libsigrok/tests/analog.c

400 lines
11 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2015 Uwe Hermann <uwe@hermann-uwe.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdlib.h>
#include <math.h>
#include <check.h>
#include <libsigrok/libsigrok.h>
#include "lib.h"
static int sr_analog_init_(struct sr_datafeed_analog *analog,
struct sr_analog_encoding *encoding,
struct sr_analog_meaning *meaning,
struct sr_analog_spec *spec,
int digits)
{
memset(analog, 0, sizeof(*analog));
memset(encoding, 0, sizeof(*encoding));
memset(meaning, 0, sizeof(*meaning));
memset(spec, 0, sizeof(*spec));
analog->encoding = encoding;
analog->meaning = meaning;
analog->spec = spec;
encoding->unitsize = sizeof(float);
encoding->is_float = TRUE;
#ifdef WORDS_BIGENDIAN
encoding->is_bigendian = TRUE;
#else
encoding->is_bigendian = FALSE;
#endif
encoding->digits = digits;
encoding->is_digits_decimal = TRUE;
encoding->scale.p = 1;
encoding->scale.q = 1;
encoding->offset.p = 0;
encoding->offset.q = 1;
spec->spec_digits = digits;
return SR_OK;
}
START_TEST(test_analog_to_float)
{
int ret;
unsigned int i;
float f, fout;
struct sr_channel ch;
struct sr_datafeed_analog analog;
struct sr_analog_encoding encoding;
struct sr_analog_meaning meaning;
struct sr_analog_spec spec;
const float v[] = {-12.9, -333.999, 0, 3.1415, 29.7, 989898.121212};
sr_analog_init_(&analog, &encoding, &meaning, &spec, 3);
analog.num_samples = 1;
analog.data = &f;
meaning.channels = g_slist_append(NULL, &ch);
for (i = 0; i < ARRAY_SIZE(v); i++) {
fout = 19;
f = v[i];
ret = sr_analog_to_float(&analog, &fout);
fail_unless(ret == SR_OK, "sr_analog_to_float() failed: %d.", ret);
fail_unless(fabs(f - fout) <= 0.001, "%f != %f", f, fout);
}
}
END_TEST
START_TEST(test_analog_to_float_null)
{
int ret;
float f, fout;
struct sr_datafeed_analog analog;
struct sr_analog_encoding encoding;
struct sr_analog_meaning meaning;
struct sr_analog_spec spec;
f = G_PI;
sr_analog_init_(&analog, &encoding, &meaning, &spec, 3);
analog.num_samples = 1;
analog.data = &f;
ret = sr_analog_to_float(NULL, &fout);
fail_unless(ret == SR_ERR_ARG);
ret = sr_analog_to_float(&analog, NULL);
fail_unless(ret == SR_ERR_ARG);
ret = sr_analog_to_float(NULL, NULL);
fail_unless(ret == SR_ERR_ARG);
analog.data = NULL;
ret = sr_analog_to_float(&analog, &fout);
fail_unless(ret == SR_ERR_ARG);
analog.data = &f;
analog.meaning = NULL;
ret = sr_analog_to_float(&analog, &fout);
fail_unless(ret == SR_ERR_ARG);
analog.meaning = &meaning;
analog.encoding = NULL;
ret = sr_analog_to_float(&analog, &fout);
fail_unless(ret == SR_ERR_ARG);
analog.encoding = &encoding;
}
END_TEST
START_TEST(test_analog_si_prefix)
{
struct {
float input_value;
int input_digits;
float output_value;
int output_digits;
const char *output_si_prefix;
} v[] = {
{ 12.0 , 0, 12.0 , 0, "" },
{ 12.0 , 1, 12.0 , 1, "" },
{ 12.0 , -1, 0.012, 2, "k" },
{ 1024.0 , 0, 1.024, 3, "k" },
{ 1024.0 , -1, 1.024, 2, "k" },
{ 1024.0 , -3, 1.024, 0, "k" },
{ 12.0e5 , 0, 1.2, 6, "M" },
{ 0.123456, 0, 0.123456, 0, "" },
{ 0.123456, 1, 0.123456, 1, "" },
{ 0.123456, 2, 0.123456, 2, "" },
{ 0.123456, 3, 123.456, 0, "m" },
{ 0.123456, 4, 123.456, 1, "m" },
{ 0.123456, 5, 123.456, 2, "m" },
{ 0.123456, 6, 123.456, 3, "m" },
{ 0.123456, 7, 123.456, 4, "m" },
{ 0.0123 , 4, 12.3, 1, "m" },
{ 0.00123 , 5, 1.23, 2, "m" },
{ 0.000123, 4, 0.123, 1, "m" },
{ 0.000123, 5, 0.123, 2, "m" },
{ 0.000123, 6, 123.0, 0, "µ" },
{ 0.000123, 7, 123.0, 1, "µ" },
};
for (unsigned int i = 0; i < ARRAY_SIZE(v); i++) {
float value = v[i].input_value;
int digits = v[i].input_digits;
const char *si_prefix = sr_analog_si_prefix(&value, &digits);
fail_unless(fabs(value - v[i].output_value) <= 0.00001,
"sr_analog_si_prefix() unexpected output value %f (i=%d).",
value , i);
fail_unless(digits == v[i].output_digits,
"sr_analog_si_prefix() unexpected output digits %d (i=%d).",
digits, i);
fail_unless(!strcmp(si_prefix, v[i].output_si_prefix),
"sr_analog_si_prefix() unexpected output prefix \"%s\" (i=%d).",
si_prefix, i);
}
}
END_TEST
START_TEST(test_analog_si_prefix_null)
{
float value = 1.23;
int digits = 1;
const char *si_prefix;
si_prefix = sr_analog_si_prefix(NULL, &digits);
fail_unless(!strcmp(si_prefix, ""));
si_prefix = sr_analog_si_prefix(&value, NULL);
fail_unless(!strcmp(si_prefix, ""));
si_prefix = sr_analog_si_prefix(NULL, NULL);
fail_unless(!strcmp(si_prefix, ""));
}
END_TEST
START_TEST(test_analog_unit_to_string)
{
int ret;
unsigned int i;
char *result;
struct sr_datafeed_analog analog;
struct sr_analog_encoding encoding;
struct sr_analog_meaning meaning;
struct sr_analog_spec spec;
const char *r[] = {" V RMS"};
sr_analog_init_(&analog, &encoding, &meaning, &spec, 3);
for (i = -1; i < ARRAY_SIZE(r); i++) {
meaning.unit = SR_UNIT_VOLT;
meaning.mqflags = SR_MQFLAG_RMS;
ret = sr_analog_unit_to_string(&analog, &result);
fail_unless(ret == SR_OK);
fail_unless(result != NULL);
fail_unless(!strcmp(result, r[i]), "%s != %s", result, r[i]);
g_free(result);
}
}
END_TEST
START_TEST(test_analog_unit_to_string_null)
{
int ret;
char *result;
struct sr_datafeed_analog analog;
struct sr_analog_encoding encoding;
struct sr_analog_meaning meaning;
struct sr_analog_spec spec;
sr_analog_init_(&analog, &encoding, &meaning, &spec, 3);
meaning.unit = SR_UNIT_VOLT;
meaning.mqflags = SR_MQFLAG_RMS;
ret = sr_analog_unit_to_string(NULL, &result);
fail_unless(ret == SR_ERR_ARG);
ret = sr_analog_unit_to_string(&analog, NULL);
fail_unless(ret == SR_ERR_ARG);
ret = sr_analog_unit_to_string(NULL, NULL);
fail_unless(ret == SR_ERR_ARG);
analog.meaning = NULL;
ret = sr_analog_unit_to_string(&analog, &result);
fail_unless(ret == SR_ERR_ARG);
}
END_TEST
START_TEST(test_set_rational)
{
unsigned int i;
struct sr_rational r;
const int64_t p[] = {0, 1, -5, INT64_MAX};
const uint64_t q[] = {0, 2, 7, UINT64_MAX};
for (i = 0; i < ARRAY_SIZE(p); i++) {
sr_rational_set(&r, p[i], q[i]);
fail_unless(r.p == p[i] && r.q == q[i]);
}
}
END_TEST
START_TEST(test_set_rational_null)
{
sr_rational_set(NULL, 5, 7);
}
END_TEST
START_TEST(test_cmp_rational)
{
const struct sr_rational r[] = { { 1, 1 },
{ 2, 2 },
{ 1000, 1000 },
{ INT64_MAX, INT64_MAX },
{ 1, 4 },
{ 2, 8 },
{ INT64_MAX, UINT64_MAX },
{ INT64_MIN, UINT64_MAX },
};
fail_unless(sr_rational_eq(&r[0], &r[0]) == 1);
fail_unless(sr_rational_eq(&r[0], &r[1]) == 1);
fail_unless(sr_rational_eq(&r[1], &r[2]) == 1);
fail_unless(sr_rational_eq(&r[2], &r[3]) == 1);
fail_unless(sr_rational_eq(&r[3], &r[3]) == 1);
fail_unless(sr_rational_eq(&r[4], &r[4]) == 1);
fail_unless(sr_rational_eq(&r[4], &r[5]) == 1);
fail_unless(sr_rational_eq(&r[5], &r[5]) == 1);
fail_unless(sr_rational_eq(&r[6], &r[6]) == 1);
fail_unless(sr_rational_eq(&r[7], &r[7]) == 1);
fail_unless(sr_rational_eq(&r[1], &r[4]) == 0);
}
END_TEST
START_TEST(test_mult_rational)
{
const struct sr_rational r[][3] = {
/* a * b = c */
{ { 1, 1 }, { 1, 1 }, { 1, 1 }},
{ { 2, 1 }, { 3, 1 }, { 6, 1 }},
{ { 1, 2 }, { 2, 1 }, { 1, 1 }},
/* Test negative numbers */
{ { -1, 2 }, { 2, 1 }, { -1, 1 }},
{ { -1, 2 }, { -2, 1 }, { 1, 1 }},
{ { -(1ll<<20), (1ll<<10) }, { -(1ll<<20), 1 }, { (1ll<<30), 1 }},
/* Test reduction */
{ { INT32_MAX, (1ll<<12) }, { (1<<2), 1 }, { INT32_MAX, (1ll<<10) }},
{ { INT64_MAX, (1ll<<63) }, { (1<<3), 1 }, { INT64_MAX, (1ll<<60) }},
/* Test large numbers */
{ { (1ll<<40), (1ll<<10) }, { (1ll<<30), 1 }, { (1ll<<60), 1 }},
{ { -(1ll<<40), (1ll<<10) }, { -(1ll<<30), 1 }, { (1ll<<60), 1 }},
{ { 1000, 1 }, { 8000, 1 }, { 8000000, 1 }},
{ { 10000, 1 }, { 80000, 1 }, { 800000000, 1 }},
{ { 10000*3, 4 }, { 80000*3, 1 }, { 200000000*9, 1 }},
{ { 1, 1000 }, { 1, 8000 }, { 1, 8000000 }},
{ { 1, 10000 }, { 1, 80000 }, { 1, 800000000 }},
{ { 4, 10000*3 }, { 1, 80000*3 }, { 1, 200000000*9 }},
{ { -10000*3, 4 }, { 80000*3, 1 }, { -200000000*9, 1 }},
{ { 10000*3, 4 }, { -80000*3, 1 }, { -200000000*9, 1 }},
};
for (unsigned i = 0; i < ARRAY_SIZE(r); i++) {
struct sr_rational res;
int rc = sr_rational_mult(&res, &r[i][0], &r[i][1]);
fail_unless(rc == SR_OK);
fail_unless(sr_rational_eq(&res, &r[i][2]) == 1,
"sr_rational_mult() failed: [%d] %ld/%lu != %ld/%lu.",
i, res.p, res.q, r[i][2].p, r[i][2].q);
}
}
END_TEST
START_TEST(test_div_rational)
{
const struct sr_rational r[][3] = {
/* a * b = c */
{ { 1, 1 }, { 1, 1 }, { 1, 1 }},
{ { 2, 1 }, { 1, 3 }, { 6, 1 }},
{ { 1, 2 }, { 1, 2 }, { 1, 1 }},
/* Test negative numbers */
{ { -1, 2 }, { 1, 2 }, { -1, 1 }},
{ { -1, 2 }, { -1, 2 }, { 1, 1 }},
{ { -(1ll<<20), (1ll<<10) }, { -1, (1ll<<20) }, { (1ll<<30), 1 }},
/* Test reduction */
{ { INT32_MAX, (1ll<<12) }, { 1, (1<<2) }, { INT32_MAX, (1ll<<10) }},
{ { INT64_MAX, (1ll<<63) }, { 1, (1<<3) }, { INT64_MAX, (1ll<<60) }},
/* Test large numbers */
{ { (1ll<<40), (1ll<<10) }, { 1, (1ll<<30) }, { (1ll<<60), 1 }},
{ { -(1ll<<40), (1ll<<10) }, { -1, (1ll<<30) }, { (1ll<<60), 1 }},
{ { 10000*3, 4 }, { 1, 80000*3 }, { 200000000*9, 1 }},
{ { 4, 10000*3 }, { 80000*3, 1 }, { 1, 200000000*9 }},
{ { -10000*3, 4 }, { 1, 80000*3 }, { -200000000*9, 1 }},
{ { 10000*3, 4 }, { -1, 80000*3 }, { -200000000*9, 1 }},
};
for (unsigned i = 0; i < ARRAY_SIZE(r); i++) {
struct sr_rational res;
int rc = sr_rational_div(&res, &r[i][0], &r[i][1]);
fail_unless(rc == SR_OK);
fail_unless(sr_rational_eq(&res, &r[i][2]) == 1,
"sr_rational_mult() failed: [%d] %ld/%lu != %ld/%lu.",
i, res.p, res.q, r[i][2].p, r[i][2].q);
}
{
struct sr_rational res;
int rc = sr_rational_div(&res, &r[0][0], &((struct sr_rational){ 0, 5 }));
fail_unless(rc == SR_ERR_ARG);
}
}
END_TEST
Suite *suite_analog(void)
{
Suite *s;
TCase *tc;
s = suite_create("analog");
tc = tcase_create("analog_to_float");
tcase_add_test(tc, test_analog_to_float);
tcase_add_test(tc, test_analog_to_float_null);
tcase_add_test(tc, test_analog_si_prefix);
tcase_add_test(tc, test_analog_si_prefix_null);
tcase_add_test(tc, test_analog_unit_to_string);
tcase_add_test(tc, test_analog_unit_to_string_null);
tcase_add_test(tc, test_set_rational);
tcase_add_test(tc, test_set_rational_null);
tcase_add_test(tc, test_cmp_rational);
tcase_add_test(tc, test_mult_rational);
tcase_add_test(tc, test_div_rational);
suite_add_tcase(s, tc);
return s;
}