libsigrok/hardware/demo/demo.c

784 lines
20 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2010 Uwe Hermann <uwe@hermann-uwe.de>
* Copyright (C) 2011 Olivier Fauchon <olivier@aixmarseille.com>
* Copyright (C) 2012 Alexandru Gagniuc <mr.nuke.me@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#ifdef _WIN32
#include <io.h>
#include <fcntl.h>
#define pipe(fds) _pipe(fds, 4096, _O_BINARY)
#endif
#include "libsigrok.h"
#include "libsigrok-internal.h"
#define LOG_PREFIX "demo"
#define DEFAULT_NUM_LOGIC_PROBES 8
#define DEFAULT_NUM_ANALOG_PROBES 4
/* The size in bytes of chunks to send through the session bus. */
#define LOGIC_BUFSIZE 4096
/* Size of the analog pattern space per channel. */
#define ANALOG_BUFSIZE 4096
#define ANALOG_AMPLITUDE 25
#define ANALOG_SAMPLES_PER_PERIOD 20
/* Logic patterns we can generate. */
enum {
/**
* Spells "sigrok" across 8 probes using '0's (with '1's as
* "background") when displayed using the 'bits' output format.
* The pattern is repeasted every 8 probes, shifted to the right
* in time by one bit.
*/
PATTERN_SIGROK,
/** Pseudo-random values on all probes. */
PATTERN_RANDOM,
/**
* Incrementing number across 8 probes. The pattern is repeasted
* every 8 probes, shifted to the right in time by one bit.
*/
PATTERN_INC,
/** All probes have a low logic state. */
PATTERN_ALL_LOW,
/** All probes have a high logic state. */
PATTERN_ALL_HIGH,
};
/* Analog patterns we can generate. */
enum {
/**
* Square wave.
*/
PATTERN_SQUARE,
PATTERN_SINE,
PATTERN_TRIANGLE,
PATTERN_SAWTOOTH,
};
static const char *logic_pattern_str[] = {
"sigrok",
"random",
"incremental",
"all-low",
"all-high",
};
static const char *analog_pattern_str[] = {
"square",
"sine",
"triangle",
"sawtooth",
};
struct analog_gen {
int pattern;
float pattern_data[ANALOG_BUFSIZE];
unsigned int num_samples;
struct sr_datafeed_analog packet;
};
/* Private, per-device-instance driver context. */
struct dev_context {
int pipe_fds[2];
GIOChannel *channel;
uint64_t cur_samplerate;
uint64_t limit_samples;
uint64_t limit_msec;
uint64_t samples_counter;
int64_t starttime;
uint64_t step;
/* Logic */
int32_t num_logic_probes;
unsigned int logic_unitsize;
/* There is only ever one logic probe group, so its pattern goes here. */
uint8_t logic_pattern;
unsigned char logic_data[LOGIC_BUFSIZE];
/* Analog */
int32_t num_analog_probes;
GSList *analog_probe_groups;
};
static const int32_t scanopts[] = {
SR_CONF_NUM_LOGIC_PROBES,
SR_CONF_NUM_ANALOG_PROBES,
};
static const int devopts[] = {
SR_CONF_LOGIC_ANALYZER,
SR_CONF_DEMO_DEV,
SR_CONF_SAMPLERATE,
SR_CONF_LIMIT_SAMPLES,
SR_CONF_LIMIT_MSEC,
};
static const int devopts_pg[] = {
SR_CONF_PATTERN_MODE,
};
static const uint64_t samplerates[] = {
SR_HZ(1),
SR_GHZ(1),
SR_HZ(1),
};
static uint8_t pattern_sigrok[] = {
0x4c, 0x92, 0x92, 0x92, 0x64, 0x00, 0x00, 0x00,
0x82, 0xfe, 0xfe, 0x82, 0x00, 0x00, 0x00, 0x00,
0x7c, 0x82, 0x82, 0x92, 0x74, 0x00, 0x00, 0x00,
0xfe, 0x12, 0x12, 0x32, 0xcc, 0x00, 0x00, 0x00,
0x7c, 0x82, 0x82, 0x82, 0x7c, 0x00, 0x00, 0x00,
0xfe, 0x10, 0x28, 0x44, 0x82, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xbe, 0xbe, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
SR_PRIV struct sr_dev_driver demo_driver_info;
static struct sr_dev_driver *di = &demo_driver_info;
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
static int dev_clear(void)
{
return std_dev_clear(di, NULL);
}
static int init(struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
static void generate_analog_pattern(const struct sr_probe_group *probe_group, uint64_t sample_rate)
{
struct analog_gen *ag;
double t, frequency;
float value;
unsigned int num_samples, i;
int last_end;
ag = probe_group->priv;
num_samples = ANALOG_BUFSIZE / sizeof(float);
sr_dbg("Generating %s pattern for probe group %s",
analog_pattern_str[ag->pattern],
probe_group->name);
switch (ag->pattern) {
case PATTERN_SQUARE:
value = ANALOG_AMPLITUDE;
last_end = 0;
for (i = 0; i < num_samples; i++) {
if (i % 5 == 0)
value = -value;
if (i % 10 == 0)
last_end = i - 1;
ag->pattern_data[i] = value;
}
ag->num_samples = last_end;
break;
case PATTERN_SINE:
frequency = sample_rate / ANALOG_SAMPLES_PER_PERIOD;
/* Make sure the number of samples we put out is an integer
* multiple of our period size */
/* FIXME we actually need only one period. A ringbuffer would be
* usefull here.*/
while (num_samples % ANALOG_SAMPLES_PER_PERIOD != 0)
num_samples--;
for (i = 0; i < num_samples; i++) {
t = (double) i / (double) sample_rate;
ag->pattern_data[i] = ANALOG_AMPLITUDE *
sin(2 * M_PI * frequency * t);
}
ag->num_samples = num_samples;
break;
case PATTERN_TRIANGLE:
frequency = sample_rate / ANALOG_SAMPLES_PER_PERIOD;
while (num_samples % ANALOG_SAMPLES_PER_PERIOD != 0)
num_samples--;
for (i = 0; i < num_samples; i++) {
t = (double) i / (double) sample_rate;
ag->pattern_data[i] = (2 * ANALOG_AMPLITUDE / M_PI) *
asin(sin(2 * M_PI * frequency * t));
}
ag->num_samples = num_samples;
break;
case PATTERN_SAWTOOTH:
frequency = sample_rate / ANALOG_SAMPLES_PER_PERIOD;
while (num_samples % ANALOG_SAMPLES_PER_PERIOD != 0)
num_samples--;
for (i = 0; i < num_samples; i++) {
t = (double) i / (double) sample_rate;
ag->pattern_data[i] = 2 * ANALOG_AMPLITUDE *
((t * frequency) - floor(0.5f + t * frequency));
}
ag->num_samples = num_samples;
break;
}
}
static GSList *scan(GSList *options)
{
struct drv_context *drvc;
struct dev_context *devc;
struct sr_dev_inst *sdi;
struct sr_probe *probe;
struct sr_probe_group *pg;
struct sr_config *src;
struct analog_gen *ag;
GSList *devices, *l;
int num_logic_probes, num_analog_probes, i;
char probe_name[16];
drvc = di->priv;
num_logic_probes = DEFAULT_NUM_LOGIC_PROBES;
num_analog_probes = DEFAULT_NUM_ANALOG_PROBES;
for (l = options; l; l = l->next) {
src = l->data;
switch (src->key) {
case SR_CONF_NUM_LOGIC_PROBES:
num_logic_probes = g_variant_get_int32(src->data);
break;
case SR_CONF_NUM_ANALOG_PROBES:
num_analog_probes = g_variant_get_int32(src->data);
break;
}
}
devices = NULL;
sdi = sr_dev_inst_new(0, SR_ST_ACTIVE, "Demo device", NULL, NULL);
if (!sdi) {
sr_err("Device instance creation failed.");
return NULL;
}
sdi->driver = di;
if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
sr_err("Device context malloc failed.");
return NULL;
}
devc->cur_samplerate = SR_KHZ(200);
devc->limit_samples = 0;
devc->limit_msec = 0;
devc->step = 0;
devc->num_logic_probes = num_logic_probes;
devc->logic_unitsize = (devc->num_logic_probes + 7) / 8;
devc->logic_pattern = PATTERN_SIGROK;
devc->num_analog_probes = num_analog_probes;
devc->analog_probe_groups = NULL;
/* Logic probes, all in one probe group. */
if (!(pg = g_try_malloc(sizeof(struct sr_probe_group))))
return NULL;
pg->name = g_strdup("Logic");
pg->probes = NULL;
pg->priv = NULL;
for (i = 0; i < num_logic_probes; i++) {
sprintf(probe_name, "D%d", i);
if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE, probe_name)))
return NULL;
sdi->probes = g_slist_append(sdi->probes, probe);
pg->probes = g_slist_append(pg->probes, probe);
}
sdi->probe_groups = g_slist_append(NULL, pg);
/* Analog probes, probe groups and pattern generators. */
for (i = 0; i < num_analog_probes; i++) {
sprintf(probe_name, "A%d", i);
if (!(probe = sr_probe_new(i, SR_PROBE_ANALOG, TRUE, probe_name)))
return NULL;
sdi->probes = g_slist_append(sdi->probes, probe);
/* Every analog probe gets its own probe group. */
if (!(pg = g_try_malloc(sizeof(struct sr_probe_group))))
return NULL;
pg->name = g_strdup(probe_name);
pg->probes = g_slist_append(NULL, probe);
/* Every probe group gets a generator struct. */
if (!(ag = g_try_malloc(sizeof(struct analog_gen))))
return NULL;
ag->packet.probes = pg->probes;
ag->packet.mq = 0;
ag->packet.mqflags = 0;
ag->packet.unit = SR_UNIT_VOLT;
ag->packet.data = ag->pattern_data;
ag->pattern = PATTERN_SINE;
pg->priv = ag;
sdi->probe_groups = g_slist_append(sdi->probe_groups, pg);
devc->analog_probe_groups = g_slist_append(devc->analog_probe_groups, pg);
}
sdi->priv = devc;
devices = g_slist_append(devices, sdi);
drvc->instances = g_slist_append(drvc->instances, sdi);
return devices;
}
static GSList *dev_list(void)
{
return ((struct drv_context *)(di->priv))->instances;
}
static int dev_open(struct sr_dev_inst *sdi)
{
sdi->status = SR_ST_ACTIVE;
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int cleanup(void)
{
return dev_clear();
}
static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
struct dev_context *devc;
struct sr_probe *probe;
struct analog_gen *ag;
int pattern;
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
switch (id) {
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->cur_samplerate);
break;
case SR_CONF_LIMIT_SAMPLES:
*data = g_variant_new_uint64(devc->limit_samples);
break;
case SR_CONF_LIMIT_MSEC:
*data = g_variant_new_uint64(devc->limit_msec);
break;
case SR_CONF_PATTERN_MODE:
if (!probe_group)
return SR_ERR_PROBE_GROUP;
probe = probe_group->probes->data;
if (probe->type == SR_PROBE_LOGIC) {
pattern = devc->logic_pattern;
*data = g_variant_new_string(logic_pattern_str[pattern]);
} else if (probe->type == SR_PROBE_ANALOG) {
ag = probe_group->priv;
pattern = ag->pattern;
*data = g_variant_new_string(analog_pattern_str[pattern]);
} else
return SR_ERR_BUG;
break;
case SR_CONF_NUM_LOGIC_PROBES:
*data = g_variant_new_int32(devc->num_logic_probes);
break;
case SR_CONF_NUM_ANALOG_PROBES:
*data = g_variant_new_int32(devc->num_analog_probes);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
struct dev_context *devc;
struct analog_gen *ag;
struct sr_probe *probe;
int pattern, ret;
unsigned int i;
const char *stropt;
devc = sdi->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
ret = SR_OK;
switch (id) {
case SR_CONF_SAMPLERATE:
devc->cur_samplerate = g_variant_get_uint64(data);
sr_dbg("Setting samplerate to %" PRIu64, devc->cur_samplerate);
break;
case SR_CONF_LIMIT_SAMPLES:
devc->limit_msec = 0;
devc->limit_samples = g_variant_get_uint64(data);
sr_dbg("Setting sample limit to %" PRIu64, devc->limit_samples);
break;
case SR_CONF_LIMIT_MSEC:
devc->limit_msec = g_variant_get_uint64(data);
devc->limit_samples = 0;
sr_dbg("Setting time limit to %" PRIu64"ms", devc->limit_msec);
break;
case SR_CONF_PATTERN_MODE:
if (!probe_group)
return SR_ERR_PROBE_GROUP;
stropt = g_variant_get_string(data, NULL);
probe = probe_group->probes->data;
pattern = -1;
if (probe->type == SR_PROBE_LOGIC) {
for (i = 0; i < ARRAY_SIZE(logic_pattern_str); i++) {
if (!strcmp(stropt, logic_pattern_str[i])) {
pattern = i;
break;
}
}
if (pattern == -1)
return SR_ERR_ARG;
devc->logic_pattern = pattern;
/* Might as well do this now, these are static. */
if (pattern == PATTERN_ALL_LOW)
memset(devc->logic_data, 0x00, LOGIC_BUFSIZE);
else if (pattern == PATTERN_ALL_HIGH)
memset(devc->logic_data, 0xff, LOGIC_BUFSIZE);
sr_dbg("Setting logic pattern to %s",
logic_pattern_str[pattern]);
} else if (probe->type == SR_PROBE_ANALOG) {
for (i = 0; i < ARRAY_SIZE(analog_pattern_str); i++) {
if (!strcmp(stropt, analog_pattern_str[i])) {
pattern = i;
break;
}
}
if (pattern == -1)
return SR_ERR_ARG;
sr_dbg("Setting analog pattern for probe group %s to %s",
probe_group->name,
analog_pattern_str[pattern]);
ag = probe_group->priv;
ag->pattern = pattern;
} else
return SR_ERR_BUG;
break;
default:
ret = SR_ERR_NA;
}
return ret;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
struct sr_probe *probe;
GVariant *gvar;
GVariantBuilder gvb;
(void)sdi;
if (key == SR_CONF_SCAN_OPTIONS) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
scanopts, ARRAY_SIZE(scanopts), sizeof(int32_t));
return SR_OK;
}
if (!sdi)
return SR_ERR_ARG;
if (!probe_group) {
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
devopts, ARRAY_SIZE(devopts), sizeof(int32_t));
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
ARRAY_SIZE(samplerates), sizeof(uint64_t));
g_variant_builder_add(&gvb, "{sv}", "samplerate-steps", gvar);
*data = g_variant_builder_end(&gvb);
break;
default:
return SR_ERR_NA;
}
} else {
probe = probe_group->probes->data;
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
devopts_pg, ARRAY_SIZE(devopts_pg), sizeof(int32_t));
break;
case SR_CONF_PATTERN_MODE:
if (probe->type == SR_PROBE_LOGIC)
*data = g_variant_new_strv(logic_pattern_str,
ARRAY_SIZE(logic_pattern_str));
else if (probe->type == SR_PROBE_ANALOG)
*data = g_variant_new_strv(analog_pattern_str,
ARRAY_SIZE(analog_pattern_str));
else
return SR_ERR_BUG;
break;
default:
return SR_ERR_NA;
}
}
return SR_OK;
}
static void logic_generator(struct sr_dev_inst *sdi, uint64_t size)
{
struct dev_context *devc;
uint64_t i, j;
uint8_t pat;
devc = sdi->priv;
switch (devc->logic_pattern) {
case PATTERN_SIGROK:
memset(devc->logic_data, 0x00, size);
for (i = 0; i < size; i += devc->logic_unitsize) {
for (j = 0; j < devc->logic_unitsize; j++) {
pat = pattern_sigrok[(devc->step + j) % sizeof(pattern_sigrok)] >> 1;
devc->logic_data[i + j] = ~pat;
}
devc->step++;
}
break;
case PATTERN_RANDOM:
for (i = 0; i < size; i++)
devc->logic_data[i] = (uint8_t)(rand() & 0xff);
break;
case PATTERN_INC:
for (i = 0; i < size; i++) {
for (j = 0; j < devc->logic_unitsize; j++) {
devc->logic_data[i + j] = devc->step;
}
devc->step++;
}
break;
case PATTERN_ALL_LOW:
case PATTERN_ALL_HIGH:
/* These were set when the pattern mode was selected. */
break;
default:
sr_err("Unknown pattern: %d.", devc->logic_pattern);
break;
}
}
/* Callback handling data */
static int prepare_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct sr_probe_group *pg;
struct analog_gen *ag;
GSList *l;
uint64_t samples_to_send, expected_samplenum, analog_samples, sending_now;
int64_t time, elapsed;
(void)fd;
(void)revents;
sdi = cb_data;
devc = sdi->priv;
/* How many "virtual" samples should we have collected by now? */
time = g_get_monotonic_time();
elapsed = time - devc->starttime;
expected_samplenum = elapsed * devc->cur_samplerate / 1000000;
/* Of those, how many do we still have to send? */
samples_to_send = expected_samplenum - devc->samples_counter;
if (devc->limit_samples) {
samples_to_send = MIN(samples_to_send,
devc->limit_samples - devc->samples_counter);
}
while (samples_to_send > 0) {
sending_now = 0;
/* Logic */
if (devc->num_logic_probes > 0) {
sending_now = MIN(samples_to_send,
LOGIC_BUFSIZE / devc->logic_unitsize);
logic_generator(sdi, sending_now * devc->logic_unitsize);
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = sending_now * devc->logic_unitsize;
logic.unitsize = devc->logic_unitsize;
logic.data = devc->logic_data;
sr_session_send(sdi, &packet);
}
/* Analog, one probe at a time */
if (devc->num_analog_probes > 0) {
sending_now = 0;
for (l = devc->analog_probe_groups; l; l = l->next) {
pg = l->data;
ag = pg->priv;
packet.type = SR_DF_ANALOG;
packet.payload = &ag->packet;
/* FIXME we should make sure we output a whole
* period of data before we send out again the
* beginning of our buffer. A ring buffer would
* help here as well */
analog_samples = MIN(samples_to_send, ag->num_samples);
/* Whichever probe group gets there first. */
sending_now = MAX(sending_now, analog_samples);
ag->packet.num_samples = analog_samples;
sr_session_send(sdi, &packet);
}
}
samples_to_send -= sending_now;
devc->samples_counter += sending_now;
}
if (devc->limit_samples &&
devc->samples_counter >= devc->limit_samples) {
sr_info("Requested number of samples reached.");
dev_acquisition_stop(sdi, cb_data);
return TRUE;
}
return TRUE;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
GSList *l;
struct dev_context *devc;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
/* TODO: don't start without a sample limit set */
devc = sdi->priv;
devc->samples_counter = 0;
/*
* Setting two channels connected by a pipe is a remnant from when the
* demo driver generated data in a thread, and collected and sent the
* data in the main program loop.
* They are kept here because it provides a convenient way of setting
* up a timeout-based polling mechanism.
*/
if (pipe(devc->pipe_fds)) {
sr_err("%s: pipe() failed", __func__);
return SR_ERR;
}
for (l = devc->analog_probe_groups; l; l = l->next) {
generate_analog_pattern(l->data, devc->cur_samplerate);
}
devc->channel = g_io_channel_unix_new(devc->pipe_fds[0]);
g_io_channel_set_flags(devc->channel, G_IO_FLAG_NONBLOCK, NULL);
/* Set channel encoding to binary (default is UTF-8). */
g_io_channel_set_encoding(devc->channel, NULL, NULL);
/* Make channels to unbuffered. */
g_io_channel_set_buffered(devc->channel, FALSE);
sr_session_source_add_channel(devc->channel, G_IO_IN | G_IO_ERR,
40, prepare_data, (void *)sdi);
/* Send header packet to the session bus. */
std_session_send_df_header(cb_data, LOG_PREFIX);
/* We use this timestamp to decide how many more samples to send. */
devc->starttime = g_get_monotonic_time();
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
struct sr_datafeed_packet packet;
(void)cb_data;
devc = sdi->priv;
sr_dbg("Stopping aquisition.");
sr_session_source_remove_channel(devc->channel);
g_io_channel_shutdown(devc->channel, FALSE, NULL);
g_io_channel_unref(devc->channel);
devc->channel = NULL;
/* Send last packet. */
packet.type = SR_DF_END;
sr_session_send(sdi, &packet);
return SR_OK;
}
SR_PRIV struct sr_dev_driver demo_driver_info = {
.name = "demo",
.longname = "Demo driver and pattern generator",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};