
modestatus = WMR_FORCESTOP | WMR_SDRAMWRITEEN;
ret = sigma_set_register(devc, WRITE_MODE, modestatus);
if (ret != SR_OK)
return ret;
do {
ret = sigma_get_register(devc, READ_MODE, &modestatus);
if (ret != SR_OK) {
sr_err("Could not poll for post-trigger state.");
return FALSE;
}
} while (!(modestatus & RMR_POSTTRIGGERED));
/* Set SDRAM Read Enable. */
ret = sigma_set_register(devc, WRITE_MODE, WMR_SDRAMREADEN);
if (ret != SR_OK)
return ret;
/* Get the current position. Check if trigger has fired. */
ret = sigma_read_pos(devc, &stoppos, &triggerpos, &modestatus);
if (ret != SR_OK) {
sr_err("Could not query capture positions/state.");
return FALSE;
}
trg_line = ~0;
trg_event = ~0;
if (modestatus & RMR_TRIGGERED) {
trg_line = triggerpos >> ROW_SHIFT;
trg_event = triggerpos & ROW_MASK;
}
/*
* Determine how many "DRAM lines" of 1024 bytes each we need to
* retrieve from the Sigma hardware, so that we have a complete
* set of samples. Note that the last line need not contain 64
* clusters, it might be partially filled only.
*
* When RMR_ROUND is set, the circular buffer in DRAM has wrapped
* around. Since the status of the very next line is uncertain in
* that case, we skip it and start reading from the next line.
*/
dl_first_line = 0;
dl_lines_total = (stoppos >> ROW_SHIFT) + 1;
if (modestatus & RMR_ROUND) {
dl_first_line = dl_lines_total + 1;
dl_lines_total = ROW_COUNT - 2;
}
dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
if (!dram_line)
return FALSE;
ret = alloc_submit_buffer(sdi);
if (ret != SR_OK)
return FALSE;
ret = setup_submit_limit(devc);
if (ret != SR_OK)
return FALSE;
dl_lines_done = 0;
while (dl_lines_total > dl_lines_done) {
/* We can download only up-to 32 DRAM lines in one go! */
dl_lines_curr = MIN(chunks_per_read, dl_lines_total - dl_lines_done);
dl_line = dl_first_line + dl_lines_done;
dl_line %= ROW_COUNT;
ret = sigma_read_dram(devc, dl_line, dl_lines_curr,
(uint8_t *)dram_line);
if (ret != SR_OK)
return FALSE;
/* This is the first DRAM line, so find the initial timestamp. */
if (dl_lines_done == 0) {
devc->state.lastts =
sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
devc->state.lastsample = 0;
}
for (i = 0; i < dl_lines_curr; i++) {
/* The last "DRAM line" need not span its full length. */
dl_events_in_line = EVENTS_PER_ROW;
if (dl_lines_done + i == dl_lines_total - 1)
dl_events_in_line = stoppos & ROW_MASK;
/* Test if the trigger happened on this line. */
trigger_event = ~0;
if (dl_lines_done + i == trg_line)
trigger_event = trg_event;
decode_chunk_ts(devc, dram_line + i,
dl_events_in_line, trigger_event);
}
dl_lines_done += dl_lines_curr;
}
flush_submit_buffer(devc);
free_submit_buffer(devc);
g_free(dram_line);
std_session_send_df_end(sdi);
devc->state.state = SIGMA_IDLE;
sr_dev_acquisition_stop(sdi);
return TRUE;
}
/*
* Periodically check the Sigma status when in CAPTURE mode. This routine
* checks whether the configured sample count or sample time have passed,
* and will stop acquisition and download the acquired samples.
*/
static int sigma_capture_mode(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
devc = sdi->priv;
if (sr_sw_limits_check(&devc->acq_limits))
return download_capture(sdi);
return TRUE;
}
SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
(void)fd;
(void)revents;
sdi = cb_data;
devc = sdi->priv;
if (devc->state.state == SIGMA_IDLE)
return TRUE;
/*
* When the application has requested to stop the acquisition,
* then immediately start downloading sample data. Otherwise
* keep checking configured limits which will terminate the
* acquisition and initiate download.
*/
if (devc->state.state == SIGMA_STOPPING)
return download_capture(sdi);
if (devc->state.state == SIGMA_CAPTURE)
return sigma_capture_mode(sdi);
return TRUE;
}
/* Build a LUT entry used by the trigger functions. */
static void build_lut_entry(uint16_t *lut_entry,
uint16_t spec_value, uint16_t spec_mask)
{
size_t quad, bitidx, ch;
uint16_t quadmask, bitmask;
gboolean spec_value_low, bit_idx_low;
/*
* For each quad-channel-group, for each bit in the LUT (each
* bit pattern of the channel signals, aka LUT address), for
* each channel in the quad, setup the bit in the LUT entry.
*
* Start from all-ones in the LUT (true, always matches), then
* "pessimize the truthness" for specified conditions.
*/
for (quad = 0; quad < 4; quad++) {
lut_entry[quad] = ~0;
for (bitidx = 0; bitidx < 16; bitidx++) {
for (ch = 0; ch < 4; ch++) {
quadmask = 1 << ch;
bitmask = quadmask << (quad * 4);
if (!(spec_mask & bitmask))
continue;
/*
* This bit is part of the spec. The
* condition which gets checked here
* (got checked in all implementations
* so far) is uncertain. A bit position
* in the current index' number(!) is
* checked?
*/
spec_value_low = !(spec_value & bitmask);
bit_idx_low = !(bitidx & quadmask);
if (spec_value_low == bit_idx_low)
continue;
lut_entry[quad] &= ~(1 << bitidx);
}
}
}
}
/* Add a logical function to LUT mask. */
static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
int index, int neg, uint16_t *mask)
{
int i, j;
int x[2][2], tmp, a, b, aset, bset, rset;
memset(x, 0, sizeof(x));
/* Trigger detect condition. */
switch (oper) {
case OP_LEVEL:
x[0][1] = 1;
x[1][1] = 1;
break;
case OP_NOT:
x[0][0] = 1;
x[1][0] = 1;
break;
case OP_RISE:
x[0][1] = 1;
break;
case OP_FALL:
x[1][0] = 1;
break;
case OP_RISEFALL:
x[0][1] = 1;
x[1][0] = 1;
break;
case OP_NOTRISE:
x[1][1] = 1;
x[0][0] = 1;
x[1][0] = 1;
break;
case OP_NOTFALL:
x[1][1] = 1;
x[0][0] = 1;
x[0][1] = 1;
break;
case OP_NOTRISEFALL:
x[1][1] = 1;
x[0][0] = 1;
break;
}
/* Transpose if neg is set. */
if (neg) {
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
tmp = x[i][j];
x[i][j] = x[1 - i][1 - j];
x[1 - i][1 - j] = tmp;
}
}
}
/* Update mask with function. */
for (i = 0; i < 16; i++) {
a = (i >> (2 * index + 0)) & 1;
b = (i >> (2 * index + 1)) & 1;
aset = (*mask >> i) & 1;
bset = x[b][a];
rset = 0;
if (func == FUNC_AND || func == FUNC_NAND)
rset = aset & bset;
else if (func == FUNC_OR || func == FUNC_NOR)
rset = aset | bset;
else if (func == FUNC_XOR || func == FUNC_NXOR)
rset = aset ^ bset;
if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
rset = !rset;
*mask &= ~(1 << i);
if (rset)
*mask |= 1 << i;
}
}
/*
* Build trigger LUTs used by 50 MHz and lower sample rates for supporting
* simple pin change and state triggers. Only two transitions (rise/fall) can be
* set at any time, but a full mask and value can be set (0/1).
*/
SR_PRIV int sigma_build_basic_trigger(struct dev_context *devc,
struct triggerlut *lut)
{
uint16_t masks[2];
int bitidx, condidx;
uint16_t value, mask;
/* Start assuming simple triggers. */
memset(lut, 0, sizeof(*lut));
lut->m4 = 0xa000;
lut->m3q = 0xffff;
/* Process value/mask triggers. */
value = devc->trigger.simplevalue;
mask = devc->trigger.simplemask;
build_lut_entry(lut->m2d, value, mask);
/* Scan for and process rise/fall triggers. */
memset(&masks, 0, sizeof(masks));
condidx = 0;
for (bitidx = 0; bitidx < 16; bitidx++) {
mask = 1 << bitidx;
value = devc->trigger.risingmask | devc->trigger.fallingmask;
if (!(value & mask))
continue;
if (condidx == 0)
build_lut_entry(lut->m0d, mask, mask);
if (condidx == 1)
build_lut_entry(lut->m1d, mask, mask);
masks[condidx++] = mask;
if (condidx == ARRAY_SIZE(masks))
break;
}
/* Add glue logic for rise/fall triggers. */
if (masks[0] || masks[1]) {
lut->m3q = 0;
if (masks[0] & devc->trigger.risingmask)
add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3q);
if (masks[0] & devc->trigger.fallingmask)
add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3q);
if (masks[1] & devc->trigger.risingmask)
add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3q);
if (masks[1] & devc->trigger.fallingmask)
add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3q);
}
/* Triggertype: event. */
lut->params.selres = TRGSEL_SELCODE_NEVER;
lut->params.selinc = TRGSEL_SELCODE_LEVEL;
lut->params.sela = 0; /* Counter >= CMPA && LEVEL */
lut->params.cmpa = 0; /* Count 0 -> 1 already triggers. */
return SR_OK;
}