libsigrok/hardware/saleae-logic16/protocol.c

766 lines
18 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
* Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "protocol.h"
#include <stdint.h>
#include <string.h>
#include <glib.h>
#include <glib/gstdio.h>
#include <stdio.h>
#include <errno.h>
#include <math.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#define FPGA_FIRMWARE_18 FIRMWARE_DIR"/saleae-logic16-fpga-18.bitstream"
#define FPGA_FIRMWARE_33 FIRMWARE_DIR"/saleae-logic16-fpga-33.bitstream"
#define MAX_SAMPLE_RATE SR_MHZ(100)
#define MAX_4CH_SAMPLE_RATE SR_MHZ(50)
#define MAX_7CH_SAMPLE_RATE SR_MHZ(40)
#define MAX_8CH_SAMPLE_RATE SR_MHZ(32)
#define MAX_10CH_SAMPLE_RATE SR_MHZ(25)
#define MAX_13CH_SAMPLE_RATE SR_MHZ(16)
#define BASE_CLOCK_0_FREQ SR_MHZ(100)
#define BASE_CLOCK_1_FREQ SR_MHZ(160)
#define COMMAND_START_ACQUISITION 1
#define COMMAND_ABORT_ACQUISITION_ASYNC 2
#define COMMAND_WRITE_EEPROM 6
#define COMMAND_READ_EEPROM 7
#define COMMAND_WRITE_LED_TABLE 0x7a
#define COMMAND_SET_LED_MODE 0x7b
#define COMMAND_RETURN_TO_BOOTLOADER 0x7c
#define COMMAND_ABORT_ACQUISITION_SYNC 0x7d
#define COMMAND_FPGA_UPLOAD_INIT 0x7e
#define COMMAND_FPGA_UPLOAD_SEND_DATA 0x7f
#define COMMAND_FPGA_WRITE_REGISTER 0x80
#define COMMAND_FPGA_READ_REGISTER 0x81
#define COMMAND_GET_REVID 0x82
#define WRITE_EEPROM_COOKIE1 0x42
#define WRITE_EEPROM_COOKIE2 0x55
#define READ_EEPROM_COOKIE1 0x33
#define READ_EEPROM_COOKIE2 0x81
#define ABORT_ACQUISITION_SYNC_PATTERN 0x55
#define MAX_EMPTY_TRANSFERS 64
static void encrypt(uint8_t *dest, const uint8_t *src, uint8_t cnt)
{
uint8_t state1 = 0x9b, state2 = 0x54;
uint8_t t, v;
int i;
for (i = 0; i < cnt; i++) {
v = src[i];
t = (((v ^ state2 ^ 0x2b) - 0x05) ^ 0x35) - 0x39;
t = (((t ^ state1 ^ 0x5a) - 0xb0) ^ 0x38) - 0x45;
dest[i] = state2 = t;
state1 = v;
}
}
static void decrypt(uint8_t *dest, const uint8_t *src, uint8_t cnt)
{
uint8_t state1 = 0x9b, state2 = 0x54;
uint8_t t, v;
int i;
for (i = 0; i < cnt; i++) {
v = src[i];
t = (((v + 0x45) ^ 0x38) + 0xb0) ^ 0x5a ^ state1;
t = (((t + 0x39) ^ 0x35) + 0x05) ^ 0x2b ^ state2;
dest[i] = state1 = t;
state2 = v;
}
}
static int do_ep1_command(const struct sr_dev_inst *sdi,
const uint8_t *command, uint8_t cmd_len,
uint8_t *reply, uint8_t reply_len)
{
uint8_t buf[64];
struct sr_usb_dev_inst *usb;
int ret, xfer;
usb = sdi->conn;
if (cmd_len < 1 || cmd_len > 64 || reply_len > 64 ||
command == NULL || (reply_len > 0 && reply == NULL))
return SR_ERR_ARG;
encrypt(buf, command, cmd_len);
ret = libusb_bulk_transfer(usb->devhdl, 1, buf, cmd_len, &xfer, 1000);
if (ret != 0) {
sr_dbg("Failed to send EP1 command 0x%02x: %s.",
command[0], libusb_error_name(ret));
return SR_ERR;
}
if (xfer != cmd_len) {
sr_dbg("Failed to send EP1 command 0x%02x: incorrect length "
"%d != %d.", xfer, cmd_len);
return SR_ERR;
}
if (reply_len == 0)
return SR_OK;
ret = libusb_bulk_transfer(usb->devhdl, 0x80 | 1, buf, reply_len,
&xfer, 1000);
if (ret != 0) {
sr_dbg("Failed to receive reply to EP1 command 0x%02x: %s.",
command[0], libusb_error_name(ret));
return SR_ERR;
}
if (xfer != reply_len) {
sr_dbg("Failed to receive reply to EP1 command 0x%02x: "
"incorrect length %d != %d.", xfer, reply_len);
return SR_ERR;
}
decrypt(reply, buf, reply_len);
return SR_OK;
}
static int read_eeprom(const struct sr_dev_inst *sdi,
uint8_t address, uint8_t length, uint8_t *buf)
{
uint8_t command[5] = {
COMMAND_READ_EEPROM,
READ_EEPROM_COOKIE1,
READ_EEPROM_COOKIE2,
address,
length,
};
return do_ep1_command(sdi, command, 5, buf, length);
}
static int upload_led_table(const struct sr_dev_inst *sdi,
const uint8_t *table, uint8_t offset, uint8_t cnt)
{
uint8_t chunk, command[64];
int ret;
if (cnt < 1 || cnt + offset > 64 || table == NULL)
return SR_ERR_ARG;
while (cnt > 0) {
chunk = (cnt > 32 ? 32 : cnt);
command[0] = COMMAND_WRITE_LED_TABLE;
command[1] = offset;
command[2] = chunk;
memcpy(command + 3, table, chunk);
ret = do_ep1_command(sdi, command, 3 + chunk, NULL, 0);
if (ret != SR_OK)
return ret;
table += chunk;
offset += chunk;
cnt -= chunk;
}
return SR_OK;
}
static int set_led_mode(const struct sr_dev_inst *sdi,
uint8_t animate, uint16_t t2reload, uint8_t div,
uint8_t repeat)
{
uint8_t command[6] = {
COMMAND_SET_LED_MODE,
animate,
t2reload & 0xff,
t2reload >> 8,
div,
repeat,
};
return do_ep1_command(sdi, command, 6, NULL, 0);
}
static int read_fpga_register(const struct sr_dev_inst *sdi,
uint8_t address, uint8_t *value)
{
uint8_t command[3] = {
COMMAND_FPGA_READ_REGISTER,
1,
address,
};
return do_ep1_command(sdi, command, 3, value, 1);
}
static int write_fpga_registers(const struct sr_dev_inst *sdi,
uint8_t (*regs)[2], uint8_t cnt)
{
uint8_t command[64];
int i;
if (cnt < 1 || cnt > 31)
return SR_ERR_ARG;
command[0] = COMMAND_FPGA_WRITE_REGISTER;
command[1] = cnt;
for (i = 0; i < cnt; i++) {
command[2 + 2 * i] = regs[i][0];
command[3 + 2 * i] = regs[i][1];
}
return do_ep1_command(sdi, command, 2 * (cnt + 1), NULL, 0);
}
static int write_fpga_register(const struct sr_dev_inst *sdi,
uint8_t address, uint8_t value)
{
uint8_t regs[2] = { address, value };
return write_fpga_registers(sdi, &regs, 1);
}
static uint8_t map_eeprom_data(uint8_t v)
{
return (((v ^ 0x80) + 0x44) ^ 0xd5) + 0x69;
}
static int prime_fpga(const struct sr_dev_inst *sdi)
{
uint8_t eeprom_data[16];
uint8_t old_reg_10, version;
uint8_t regs[8][2] = {
{10, 0x00},
{10, 0x40},
{12, 0},
{10, 0xc0},
{10, 0x40},
{6, 0},
{7, 1},
{7, 0}
};
int i, ret;
if ((ret = read_eeprom(sdi, 16, 16, eeprom_data)) != SR_OK)
return ret;
if ((ret = read_fpga_register(sdi, 10, &old_reg_10)) != SR_OK)
return ret;
regs[0][1] = (old_reg_10 &= 0x7f);
regs[1][1] |= old_reg_10;
regs[3][1] |= old_reg_10;
regs[4][1] |= old_reg_10;
for (i = 0; i < 16; i++) {
regs[2][1] = eeprom_data[i];
regs[5][1] = map_eeprom_data(eeprom_data[i]);
if (i)
ret = write_fpga_registers(sdi, &regs[2], 6);
else
ret = write_fpga_registers(sdi, &regs[0], 8);
if (ret != SR_OK)
return ret;
}
if ((ret = write_fpga_register(sdi, 10, old_reg_10)) != SR_OK)
return ret;
if ((ret = read_fpga_register(sdi, 0, &version)) != SR_OK)
return ret;
if (version != 0x10) {
sr_err("Invalid FPGA bitstream version: 0x%02x != 0x10.", version);
return SR_ERR;
}
return SR_OK;
}
static void make_heartbeat(uint8_t *table, int len)
{
int i, j;
memset(table, 0, len);
len >>= 3;
for (i = 0; i < 2; i++)
for (j = 0; j < len; j++)
*table++ = sin(j * M_PI / len) * 255;
}
static int configure_led(const struct sr_dev_inst *sdi)
{
uint8_t table[64];
int ret;
make_heartbeat(table, 64);
if ((ret = upload_led_table(sdi, table, 0, 64)) != SR_OK)
return ret;
return set_led_mode(sdi, 1, 6250, 0, 1);
}
static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
enum voltage_range vrange)
{
struct dev_context *devc;
int offset, chunksize, ret;
const char *filename;
uint8_t len, buf[256 * 62], command[64];
FILE *fw;
devc = sdi->priv;
if (devc->cur_voltage_range == vrange)
return SR_OK;
switch (vrange) {
case VOLTAGE_RANGE_18_33_V:
filename = FPGA_FIRMWARE_18;
break;
case VOLTAGE_RANGE_5_V:
filename = FPGA_FIRMWARE_33;
break;
default:
sr_err("Unsupported voltage range.");
return SR_ERR;
}
sr_info("Uploading FPGA bitstream at %s.", filename);
if ((fw = g_fopen(filename, "rb")) == NULL) {
sr_err("Unable to open bitstream file %s for reading: %s.",
filename, strerror(errno));
return SR_ERR;
}
buf[0] = COMMAND_FPGA_UPLOAD_INIT;
if ((ret = do_ep1_command(sdi, buf, 1, NULL, 0)) != SR_OK) {
fclose(fw);
return ret;
}
while (1) {
chunksize = fread(buf, 1, sizeof(buf), fw);
if (chunksize == 0)
break;
for (offset = 0; offset < chunksize; offset += 62) {
len = (offset + 62 > chunksize ?
chunksize - offset : 62);
command[0] = COMMAND_FPGA_UPLOAD_SEND_DATA;
command[1] = len;
memcpy(command + 2, buf + offset, len);
ret = do_ep1_command(sdi, command, len + 2, NULL, 0);
if (ret != SR_OK) {
fclose(fw);
return ret;
}
}
sr_info("Uploaded %d bytes.", chunksize);
}
fclose(fw);
sr_info("FPGA bitstream upload done.");
if ((ret = prime_fpga(sdi)) != SR_OK)
return ret;
if ((ret = configure_led(sdi)) != SR_OK)
return ret;
devc->cur_voltage_range = vrange;
return SR_OK;
}
static int abort_acquisition_sync(const struct sr_dev_inst *sdi)
{
static const uint8_t command[2] = {
COMMAND_ABORT_ACQUISITION_SYNC,
ABORT_ACQUISITION_SYNC_PATTERN,
};
uint8_t reply, expected_reply;
int ret;
if ((ret = do_ep1_command(sdi, command, 2, &reply, 1)) != SR_OK)
return ret;
expected_reply = ~command[1];
if (reply != expected_reply) {
sr_err("Invalid response for abort acquisition command: "
"0x%02x != 0x%02x.", reply, expected_reply);
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int logic16_setup_acquisition(const struct sr_dev_inst *sdi,
uint64_t samplerate, uint16_t channels)
{
uint8_t clock_select, reg1, reg10;
uint64_t div;
int i, ret, nchan = 0;
struct dev_context *devc;
devc = sdi->priv;
if (samplerate == 0 || samplerate > MAX_SAMPLE_RATE) {
sr_err("Unable to sample at %" PRIu64 "Hz.", samplerate);
return SR_ERR;
}
if (BASE_CLOCK_0_FREQ % samplerate == 0 &&
(div = BASE_CLOCK_0_FREQ / samplerate) <= 256) {
clock_select = 0;
} else if (BASE_CLOCK_1_FREQ % samplerate == 0 &&
(div = BASE_CLOCK_1_FREQ / samplerate) <= 256) {
clock_select = 1;
} else {
sr_err("Unable to sample at %" PRIu64 "Hz.", samplerate);
return SR_ERR;
}
for (i = 0; i < 16; i++)
if (channels & (1U << i))
nchan++;
if ((nchan >= 13 && samplerate > MAX_13CH_SAMPLE_RATE) ||
(nchan >= 10 && samplerate > MAX_10CH_SAMPLE_RATE) ||
(nchan >= 8 && samplerate > MAX_8CH_SAMPLE_RATE) ||
(nchan >= 7 && samplerate > MAX_7CH_SAMPLE_RATE) ||
(nchan >= 4 && samplerate > MAX_4CH_SAMPLE_RATE)) {
sr_err("Unable to sample at %" PRIu64 "Hz "
"with this many channels.", samplerate);
return SR_ERR;
}
ret = upload_fpga_bitstream(sdi, devc->selected_voltage_range);
if (ret != SR_OK)
return ret;
if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
return ret;
if (reg1 != 0x08) {
sr_dbg("Invalid state at acquisition setup: 0x%02x != 0x08.", reg1);
return SR_ERR;
}
if ((ret = write_fpga_register(sdi, 1, 0x40)) != SR_OK)
return ret;
if ((ret = write_fpga_register(sdi, 10, clock_select)) != SR_OK)
return ret;
if ((ret = write_fpga_register(sdi, 4, (uint8_t)(div - 1))) != SR_OK)
return ret;
if ((ret = write_fpga_register(sdi, 2, (uint8_t)(channels & 0xff))) != SR_OK)
return ret;
if ((ret = write_fpga_register(sdi, 3, (uint8_t)(channels >> 8))) != SR_OK)
return ret;
if ((ret = write_fpga_register(sdi, 1, 0x42)) != SR_OK)
return ret;
if ((ret = write_fpga_register(sdi, 1, 0x40)) != SR_OK)
return ret;
if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
return ret;
if (reg1 != 0x48) {
sr_dbg("Invalid state at acquisition setup: 0x%02x != 0x48.", reg1);
return SR_ERR;
}
if ((ret = read_fpga_register(sdi, 10, &reg10)) != SR_OK)
return ret;
if (reg10 != clock_select) {
sr_dbg("Invalid state at acquisition setup: 0x%02x != 0x%02x.",
reg10, clock_select);
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int logic16_start_acquisition(const struct sr_dev_inst *sdi)
{
static const uint8_t command[1] = {
COMMAND_START_ACQUISITION,
};
int ret;
if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK)
return ret;
return write_fpga_register(sdi, 1, 0x41);
}
SR_PRIV int logic16_abort_acquisition(const struct sr_dev_inst *sdi)
{
static const uint8_t command[1] = {
COMMAND_ABORT_ACQUISITION_ASYNC,
};
int ret;
uint8_t reg1, reg8, reg9;
if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK)
return ret;
if ((ret = write_fpga_register(sdi, 1, 0x00)) != SR_OK)
return ret;
if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
return ret;
if (reg1 != 0x08) {
sr_dbg("Invalid state at acquisition stop: 0x%02x != 0x08.", reg1);
return SR_ERR;
}
if ((ret = read_fpga_register(sdi, 8, &reg8)) != SR_OK)
return ret;
if ((ret = read_fpga_register(sdi, 9, &reg9)) != SR_OK)
return ret;
return SR_OK;
}
SR_PRIV int logic16_init_device(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int ret;
devc = sdi->priv;
devc->cur_voltage_range = VOLTAGE_RANGE_UNKNOWN;
if ((ret = abort_acquisition_sync(sdi)) != SR_OK)
return ret;
if ((ret = read_eeprom(sdi, 8, 8, devc->eeprom_data)) != SR_OK)
return ret;
ret = upload_fpga_bitstream(sdi, devc->selected_voltage_range);
if (ret != SR_OK)
return ret;
return SR_OK;
}
static void finish_acquisition(struct dev_context *devc)
{
struct sr_datafeed_packet packet;
/* Terminate session. */
packet.type = SR_DF_END;
sr_session_send(devc->cb_data, &packet);
/* Remove fds from polling. */
usb_source_remove(devc->ctx);
devc->num_transfers = 0;
g_free(devc->transfers);
g_free(devc->convbuffer);
}
static void free_transfer(struct libusb_transfer *transfer)
{
struct dev_context *devc;
unsigned int i;
devc = transfer->user_data;
g_free(transfer->buffer);
transfer->buffer = NULL;
libusb_free_transfer(transfer);
for (i = 0; i < devc->num_transfers; i++) {
if (devc->transfers[i] == transfer) {
devc->transfers[i] = NULL;
break;
}
}
devc->submitted_transfers--;
if (devc->submitted_transfers == 0)
finish_acquisition(devc);
}
static void resubmit_transfer(struct libusb_transfer *transfer)
{
int ret;
if ((ret = libusb_submit_transfer(transfer)) == LIBUSB_SUCCESS)
return;
free_transfer(transfer);
/* TODO: Stop session? */
sr_err("%s: %s", __func__, libusb_error_name(ret));
}
static size_t convert_sample_data(struct dev_context *devc,
uint8_t *dest, size_t destcnt,
const uint8_t *src, size_t srccnt)
{
uint16_t *channel_data;
int i, cur_channel;
size_t ret = 0;
uint16_t sample, channel_mask;
srccnt /= 2;
channel_data = devc->channel_data;
cur_channel = devc->cur_channel;
while (srccnt--) {
sample = src[0] | (src[1] << 8);
src += 2;
channel_mask = devc->channel_masks[cur_channel];
for (i = 15; i >= 0; --i, sample >>= 1)
if (sample & 1)
channel_data[i] |= channel_mask;
if (++cur_channel == devc->num_channels) {
cur_channel = 0;
if (destcnt < 16 * 2) {
sr_err("Conversion buffer too small!");
break;
}
memcpy(dest, channel_data, 16 * 2);
memset(channel_data, 0, 16 * 2);
dest += 16 * 2;
ret += 16 * 2;
destcnt -= 16 * 2;
}
}
devc->cur_channel = cur_channel;
return ret;
}
SR_PRIV void logic16_receive_transfer(struct libusb_transfer *transfer)
{
gboolean packet_has_error = FALSE;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct dev_context *devc;
size_t converted_length;
devc = transfer->user_data;
/*
* If acquisition has already ended, just free any queued up
* transfer that come in.
*/
if (devc->num_samples < 0) {
free_transfer(transfer);
return;
}
sr_info("receive_transfer(): status %d received %d bytes.",
transfer->status, transfer->actual_length);
switch (transfer->status) {
case LIBUSB_TRANSFER_NO_DEVICE:
devc->num_samples = -2;
free_transfer(transfer);
return;
case LIBUSB_TRANSFER_COMPLETED:
case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */
break;
default:
packet_has_error = TRUE;
break;
}
if (transfer->actual_length & 1) {
sr_err("Got an odd number of bytes from the device. "
"This should not happen.");
/* Bail out right away. */
packet_has_error = TRUE;
devc->empty_transfer_count = MAX_EMPTY_TRANSFERS;
}
if (transfer->actual_length == 0 || packet_has_error) {
devc->empty_transfer_count++;
if (devc->empty_transfer_count > MAX_EMPTY_TRANSFERS) {
/*
* The FX2 gave up. End the acquisition, the frontend
* will work out that the samplecount is short.
*/
devc->num_samples = -2;
free_transfer(transfer);
} else {
resubmit_transfer(transfer);
}
return;
} else {
devc->empty_transfer_count = 0;
}
converted_length = convert_sample_data(devc, devc->convbuffer,
devc->convbuffer_size, transfer->buffer,
transfer->actual_length);
if (converted_length > 0) {
/* Cap sample count if needed */
if (devc->limit_samples &&
(uint64_t)devc->num_samples + converted_length / 2
> devc->limit_samples) {
converted_length =
(devc->limit_samples - devc->num_samples) * 2;
}
/* Send the incoming transfer to the session bus. */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = converted_length;
logic.unitsize = 2;
logic.data = devc->convbuffer;
sr_session_send(devc->cb_data, &packet);
devc->num_samples += converted_length / 2;
if (devc->limit_samples &&
(uint64_t)devc->num_samples >= devc->limit_samples) {
devc->num_samples = -2;
free_transfer(transfer);
return;
}
}
resubmit_transfer(transfer);
}