libsigrok/src/hardware/hantek-6xxx/api.c

837 lines
22 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2015 Christer Ekholm <christerekholm@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <math.h>
#include "protocol.h"
/* Max time in ms before we want to check on USB events */
#define TICK 200
#define RANGE(ch) (((float)vdivs[devc->voltage[ch]][0] / vdivs[devc->voltage[ch]][1]) * VDIV_MULTIPLIER)
static const uint32_t scanopts[] = {
SR_CONF_CONN,
};
static const uint32_t drvopts[] = {
SR_CONF_OSCILLOSCOPE,
};
static const uint32_t devopts[] = {
SR_CONF_CONN | SR_CONF_GET,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_NUM_VDIV | SR_CONF_GET,
};
static const uint32_t devopts_cg[] = {
SR_CONF_VDIV | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_COUPLING | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
};
static const char *channel_names[] = {
"CH1", "CH2",
};
static const char *dc_coupling[] = {
"DC",
};
static const char *acdc_coupling[] = {
"AC", "DC",
};
static const struct hantek_6xxx_profile dev_profiles[] = {
{
0x04b4, 0x6022, 0x1d50, 0x608e, 0x0001,
"Hantek", "6022BE", "fx2lafw-hantek-6022be.fw",
dc_coupling, ARRAY_SIZE(dc_coupling), FALSE,
},
{
0x8102, 0x8102, 0x1d50, 0x608e, 0x0002,
"Sainsmart", "DDS120", "fx2lafw-sainsmart-dds120.fw",
acdc_coupling, ARRAY_SIZE(acdc_coupling), TRUE,
},
{
0x04b4, 0x602a, 0x1d50, 0x608e, 0x0003,
"Hantek", "6022BL", "fx2lafw-hantek-6022bl.fw",
dc_coupling, ARRAY_SIZE(dc_coupling), FALSE,
},
ALL_ZERO
};
static const uint64_t samplerates[] = {
SAMPLERATE_VALUES
};
static const uint64_t vdivs[][2] = {
VDIV_VALUES
};
static int read_channel(const struct sr_dev_inst *sdi, uint32_t amount);
static struct sr_dev_inst *hantek_6xxx_dev_new(const struct hantek_6xxx_profile *prof)
{
struct sr_dev_inst *sdi;
struct sr_channel *ch;
struct sr_channel_group *cg;
struct dev_context *devc;
unsigned int i;
sdi = g_malloc0(sizeof(struct sr_dev_inst));
sdi->status = SR_ST_INITIALIZING;
sdi->vendor = g_strdup(prof->vendor);
sdi->model = g_strdup(prof->model);
for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE, channel_names[i]);
cg = g_malloc0(sizeof(struct sr_channel_group));
cg->name = g_strdup(channel_names[i]);
cg->channels = g_slist_append(cg->channels, ch);
sdi->channel_groups = g_slist_append(sdi->channel_groups, cg);
}
devc = g_malloc0(sizeof(struct dev_context));
for (i = 0; i < NUM_CHANNELS; i++) {
devc->ch_enabled[i] = TRUE;
devc->voltage[i] = DEFAULT_VOLTAGE;
devc->coupling[i] = DEFAULT_COUPLING;
}
devc->coupling_vals = prof->coupling_vals;
devc->coupling_tab_size = prof->coupling_tab_size;
devc->has_coupling = prof->has_coupling;
devc->sample_buf = NULL;
devc->sample_buf_write = 0;
devc->sample_buf_size = 0;
devc->profile = prof;
devc->dev_state = IDLE;
devc->samplerate = DEFAULT_SAMPLERATE;
sdi->priv = devc;
return sdi;
}
static int configure_channels(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
const GSList *l;
int p;
struct sr_channel *ch;
devc = sdi->priv;
g_slist_free(devc->enabled_channels);
devc->enabled_channels = NULL;
memset(devc->ch_enabled, 0, sizeof(devc->ch_enabled));
for (l = sdi->channels, p = 0; l; l = l->next, p++) {
ch = l->data;
if (p < NUM_CHANNELS) {
devc->ch_enabled[p] = ch->enabled;
devc->enabled_channels = g_slist_append(devc->enabled_channels, ch);
}
}
return SR_OK;
}
static void clear_helper(struct dev_context *devc)
{
g_slist_free(devc->enabled_channels);
}
static int dev_clear(const struct sr_dev_driver *di)
{
return std_dev_clear_with_callback(di, (std_dev_clear_callback)clear_helper);
}
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
struct drv_context *drvc;
struct dev_context *devc;
struct sr_dev_inst *sdi;
struct sr_usb_dev_inst *usb;
struct sr_config *src;
const struct hantek_6xxx_profile *prof;
GSList *l, *devices, *conn_devices;
struct libusb_device_descriptor des;
libusb_device **devlist;
int i, j;
const char *conn;
char connection_id[64];
drvc = di->context;
devices = 0;
conn = NULL;
for (l = options; l; l = l->next) {
src = l->data;
if (src->key == SR_CONF_CONN) {
conn = g_variant_get_string(src->data, NULL);
break;
}
}
if (conn)
conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
else
conn_devices = NULL;
/* Find all Hantek 60xx devices and upload firmware to all of them. */
libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
for (i = 0; devlist[i]; i++) {
if (conn) {
usb = NULL;
for (l = conn_devices; l; l = l->next) {
usb = l->data;
if (usb->bus == libusb_get_bus_number(devlist[i])
&& usb->address == libusb_get_device_address(devlist[i]))
break;
}
if (!l)
/* This device matched none of the ones that
* matched the conn specification. */
continue;
}
libusb_get_device_descriptor(devlist[i], &des);
usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
prof = NULL;
for (j = 0; dev_profiles[j].orig_vid; j++) {
if (des.idVendor == dev_profiles[j].orig_vid
&& des.idProduct == dev_profiles[j].orig_pid) {
/* Device matches the pre-firmware profile. */
prof = &dev_profiles[j];
sr_dbg("Found a %s %s.", prof->vendor, prof->model);
sdi = hantek_6xxx_dev_new(prof);
sdi->connection_id = g_strdup(connection_id);
devices = g_slist_append(devices, sdi);
devc = sdi->priv;
if (ezusb_upload_firmware(drvc->sr_ctx, devlist[i],
USB_CONFIGURATION, prof->firmware) == SR_OK)
/* Remember when the firmware on this device was updated. */
devc->fw_updated = g_get_monotonic_time();
else
sr_err("Firmware upload failed.");
/* Dummy USB address of 0xff will get overwritten later. */
sdi->conn = sr_usb_dev_inst_new(
libusb_get_bus_number(devlist[i]), 0xff, NULL);
break;
} else if (des.idVendor == dev_profiles[j].fw_vid
&& des.idProduct == dev_profiles[j].fw_pid
&& des.bcdDevice == dev_profiles[j].fw_prod_ver) {
/* Device matches the post-firmware profile. */
prof = &dev_profiles[j];
sr_dbg("Found a %s %s.", prof->vendor, prof->model);
sdi = hantek_6xxx_dev_new(prof);
sdi->connection_id = g_strdup(connection_id);
sdi->status = SR_ST_INACTIVE;
devices = g_slist_append(devices, sdi);
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new(
libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), NULL);
break;
}
}
if (!prof)
/* Not a supported VID/PID. */
continue;
}
libusb_free_device_list(devlist, 1);
return std_scan_complete(di, devices);
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
int64_t timediff_us, timediff_ms;
int err;
devc = sdi->priv;
usb = sdi->conn;
/*
* If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS
* for the FX2 to renumerate.
*/
err = SR_ERR;
if (devc->fw_updated > 0) {
sr_info("Waiting for device to reset.");
/* Takes >= 300ms for the FX2 to be gone from the USB bus. */
g_usleep(300 * 1000);
timediff_ms = 0;
while (timediff_ms < MAX_RENUM_DELAY_MS) {
if ((err = hantek_6xxx_open(sdi)) == SR_OK)
break;
g_usleep(100 * 1000);
timediff_us = g_get_monotonic_time() - devc->fw_updated;
timediff_ms = timediff_us / 1000;
sr_spew("Waited %" PRIi64 " ms.", timediff_ms);
}
if (timediff_ms < MAX_RENUM_DELAY_MS)
sr_info("Device came back after %"PRIu64" ms.", timediff_ms);
} else {
err = hantek_6xxx_open(sdi);
}
if (err != SR_OK) {
sr_err("Unable to open device.");
return SR_ERR;
}
err = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
if (err != 0) {
sr_err("Unable to claim interface: %s.",
libusb_error_name(err));
return SR_ERR;
}
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
hantek_6xxx_close(sdi);
return SR_OK;
}
static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
char str[128];
const uint64_t *vdiv;
int ch_idx;
switch (key) {
case SR_CONF_NUM_VDIV:
*data = g_variant_new_int32(ARRAY_SIZE(vdivs));
break;
}
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
if (!cg) {
switch (key) {
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->samplerate);
break;
case SR_CONF_LIMIT_MSEC:
*data = g_variant_new_uint64(devc->limit_msec);
break;
case SR_CONF_LIMIT_SAMPLES:
*data = g_variant_new_uint64(devc->limit_samples);
break;
case SR_CONF_CONN:
if (!sdi->conn)
return SR_ERR_ARG;
usb = sdi->conn;
if (usb->address == 255)
/* Device still needs to re-enumerate after firmware
* upload, so we don't know its (future) address. */
return SR_ERR;
snprintf(str, 128, "%d.%d", usb->bus, usb->address);
*data = g_variant_new_string(str);
break;
default:
return SR_ERR_NA;
}
} else {
if (sdi->channel_groups->data == cg)
ch_idx = 0;
else if (sdi->channel_groups->next->data == cg)
ch_idx = 1;
else
return SR_ERR_ARG;
switch (key) {
case SR_CONF_VDIV:
vdiv = vdivs[devc->voltage[ch_idx]];
*data = g_variant_new("(tt)", vdiv[0], vdiv[1]);
break;
case SR_CONF_COUPLING:
*data = g_variant_new_string((devc->coupling[ch_idx] \
== COUPLING_DC) ? "DC" : "AC");
break;
}
}
return SR_OK;
}
static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
uint64_t p, q;
int tmp_int, ch_idx, ret;
unsigned int i;
const char *tmp_str;
ret = SR_OK;
devc = sdi->priv;
if (!cg) {
switch (key) {
case SR_CONF_SAMPLERATE:
devc->samplerate = g_variant_get_uint64(data);
hantek_6xxx_update_samplerate(sdi);
break;
case SR_CONF_LIMIT_MSEC:
devc->limit_msec = g_variant_get_uint64(data);
break;
case SR_CONF_LIMIT_SAMPLES:
devc->limit_samples = g_variant_get_uint64(data);
break;
default:
ret = SR_ERR_NA;
break;
}
} else {
if (sdi->channel_groups->data == cg)
ch_idx = 0;
else if (sdi->channel_groups->next->data == cg)
ch_idx = 1;
else
return SR_ERR_ARG;
switch (key) {
case SR_CONF_VDIV:
g_variant_get(data, "(tt)", &p, &q);
tmp_int = -1;
for (i = 0; i < ARRAY_SIZE(vdivs); i++) {
if (vdivs[i][0] == p && vdivs[i][1] == q) {
tmp_int = i;
break;
}
}
if (tmp_int >= 0) {
devc->voltage[ch_idx] = tmp_int;
hantek_6xxx_update_vdiv(sdi);
} else
ret = SR_ERR_ARG;
break;
case SR_CONF_COUPLING:
tmp_str = g_variant_get_string(data, NULL);
for (i = 0; i < devc->coupling_tab_size; i++) {
if (!strcmp(tmp_str, devc->coupling_vals[i])) {
devc->coupling[ch_idx] = i;
break;
}
}
if (i == devc->coupling_tab_size)
ret = SR_ERR_ARG;
break;
default:
ret = SR_ERR_NA;
break;
}
}
return ret;
}
static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
GVariant *tuple, *rational[2];
GVariantBuilder gvb;
unsigned int i;
GVariant *gvar;
struct dev_context *devc = NULL;
if (key == SR_CONF_SCAN_OPTIONS) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
return SR_OK;
} else if (key == SR_CONF_DEVICE_OPTIONS && !sdi) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
return SR_OK;
}
if (sdi)
devc = sdi->priv;
if (!cg) {
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
samplerates, ARRAY_SIZE(samplerates),
sizeof(uint64_t));
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
default:
return SR_ERR_NA;
}
} else {
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devopts_cg, ARRAY_SIZE(devopts_cg), sizeof(uint32_t));
break;
case SR_CONF_COUPLING:
if (!devc)
return SR_ERR_NA;
*data = g_variant_new_strv(devc->coupling_vals, devc->coupling_tab_size);
break;
case SR_CONF_VDIV:
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
for (i = 0; i < ARRAY_SIZE(vdivs); i++) {
rational[0] = g_variant_new_uint64(vdivs[i][0]);
rational[1] = g_variant_new_uint64(vdivs[i][1]);
tuple = g_variant_new_tuple(rational, 2);
g_variant_builder_add_value(&gvb, tuple);
}
*data = g_variant_builder_end(&gvb);
break;
default:
return SR_ERR_NA;
}
}
return SR_OK;
}
/* Minimise data amount for limit_samples and limit_msec limits. */
static uint32_t data_amount(const struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
uint32_t data_left, data_left_2, i;
int32_t time_left;
if (devc->limit_msec) {
time_left = devc->limit_msec - (g_get_monotonic_time() - devc->aq_started) / 1000;
data_left = devc->samplerate * MAX(time_left, 0) * NUM_CHANNELS / 1000;
} else if (devc->limit_samples) {
data_left = (devc->limit_samples - devc->samp_received) * NUM_CHANNELS;
} else {
data_left = devc->samplerate * NUM_CHANNELS;
}
/* Round up to nearest power of two. */
for (i = MIN_PACKET_SIZE; i < data_left; i *= 2)
;
data_left_2 = i;
sr_spew("data_amount: %u (rounded to power of 2: %u)", data_left, data_left_2);
return data_left_2;
}
static void send_chunk(struct sr_dev_inst *sdi, unsigned char *buf,
int num_samples)
{
struct sr_datafeed_packet packet;
struct sr_datafeed_analog analog;
struct sr_analog_encoding encoding;
struct sr_analog_meaning meaning;
struct sr_analog_spec spec;
struct dev_context *devc = sdi->priv;
GSList *channels = devc->enabled_channels;
const float ch_bit[] = { RANGE(0) / 255, RANGE(1) / 255 };
const float ch_center[] = { RANGE(0) / 2, RANGE(1) / 2 };
sr_analog_init(&analog, &encoding, &meaning, &spec, 0);
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
analog.num_samples = num_samples;
analog.meaning->mq = SR_MQ_VOLTAGE;
analog.meaning->unit = SR_UNIT_VOLT;
analog.meaning->mqflags = 0;
analog.data = g_try_malloc(num_samples * sizeof(float));
if (!analog.data) {
sr_err("Analog data buffer malloc failed.");
devc->dev_state = STOPPING;
return;
}
for (int ch = 0; ch < 2; ch++) {
if (!devc->ch_enabled[ch])
continue;
float vdivlog = log10f(ch_bit[ch]);
int digits = -(int)vdivlog + (vdivlog < 0.0);
analog.encoding->digits = digits;
analog.spec->spec_digits = digits;
analog.meaning->channels = g_slist_append(NULL, channels->data);
for (int i = 0; i < num_samples; i++) {
/*
* The device always sends data for both channels. If a channel
* is disabled, it contains a copy of the enabled channel's
* data. However, we only send the requested channels to
* the bus.
*
* Voltage values are encoded as a value 0-255, where the
* value is a point in the range represented by the vdiv
* setting. There are 10 vertical divs, so e.g. 500mV/div
* represents 5V peak-to-peak where 0 = -2.5V and 255 = +2.5V.
*/
((float *)analog.data)[i] = ch_bit[ch] * *(buf + i * 2 + ch) - ch_center[ch];
}
sr_session_send(sdi, &packet);
g_slist_free(analog.meaning->channels);
channels = channels->next;
}
g_free(analog.data);
}
static void send_data(struct sr_dev_inst *sdi, struct libusb_transfer *buf[], uint64_t samples)
{
int i = 0;
uint64_t send = 0;
uint32_t chunk;
while (send < samples) {
chunk = MIN(samples - send, (uint64_t)(buf[i]->actual_length / NUM_CHANNELS));
send += chunk;
send_chunk(sdi, buf[i]->buffer, chunk);
/*
* Everything in this transfer was either copied to the buffer
* or sent to the session bus.
*/
g_free(buf[i]->buffer);
libusb_free_transfer(buf[i]);
i++;
}
}
/*
* Called by libusb (as triggered by handle_event()) when a transfer comes in.
* Only channel data comes in asynchronously, and all transfers for this are
* queued up beforehand, so this just needs to chuck the incoming data onto
* the libsigrok session bus.
*/
static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
sdi = transfer->user_data;
devc = sdi->priv;
if (devc->dev_state == FLUSH) {
g_free(transfer->buffer);
libusb_free_transfer(transfer);
devc->dev_state = CAPTURE;
devc->aq_started = g_get_monotonic_time();
read_channel(sdi, data_amount(sdi));
return;
}
if (devc->dev_state != CAPTURE)
return;
if (!devc->sample_buf) {
devc->sample_buf_size = 10;
devc->sample_buf = g_try_malloc(devc->sample_buf_size * sizeof(transfer));
devc->sample_buf_write = 0;
}
if (devc->sample_buf_write >= devc->sample_buf_size) {
devc->sample_buf_size += 10;
devc->sample_buf = g_try_realloc(devc->sample_buf,
devc->sample_buf_size * sizeof(transfer));
if (!devc->sample_buf) {
sr_err("Sample buffer malloc failed.");
devc->dev_state = STOPPING;
return;
}
}
devc->sample_buf[devc->sample_buf_write++] = transfer;
devc->samp_received += transfer->actual_length / NUM_CHANNELS;
sr_spew("receive_transfer(): calculated samplerate == %" PRIu64 "ks/s",
(uint64_t)(transfer->actual_length * 1000 /
(g_get_monotonic_time() - devc->read_start_ts + 1) /
NUM_CHANNELS));
sr_spew("receive_transfer(): status %s received %d bytes.",
libusb_error_name(transfer->status), transfer->actual_length);
if (transfer->actual_length == 0)
/* Nothing to send to the bus. */
return;
if (devc->limit_samples && devc->samp_received >= devc->limit_samples) {
sr_info("Requested number of samples reached, stopping. %"
PRIu64 " <= %" PRIu64, devc->limit_samples,
devc->samp_received);
send_data(sdi, devc->sample_buf, devc->limit_samples);
sr_dev_acquisition_stop(sdi);
} else if (devc->limit_msec && (g_get_monotonic_time() -
devc->aq_started) / 1000 >= devc->limit_msec) {
sr_info("Requested time limit reached, stopping. %d <= %d",
(uint32_t)devc->limit_msec,
(uint32_t)(g_get_monotonic_time() - devc->aq_started) / 1000);
send_data(sdi, devc->sample_buf, devc->samp_received);
g_free(devc->sample_buf);
devc->sample_buf = NULL;
sr_dev_acquisition_stop(sdi);
} else {
read_channel(sdi, data_amount(sdi));
}
}
static int read_channel(const struct sr_dev_inst *sdi, uint32_t amount)
{
int ret;
struct dev_context *devc;
devc = sdi->priv;
amount = MIN(amount, MAX_PACKET_SIZE);
ret = hantek_6xxx_get_channeldata(sdi, receive_transfer, amount);
devc->read_start_ts = g_get_monotonic_time();
devc->read_data_amount = amount;
return ret;
}
static int handle_event(int fd, int revents, void *cb_data)
{
const struct sr_dev_inst *sdi;
struct timeval tv;
struct sr_dev_driver *di;
struct dev_context *devc;
struct drv_context *drvc;
(void)fd;
(void)revents;
sdi = cb_data;
di = sdi->driver;
drvc = di->context;
devc = sdi->priv;
/* Always handle pending libusb events. */
tv.tv_sec = tv.tv_usec = 0;
libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
if (devc->dev_state == STOPPING) {
/* We've been told to wind up the acquisition. */
sr_dbg("Stopping acquisition.");
hantek_6xxx_stop_data_collecting(sdi);
/*
* TODO: Doesn't really cancel pending transfers so they might
* come in after SR_DF_END is sent.
*/
usb_source_remove(sdi->session, drvc->sr_ctx);
std_session_send_df_end(sdi);
devc->dev_state = IDLE;
return TRUE;
}
return TRUE;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_dev_driver *di = sdi->driver;
struct drv_context *drvc = di->context;
devc = sdi->priv;
if (configure_channels(sdi) != SR_OK) {
sr_err("Failed to configure channels.");
return SR_ERR;
}
if (hantek_6xxx_init(sdi) != SR_OK)
return SR_ERR;
std_session_send_df_header(sdi);
devc->samp_received = 0;
devc->dev_state = FLUSH;
usb_source_add(sdi->session, drvc->sr_ctx, TICK,
handle_event, (void *)sdi);
hantek_6xxx_start_data_collecting(sdi);
read_channel(sdi, FLUSH_PACKET_SIZE);
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
devc = sdi->priv;
devc->dev_state = STOPPING;
g_free(devc->sample_buf);
devc->sample_buf = NULL;
return SR_OK;
}
static struct sr_dev_driver hantek_6xxx_driver_info = {
.name = "hantek-6xxx",
.longname = "Hantek 6xxx",
.api_version = 1,
.init = std_init,
.cleanup = std_cleanup,
.scan = scan,
.dev_list = std_dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.context = NULL,
};
SR_REGISTER_DEV_DRIVER(hantek_6xxx_driver_info);