libsigrok/hardware/ikalogic-scanalogic2/protocol.c

765 lines
20 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Marc Schink <sigrok-dev@marcschink.de>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "protocol.h"
extern struct sr_dev_driver ikalogic_scanalogic2_driver_info;
static struct sr_dev_driver *di = &ikalogic_scanalogic2_driver_info;
extern uint64_t sl2_samplerates[NUM_SAMPLERATES];
static void stop_acquisition(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_datafeed_packet packet;
unsigned int i;
devc = sdi->priv;
/* Remove USB file descriptors from polling. */
for (i = 0; i < devc->num_usbfd; i++)
sr_source_remove(devc->usbfd[i]);
g_free(devc->usbfd);
packet.type = SR_DF_END;
sr_session_send(devc->cb_data, &packet);
sdi->status = SR_ST_ACTIVE;
}
static void abort_acquisition(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_datafeed_packet packet;
unsigned int i;
devc = sdi->priv;
/* Remove USB file descriptors from polling. */
for (i = 0; i < devc->num_usbfd; i++)
sr_source_remove(devc->usbfd[i]);
g_free(devc->usbfd);
packet.type = SR_DF_END;
sr_session_send(devc->cb_data, &packet);
sdi->driver->dev_close(sdi);
}
static void buffer_sample_data(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
unsigned int offset, packet_length;
devc = sdi->priv;
if (devc->probes[devc->channel]->enabled) {
offset = devc->sample_packet * PACKET_NUM_SAMPLE_BYTES;
/*
* Determine the packet length to ensure that the last packet
* will not exceed the buffer size.
*/
packet_length = MIN(PACKET_NUM_SAMPLE_BYTES,
MAX_DEV_SAMPLE_BYTES - offset);
/*
* Skip the first 4 bytes of the source buffer because they
* contain channel and packet information only.
*/
memcpy(devc->sample_buffer[devc->channel] + offset,
devc->xfer_data_in + 4, packet_length);
}
}
static void process_sample_data(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
uint8_t i, j, tmp, buffer[PACKET_NUM_SAMPLES], *ptr[NUM_PROBES];
uint16_t offset, n = 0;
int8_t k;
devc = sdi->priv;
offset = devc->sample_packet * PACKET_NUM_SAMPLE_BYTES;
/*
* Array of pointers to the sample data of all channels up to the last
* enabled one for an uniform access to them. Note that the currently
* received samples always belong to the last enabled channel.
*/
for (i = 0; i < devc->num_enabled_probes - 1; i++)
ptr[i] = devc->sample_buffer[devc->probe_map[i]] + offset;
/*
* Skip the first 4 bytes of the buffer because they contain channel
* and packet information only.
*/
ptr[i] = devc->xfer_data_in + 4;
for (i = 0; i < PACKET_NUM_SAMPLE_BYTES; i++) {
/* Stop processing if all requested samples are processed. */
if (devc->samples_processed == devc->limit_samples)
break;
k = 7;
if (devc->samples_processed == 0) {
/*
* Adjust the position of the first sample to be
* processed because possibly more samples than
* necessary might have been acquired. This is because
* the number of acquired samples is always rounded up
* to a multiple of 8.
*/
k = k - (devc->pre_trigger_bytes * 8) +
devc->pre_trigger_samples;
sr_dbg("Start processing at sample: %d.", 7 - k);
/*
* Send the trigger before the first sample is
* processed if no pre trigger samples were calculated
* through the capture ratio.
*/
if (devc->trigger_type != TRIGGER_TYPE_NONE &&
devc->pre_trigger_samples == 0) {
packet.type = SR_DF_TRIGGER;
sr_session_send(devc->cb_data, &packet);
}
}
for (; k >= 0; k--) {
/*
* Stop processing if all requested samples are
* processed.
*/
if (devc->samples_processed == devc->limit_samples)
break;
buffer[n] = 0;
/*
* Extract the current sample for each enabled channel
* and store them in the buffer.
*/
for (j = 0; j < devc->num_enabled_probes; j++) {
tmp = (ptr[j][i] & (1 << k)) >> k;
buffer[n] |= tmp << devc->probe_map[j];
}
n++;
devc->samples_processed++;
/*
* Send all processed samples and the trigger if the
* number of processed samples reaches the calculated
* number of pre trigger samples.
*/
if (devc->samples_processed == devc->pre_trigger_samples &&
devc->trigger_type != TRIGGER_TYPE_NONE) {
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = n;
logic.unitsize = 1;
logic.data = buffer;
sr_session_send(devc->cb_data, &packet);
packet.type = SR_DF_TRIGGER;
sr_session_send(devc->cb_data, &packet);
n = 0;
}
}
}
if (n > 0) {
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = n;
logic.unitsize = 1;
logic.data = buffer;
sr_session_send(devc->cb_data, &packet);
}
}
SR_PRIV int ikalogic_scanalogic2_receive_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct drv_context *drvc;
struct timeval tv;
int64_t current_time, time_elapsed;
int ret = 0;
(void)fd;
(void)revents;
if (!(sdi = cb_data))
return TRUE;
if (!(devc = sdi->priv))
return TRUE;
drvc = di->priv;
current_time = g_get_monotonic_time();
if (devc->state == STATE_WAIT_DATA_READY &&
!devc->wait_data_ready_locked) {
time_elapsed = current_time - devc->wait_data_ready_time;
/*
* Check here for stopping in addition to the transfer
* callback functions to avoid waiting until the
* WAIT_DATA_READY_INTERVAL has expired.
*/
if (sdi->status == SR_ST_STOPPING) {
if (!devc->stopping_in_progress) {
devc->next_state = STATE_RESET_AND_IDLE;
devc->stopping_in_progress = TRUE;
ret = libusb_submit_transfer(devc->xfer_in);
}
} else if (time_elapsed >= WAIT_DATA_READY_INTERVAL) {
devc->wait_data_ready_locked = TRUE;
ret = libusb_submit_transfer(devc->xfer_in);
}
}
if (ret != 0) {
sr_err("Submit transfer failed: %s.", libusb_error_name(ret));
abort_acquisition(sdi);
return TRUE;
}
tv.tv_sec = 0;
tv.tv_usec = 0;
libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx, &tv,
NULL);
/* Check if an error occurred on a transfer. */
if (devc->transfer_error)
abort_acquisition(sdi);
return TRUE;
}
SR_PRIV void sl2_receive_transfer_in( struct libusb_transfer *transfer)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
uint8_t last_channel;
int ret = 0;
sdi = transfer->user_data;
devc = sdi->priv;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
sr_err("Transfer to device failed: %i.", transfer->status);
devc->transfer_error = TRUE;
return;
}
if (sdi->status == SR_ST_STOPPING && !devc->stopping_in_progress) {
devc->next_state = STATE_RESET_AND_IDLE;
devc->stopping_in_progress = TRUE;
if (libusb_submit_transfer(devc->xfer_in) != 0) {
sr_err("Submit transfer failed: %s.",
libusb_error_name(ret));
devc->transfer_error = TRUE;
}
return;
}
if (devc->state != devc->next_state)
sr_spew("State changed from %i to %i.",
devc->state, devc->next_state);
devc->state = devc->next_state;
if (devc->state == STATE_WAIT_DATA_READY) {
/* Check if the received data are a valid device status. */
if (devc->xfer_data_in[0] == 0x05) {
if (devc->xfer_data_in[1] == STATUS_WAITING_FOR_TRIGGER)
sr_dbg("Waiting for trigger.");
else if (devc->xfer_data_in[1] == STATUS_SAMPLING)
sr_dbg("Sampling in progress.");
}
/*
* Check if the received data are a valid device status and the
* sample data are ready.
*/
if (devc->xfer_data_in[0] == 0x05 &&
devc->xfer_data_in[1] == STATUS_DATA_READY) {
devc->next_state = STATE_RECEIVE_DATA;
ret = libusb_submit_transfer(transfer);
} else {
devc->wait_data_ready_locked = FALSE;
devc->wait_data_ready_time = g_get_monotonic_time();
}
} else if (devc->state == STATE_RECEIVE_DATA) {
last_channel = devc->probe_map[devc->num_enabled_probes - 1];
if (devc->channel < last_channel) {
buffer_sample_data(sdi);
} else if (devc->channel == last_channel) {
process_sample_data(sdi);
} else {
/*
* Stop acquisition because all samples of enabled
* probes are processed.
*/
devc->next_state = STATE_RESET_AND_IDLE;
}
devc->sample_packet++;
devc->sample_packet %= devc->num_sample_packets;
if (devc->sample_packet == 0)
devc->channel++;
ret = libusb_submit_transfer(transfer);
} else if (devc->state == STATE_RESET_AND_IDLE) {
/* Check if the received data are a valid device status. */
if (devc->xfer_data_in[0] == 0x05) {
if (devc->xfer_data_in[1] == STATUS_DEVICE_READY) {
devc->next_state = STATE_IDLE;
devc->xfer_data_out[0] = CMD_IDLE;
} else {
devc->next_state = STATE_WAIT_DEVICE_READY;
devc->xfer_data_out[0] = CMD_RESET;
}
ret = libusb_submit_transfer(devc->xfer_out);
} else {
/*
* The received device status is invalid which
* indicates that the device is not ready to accept
* commands. Request a new device status until a valid
* device status is received.
*/
ret = libusb_submit_transfer(transfer);
}
} else if (devc->state == STATE_WAIT_DEVICE_READY) {
/* Check if the received data are a valid device status. */
if (devc->xfer_data_in[0] == 0x05) {
if (devc->xfer_data_in[1] == STATUS_DEVICE_READY) {
devc->next_state = STATE_IDLE;
devc->xfer_data_out[0] = CMD_IDLE;
} else {
/*
* The received device status is valid but the
* device is not ready. Probably the device did
* not recognize the last reset. Reset the
* device again.
*/
devc->xfer_data_out[0] = CMD_RESET;
}
ret = libusb_submit_transfer(devc->xfer_out);
} else {
/*
* The device is not ready and therefore not able to
* change to the idle state. Request a new device
* status until the device is ready.
*/
ret = libusb_submit_transfer(transfer);
}
}
if (ret != 0) {
sr_err("Submit transfer failed: %s.", libusb_error_name(ret));
devc->transfer_error = TRUE;
}
}
SR_PRIV void sl2_receive_transfer_out( struct libusb_transfer *transfer)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
int ret = 0;
sdi = transfer->user_data;
devc = sdi->priv;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
sr_err("Transfer to device failed: %i.", transfer->status);
devc->transfer_error = TRUE;
return;
}
if (sdi->status == SR_ST_STOPPING && !devc->stopping_in_progress) {
devc->next_state = STATE_RESET_AND_IDLE;
devc->stopping_in_progress = TRUE;
if (libusb_submit_transfer(devc->xfer_in) != 0) {
sr_err("Submit transfer failed: %s.",
libusb_error_name(ret));
devc->transfer_error = TRUE;
}
return;
}
if (devc->state != devc->next_state)
sr_spew("State changed from %i to %i.",
devc->state, devc->next_state);
devc->state = devc->next_state;
if (devc->state == STATE_IDLE) {
stop_acquisition(sdi);
} else if (devc->state == STATE_SAMPLE) {
devc->next_state = STATE_WAIT_DATA_READY;
ret = libusb_submit_transfer(devc->xfer_in);
} else if (devc->state == STATE_WAIT_DEVICE_READY) {
ret = libusb_submit_transfer(devc->xfer_in);
}
if (ret != 0) {
sr_err("Submit transfer failed: %s.", libusb_error_name(ret));
devc->transfer_error = TRUE;
}
}
SR_PRIV int sl2_set_samplerate(const struct sr_dev_inst *sdi,
uint64_t samplerate)
{
struct dev_context *devc;
unsigned int i;
devc = sdi->priv;
for (i = 0; i < NUM_SAMPLERATES; i++) {
if (sl2_samplerates[i] == samplerate) {
devc->samplerate = samplerate;
devc->samplerate_id = NUM_SAMPLERATES - i - 1;
return SR_OK;
}
}
return SR_ERR_ARG;
}
SR_PRIV int sl2_set_limit_samples(const struct sr_dev_inst *sdi,
uint64_t limit_samples)
{
struct dev_context *devc;
devc = sdi->priv;
if (limit_samples == 0) {
sr_err("Invalid number of limit samples: %" PRIu64 ".",
limit_samples);
return SR_ERR_ARG;
}
if (limit_samples > MAX_SAMPLES)
limit_samples = MAX_SAMPLES;
sr_dbg("Limit samples set to %" PRIu64 ".", limit_samples);
devc->limit_samples = limit_samples;
return SR_OK;
}
SR_PRIV void sl2_configure_trigger(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_probe *probe;
uint8_t trigger_type;
int probe_index, num_triggers_anyedge;
char *trigger;
GSList *l;
devc = sdi->priv;
/* Disable the trigger by default. */
devc->trigger_channel = TRIGGER_CHANNEL_0;
devc->trigger_type = TRIGGER_TYPE_NONE;
num_triggers_anyedge = 0;
for (l = sdi->probes, probe_index = 0; l; l = l->next, probe_index++) {
probe = l->data;
trigger = probe->trigger;
if (!trigger || !probe->enabled)
continue;
switch (*trigger) {
case 'r':
trigger_type = TRIGGER_TYPE_POSEDGE;
break;
case 'f':
trigger_type = TRIGGER_TYPE_NEGEDGE;
break;
case 'c':
trigger_type = TRIGGER_TYPE_ANYEDGE;
num_triggers_anyedge++;
break;
default:
continue;
}
devc->trigger_channel = probe_index + 1;
devc->trigger_type = trigger_type;
}
/*
* Set trigger to any edge on all channels if the trigger for each
* channel is set to any edge.
*/
if (num_triggers_anyedge == NUM_PROBES) {
devc->trigger_channel = TRIGGER_CHANNEL_ALL;
devc->trigger_type = TRIGGER_TYPE_ANYEDGE;
}
sr_dbg("Trigger set to channel 0x%02x and type 0x%02x.",
devc->trigger_channel, devc->trigger_type);
}
SR_PRIV int sl2_set_capture_ratio(const struct sr_dev_inst *sdi,
uint64_t capture_ratio)
{
struct dev_context *devc;
devc = sdi->priv;
if (capture_ratio > 100) {
sr_err("Invalid capture ratio: %" PRIu64 " %%.", capture_ratio);
return SR_ERR_ARG;
}
sr_info("Capture ratio set to %" PRIu64 " %%.", capture_ratio);
devc->capture_ratio = capture_ratio;
return SR_OK;
}
SR_PRIV int sl2_set_after_trigger_delay(const struct sr_dev_inst *sdi,
uint64_t after_trigger_delay)
{
struct dev_context *devc;
devc = sdi->priv;
if (after_trigger_delay > MAX_AFTER_TRIGGER_DELAY) {
sr_err("Invalid after trigger delay: %" PRIu64 " ms.",
after_trigger_delay);
return SR_ERR_ARG;
}
sr_info("After trigger delay set to %" PRIu64 " ms.",
after_trigger_delay);
devc->after_trigger_delay = after_trigger_delay;
return SR_OK;
}
SR_PRIV void sl2_calculate_trigger_samples(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
uint64_t pre_trigger_samples, post_trigger_samples;
uint16_t pre_trigger_bytes, post_trigger_bytes;
uint8_t cr;
devc = sdi->priv;
cr = devc->capture_ratio;
/* Ignore the capture ratio if no trigger is enabled. */
if (devc->trigger_type == TRIGGER_TYPE_NONE)
cr = 0;
pre_trigger_samples = (devc->limit_samples * cr) / 100;
post_trigger_samples = (devc->limit_samples * (100 - cr)) / 100;
/*
* Increase the number of post trigger samples by one to compensate the
* possible loss of a sample through integer rounding.
*/
if (pre_trigger_samples + post_trigger_samples != devc->limit_samples)
post_trigger_samples++;
/*
* The device requires the number of samples in multiples of 8 which
* will also be called sample bytes in the following.
*/
pre_trigger_bytes = pre_trigger_samples / 8;
post_trigger_bytes = post_trigger_samples / 8;
/*
* Round up the number of sample bytes to ensure that at least the
* requested number of samples will be acquired. Note that due to this
* rounding the buffer to store these sample bytes needs to be at least
* one sample byte larger than the minimal number of sample bytes
* needed to store the requested samples.
*/
if (pre_trigger_samples % 8 != 0)
pre_trigger_bytes++;
if (post_trigger_samples % 8 != 0)
post_trigger_bytes++;
sr_info("Pre trigger samples: %" PRIu64 ".", pre_trigger_samples);
sr_info("Post trigger samples: %" PRIu64 ".", post_trigger_samples);
sr_dbg("Pre trigger sample bytes: %" PRIu16 ".", pre_trigger_bytes);
sr_dbg("Post trigger sample bytes: %" PRIu16 ".", post_trigger_bytes);
devc->pre_trigger_samples = pre_trigger_samples;
devc->pre_trigger_bytes = pre_trigger_bytes;
devc->post_trigger_bytes = post_trigger_bytes;
}
SR_PRIV int sl2_get_device_info(struct sr_usb_dev_inst usb,
struct device_info *dev_info)
{
struct drv_context *drvc;
uint8_t buffer[PACKET_LENGTH];
int ret;
drvc = di->priv;
if (!dev_info)
return SR_ERR_ARG;
if (sr_usb_open(drvc->sr_ctx->libusb_ctx, &usb) != SR_OK)
return SR_ERR;
/*
* Determine if a kernel driver is active on this interface and, if so,
* detach it.
*/
if (libusb_kernel_driver_active(usb.devhdl, USB_INTERFACE) == 1) {
ret = libusb_detach_kernel_driver(usb.devhdl,
USB_INTERFACE);
if (ret < 0) {
sr_err("Failed to detach kernel driver: %s.",
libusb_error_name(ret));
libusb_close(usb.devhdl);
return SR_ERR;
}
}
ret = libusb_claim_interface(usb.devhdl, USB_INTERFACE);
if (ret) {
sr_err("Failed to claim interface: %s.",
libusb_error_name(ret));
libusb_close(usb.devhdl);
return SR_ERR;
}
memset(buffer, 0, sizeof(buffer));
/*
* Reset the device to ensure it is in a proper state to request the
* device information.
*/
buffer[0] = CMD_RESET;
if ((ret = sl2_transfer_out(usb.devhdl, buffer)) != PACKET_LENGTH) {
sr_err("Resetting of device failed: %s.",
libusb_error_name(ret));
libusb_release_interface(usb.devhdl, USB_INTERFACE);
libusb_close(usb.devhdl);
return SR_ERR;
}
buffer[0] = CMD_INFO;
if ((ret = sl2_transfer_out(usb.devhdl, buffer)) != PACKET_LENGTH) {
sr_err("Requesting of device information failed: %s.",
libusb_error_name(ret));
libusb_release_interface(usb.devhdl, USB_INTERFACE);
libusb_close(usb.devhdl);
return SR_ERR;
}
if ((ret = sl2_transfer_in(usb.devhdl, buffer)) != PACKET_LENGTH) {
sr_err("Receiving of device information failed: %s.",
libusb_error_name(ret));
libusb_release_interface(usb.devhdl, USB_INTERFACE);
libusb_close(usb.devhdl);
return SR_ERR;
}
memcpy(&(dev_info->serial), buffer + 1, sizeof(uint32_t));
dev_info->serial = GUINT32_FROM_LE(dev_info->serial);
dev_info->fw_ver_major = buffer[5];
dev_info->fw_ver_minor = buffer[6];
buffer[0] = CMD_RESET;
if ((ret = sl2_transfer_out(usb.devhdl, buffer)) != PACKET_LENGTH) {
sr_err("Device reset failed: %s.", libusb_error_name(ret));
libusb_release_interface(usb.devhdl, USB_INTERFACE);
libusb_close(usb.devhdl);
return SR_ERR;
}
/*
* Set the device to idle state. If the device is not in idle state it
* possibly will reset itself after a few seconds without being used
* and thereby close the connection.
*/
buffer[0] = CMD_IDLE;
if ((ret = sl2_transfer_out(usb.devhdl, buffer)) != PACKET_LENGTH) {
sr_err("Failed to set device in idle state: %s.",
libusb_error_name(ret));
libusb_release_interface(usb.devhdl, USB_INTERFACE);
libusb_close(usb.devhdl);
return SR_ERR;
}
ret = libusb_release_interface(usb.devhdl, USB_INTERFACE);
if (ret < 0) {
sr_err("Failed to release interface: %s.",
libusb_error_name(ret));
libusb_close(usb.devhdl);
return SR_ERR;
}
libusb_close(usb.devhdl);
return SR_OK;
}
SR_PRIV int sl2_transfer_in(libusb_device_handle *dev_handle, uint8_t *data)
{
return libusb_control_transfer(dev_handle, USB_REQUEST_TYPE_IN,
USB_HID_GET_REPORT, USB_HID_REPORT_TYPE_FEATURE, USB_INTERFACE,
(unsigned char *)data, PACKET_LENGTH, USB_TIMEOUT);
}
SR_PRIV int sl2_transfer_out(libusb_device_handle *dev_handle, uint8_t *data)
{
return libusb_control_transfer(dev_handle, USB_REQUEST_TYPE_OUT,
USB_HID_SET_REPORT, USB_HID_REPORT_TYPE_FEATURE, USB_INTERFACE,
(unsigned char *)data, PACKET_LENGTH, USB_TIMEOUT);
}