libsigrok/src/hardware/hantek-4032l/api.c

570 lines
14 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2016 Andreas Zschunke <andreas.zschunke@gmx.net>
* Copyright (C) 2017 Andrej Valek <andy@skyrain.eu>
* Copyright (C) 2017 Uwe Hermann <uwe@hermann-uwe.de>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include "protocol.h"
#define USB_INTERFACE 0
#define NUM_CHANNELS 32
static const uint32_t scanopts[] = {
SR_CONF_CONN,
};
static const uint32_t drvopts[] = {
SR_CONF_LOGIC_ANALYZER,
};
static const uint32_t devopts[] = {
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
SR_CONF_CONN | SR_CONF_GET,
};
static const uint32_t devopts_cg[] = {
SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
};
static const int32_t trigger_matches[] = {
SR_TRIGGER_ZERO,
SR_TRIGGER_ONE,
SR_TRIGGER_RISING,
SR_TRIGGER_FALLING,
SR_TRIGGER_EDGE,
};
static const uint64_t samplerates[] = {
SR_KHZ(1),
SR_KHZ(2),
SR_KHZ(4),
SR_KHZ(8),
SR_KHZ(16),
SR_HZ(31250),
SR_HZ(62500),
SR_KHZ(125),
SR_KHZ(250),
SR_KHZ(500),
SR_KHZ(625),
SR_HZ(781250),
SR_MHZ(1),
SR_KHZ(1250),
SR_HZ(1562500),
SR_MHZ(2),
SR_KHZ(2500),
SR_KHZ(3125),
SR_MHZ(4),
SR_MHZ(5),
SR_KHZ(6250),
SR_MHZ(10),
SR_KHZ(12500),
SR_MHZ(20),
SR_MHZ(25),
SR_MHZ(40),
SR_MHZ(50),
SR_MHZ(80),
SR_MHZ(100),
SR_MHZ(160),
SR_MHZ(200),
SR_MHZ(320),
SR_MHZ(400),
};
static const uint64_t samplerates_hw[] = {
SR_MHZ(100),
SR_MHZ(50),
SR_MHZ(25),
SR_KHZ(12500),
SR_KHZ(6250),
SR_KHZ(3125),
SR_HZ(1562500),
SR_HZ(781250),
SR_MHZ(80),
SR_MHZ(40),
SR_MHZ(20),
SR_MHZ(10),
SR_MHZ(5),
SR_KHZ(2500),
SR_KHZ(1250),
SR_KHZ(625),
SR_MHZ(4),
SR_MHZ(2),
SR_MHZ(1),
SR_KHZ(500),
SR_KHZ(250),
SR_KHZ(125),
SR_HZ(62500),
SR_HZ(31250),
SR_KHZ(16),
SR_KHZ(8),
SR_KHZ(4),
SR_KHZ(2),
SR_KHZ(1),
0,
0,
0,
SR_MHZ(200),
SR_MHZ(160),
SR_MHZ(400),
SR_MHZ(320),
};
SR_PRIV struct sr_dev_driver hantek_4032l_driver_info;
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
struct drv_context *drvc = di->context;
GSList *l, *devices, *conn_devices;
libusb_device **devlist;
struct libusb_device_descriptor des;
const char *conn;
int i;
char connection_id[64];
struct sr_channel_group *cg;
struct sr_dev_inst *sdi;
struct sr_channel *ch;
devices = NULL;
conn_devices = NULL;
drvc->instances = NULL;
conn = NULL;
for (l = options; l; l = l->next) {
struct sr_config *src = l->data;
if (src->key == SR_CONF_CONN) {
conn = g_variant_get_string(src->data, NULL);
break;
}
}
if (conn)
conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
else
conn_devices = NULL;
libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
for (i = 0; devlist[i]; i++) {
if (conn) {
struct sr_usb_dev_inst *usb = NULL;
for (l = conn_devices; l; l = l->next) {
usb = l->data;
if (usb->bus == libusb_get_bus_number(devlist[i]) &&
usb->address == libusb_get_device_address(devlist[i]))
break;
}
if (!l)
/* This device matched none of the ones that
* matched the conn specification. */
continue;
}
libusb_get_device_descriptor(devlist[i], &des);
if (des.idVendor != H4032L_USB_VENDOR ||
des.idProduct != H4032L_USB_PRODUCT)
continue;
if (usb_get_port_path(devlist[i], connection_id, sizeof(connection_id)) < 0)
continue;
sdi = g_malloc0(sizeof(struct sr_dev_inst));
sdi->driver = &hantek_4032l_driver_info;
sdi->vendor = g_strdup("Hantek");
sdi->model = g_strdup("4032L");
sdi->connection_id = g_strdup(connection_id);
struct sr_channel_group *channel_groups[2];
for (int j = 0; j < 2; j++) {
cg = g_malloc0(sizeof(struct sr_channel_group));
cg->name = g_strdup_printf("%c", 'A' + j);
channel_groups[j] = cg;
sdi->channel_groups = g_slist_append(sdi->channel_groups, cg);
}
/* Assemble channel list and add channel to channel groups. */
for (int j = 0; j < NUM_CHANNELS; j++) {
char channel_name[4];
sprintf(channel_name, "%c%d", 'A' + (j & 1), j / 2);
ch = sr_channel_new(sdi, j, SR_CHANNEL_LOGIC, TRUE, channel_name);
cg = channel_groups[j & 1];
cg->channels = g_slist_append(cg->channels, ch);
}
struct dev_context *devc = g_malloc0(sizeof(struct dev_context));
/* Initialize command packet. */
devc->cmd_pkt.magic = H4032L_CMD_PKT_MAGIC;
devc->cmd_pkt.sample_size = 16384;
devc->status = H4032L_STATUS_IDLE;
devc->capture_ratio = 5;
devc->cur_threshold[0] = 2.5;
devc->cur_threshold[1] = 2.5;
sdi->priv = devc;
devices = g_slist_append(devices, sdi);
sdi->status = SR_ST_INACTIVE;
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new(
libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), NULL);
}
g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free);
libusb_free_device_list(devlist, 1);
return std_scan_complete(di, devices);
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct sr_usb_dev_inst *usb = sdi->conn;
int ret;
ret = h4032l_dev_open(sdi);
if (ret != SR_OK) {
sr_err("Unable to open device.");
return SR_ERR;
}
ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
if (ret != 0) {
switch (ret) {
case LIBUSB_ERROR_BUSY:
sr_err("Unable to claim USB interface. Another "
"program or driver has already claimed it.");
break;
case LIBUSB_ERROR_NO_DEVICE:
sr_err("Device has been disconnected.");
break;
default:
sr_err("Unable to claim interface: %s.",
libusb_error_name(ret));
break;
}
return SR_ERR;
}
/* Get FPGA version. */
if ((ret = h4032l_get_fpga_version(sdi)) != SR_OK)
return ret;
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
struct sr_usb_dev_inst *usb;
usb = sdi->conn;
if (!usb->devhdl)
return SR_ERR_BUG;
sr_info("Closing device on %d.%d (logical) / %s (physical) interface %d.",
usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
libusb_release_interface(usb->devhdl, USB_INTERFACE);
libusb_close(usb->devhdl);
usb->devhdl = NULL;
return SR_OK;
}
static int config_get(uint32_t key, GVariant **data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
{
struct dev_context *devc = sdi->priv;
struct sr_usb_dev_inst *usb;
switch (key) {
case SR_CONF_VOLTAGE_THRESHOLD:
if (cg) {
if (!strcmp(cg->name, "A"))
*data = std_gvar_tuple_double(
devc->cur_threshold[0], devc->cur_threshold[0]);
else if (!strcmp(cg->name, "B"))
*data = std_gvar_tuple_double(
devc->cur_threshold[1], devc->cur_threshold[1]);
else
return SR_ERR_CHANNEL_GROUP;
}
break;
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(samplerates_hw[devc->cmd_pkt.sample_rate]);
break;
case SR_CONF_CAPTURE_RATIO:
*data = g_variant_new_uint64(devc->capture_ratio);
break;
case SR_CONF_LIMIT_SAMPLES:
*data = g_variant_new_uint64(devc->cmd_pkt.sample_size);
break;
case SR_CONF_CONN:
if (!sdi || !(usb = sdi->conn))
return SR_ERR_ARG;
*data = g_variant_new_printf("%d.%d", usb->bus, usb->address);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(uint32_t key, GVariant *data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
{
struct dev_context *devc = sdi->priv;
struct h4032l_cmd_pkt *cmd_pkt = &devc->cmd_pkt;
switch (key) {
case SR_CONF_SAMPLERATE: {
uint64_t sample_rate = g_variant_get_uint64(data);
uint8_t i = 0;
while (i < ARRAY_SIZE(samplerates_hw) && samplerates_hw[i] != sample_rate)
i++;
if (i == ARRAY_SIZE(samplerates_hw) || sample_rate == 0) {
sr_err("Invalid sample rate.");
return SR_ERR_SAMPLERATE;
}
cmd_pkt->sample_rate = i;
break;
}
case SR_CONF_CAPTURE_RATIO: {
uint64_t capture_ratio = g_variant_get_uint64(data);
if (capture_ratio > 99) {
sr_err("Invalid capture ratio.");
return SR_ERR;
}
devc->capture_ratio = capture_ratio;
break;
}
case SR_CONF_LIMIT_SAMPLES: {
uint64_t number_samples = g_variant_get_uint64(data);
number_samples += 511;
number_samples &= 0xfffffe00;
if (number_samples < H4043L_NUM_SAMPLES_MIN ||
number_samples > H4032L_NUM_SAMPLES_MAX) {
sr_err("Invalid sample range 2k...64M: %"
PRIu64 ".", number_samples);
return SR_ERR;
}
cmd_pkt->sample_size = number_samples;
break;
}
case SR_CONF_VOLTAGE_THRESHOLD: {
double low, high;
g_variant_get(data, "(dd)", &low, &high);
double threshold = (low + high) / 2.0;
if (cg) {
if (!strcmp(cg->name, "A"))
devc->cur_threshold[0] = threshold;
else if (!strcmp(cg->name, "B"))
devc->cur_threshold[1] = threshold;
else
return SR_ERR_CHANNEL_GROUP;
}
break;
}
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_list(uint32_t key, GVariant **data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
{
switch (key) {
case SR_CONF_SCAN_OPTIONS:
case SR_CONF_DEVICE_OPTIONS:
if (cg) {
*data = std_gvar_array_u32(ARRAY_AND_SIZE(devopts_cg));
break;
}
return STD_CONFIG_LIST(key, data, sdi, cg, scanopts, drvopts, devopts);
case SR_CONF_SAMPLERATE:
*data = std_gvar_samplerates(ARRAY_AND_SIZE(samplerates));
break;
case SR_CONF_TRIGGER_MATCH:
*data = std_gvar_array_i32(ARRAY_AND_SIZE(trigger_matches));
break;
case SR_CONF_VOLTAGE_THRESHOLD:
*data = std_gvar_min_max_step_thresholds(-6.0, 6.0, 0.1);
break;
case SR_CONF_LIMIT_SAMPLES:
*data = std_gvar_tuple_u64(H4043L_NUM_SAMPLES_MIN, H4032L_NUM_SAMPLES_MAX);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi)
{
struct sr_dev_driver *di = sdi->driver;
struct drv_context *drvc = di->context;
struct dev_context *devc = sdi->priv;
struct sr_trigger *trigger = sr_session_trigger_get(sdi->session);
struct h4032l_cmd_pkt *cmd_pkt = &devc->cmd_pkt;
/* Initialize variables. */
devc->acq_aborted = FALSE;
devc->submitted_transfers = 0;
devc->sent_samples = 0;
/* Calculate packet ratio. */
cmd_pkt->pre_trigger_size = (cmd_pkt->sample_size * devc->capture_ratio) / 100;
devc->trigger_pos = cmd_pkt->pre_trigger_size;
/* Set pwm channel values. */
devc->cmd_pkt.pwm_a = h4032l_voltage2pwm(devc->cur_threshold[0]);
devc->cmd_pkt.pwm_b = h4032l_voltage2pwm(devc->cur_threshold[1]);
cmd_pkt->trig_flags.enable_trigger1 = 0;
cmd_pkt->trig_flags.enable_trigger2 = 0;
cmd_pkt->trig_flags.trigger_and_logic = 0;
if (trigger && trigger->stages) {
GSList *stages = trigger->stages;
struct sr_trigger_stage *stage1 = stages->data;
if (stages->next) {
sr_err("Only one trigger stage supported for now.");
return SR_ERR;
}
cmd_pkt->trig_flags.enable_trigger1 = 1;
cmd_pkt->trigger[0].flags.edge_type = H4032L_TRIGGER_EDGE_TYPE_DISABLED;
cmd_pkt->trigger[0].flags.data_range_enabled = 0;
cmd_pkt->trigger[0].flags.time_range_enabled = 0;
cmd_pkt->trigger[0].flags.combined_enabled = 0;
cmd_pkt->trigger[0].flags.data_range_type = H4032L_TRIGGER_DATA_RANGE_TYPE_MAX;
cmd_pkt->trigger[0].data_range_mask = 0;
cmd_pkt->trigger[0].data_range_max = 0;
/* Initialize range mask values. */
uint32_t range_mask = 0;
uint32_t range_value = 0;
GSList *channel = stage1->matches;
while (channel) {
struct sr_trigger_match *match = channel->data;
switch (match->match) {
case SR_TRIGGER_ZERO:
range_mask |= (1 << match->channel->index);
break;
case SR_TRIGGER_ONE:
range_mask |= (1 << match->channel->index);
range_value |= (1 << match->channel->index);
break;
case SR_TRIGGER_RISING:
if (cmd_pkt->trigger[0].flags.edge_type != H4032L_TRIGGER_EDGE_TYPE_DISABLED) {
sr_err("Only one trigger signal with fall/rising/edge allowed.");
return SR_ERR;
}
cmd_pkt->trigger[0].flags.edge_type = H4032L_TRIGGER_EDGE_TYPE_RISE;
cmd_pkt->trigger[0].flags.edge_signal = match->channel->index;
break;
case SR_TRIGGER_FALLING:
if (cmd_pkt->trigger[0].flags.edge_type != H4032L_TRIGGER_EDGE_TYPE_DISABLED) {
sr_err("Only one trigger signal with fall/rising/edge allowed.");
return SR_ERR;
}
cmd_pkt->trigger[0].flags.edge_type = H4032L_TRIGGER_EDGE_TYPE_FALL;
cmd_pkt->trigger[0].flags.edge_signal = match->channel->index;
break;
case SR_TRIGGER_EDGE:
if (cmd_pkt->trigger[0].flags.edge_type != H4032L_TRIGGER_EDGE_TYPE_DISABLED) {
sr_err("Only one trigger signal with fall/rising/edge allowed.");
return SR_ERR;
}
cmd_pkt->trigger[0].flags.edge_type = H4032L_TRIGGER_EDGE_TYPE_TOGGLE;
cmd_pkt->trigger[0].flags.edge_signal = match->channel->index;
break;
default:
sr_err("Unknown trigger value.");
return SR_ERR;
}
channel = channel->next;
}
/* Compress range mask value and apply range settings. */
if (range_mask) {
cmd_pkt->trigger[0].flags.data_range_enabled = 1;
cmd_pkt->trigger[0].data_range_mask |= (range_mask);
uint32_t new_range_value = 0;
uint32_t bit_mask = 1;
while (range_mask) {
if ((range_mask & 1) != 0) {
new_range_value <<= 1;
if ((range_value & 1) != 0)
new_range_value |= bit_mask;
bit_mask <<= 1;
}
range_mask >>= 1;
range_value >>= 1;
}
cmd_pkt->trigger[0].data_range_max |= range_value;
}
}
usb_source_add(sdi->session, drvc->sr_ctx, 1000,
h4032l_receive_data, sdi->driver->context);
/* Start capturing. */
return h4032l_start(sdi);
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi)
{
/* Stop capturing. */
return h4032l_stop(sdi);
}
SR_PRIV struct sr_dev_driver hantek_4032l_driver_info = {
.name = "hantek-4032l",
.longname = "Hantek 4032L",
.api_version = 1,
.init = std_init,
.cleanup = std_cleanup,
.scan = scan,
.dev_list = std_dev_list,
.dev_clear = std_dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.context = NULL,
};
SR_REGISTER_DEV_DRIVER(hantek_4032l_driver_info);