libsigrok/hardware/chronovu-la8/chronovu-la8.c

1158 lines
30 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2011 Uwe Hermann <uwe@hermann-uwe.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <ftdi.h>
#include <glib.h>
#include <string.h>
#include "sigrok.h"
#include "sigrok-internal.h"
#define USB_VENDOR_ID 0x0403
#define USB_PRODUCT_ID 0x6001
#define USB_DESCRIPTION "ChronoVu LA8"
#define USB_VENDOR_NAME "ChronoVu"
#define USB_MODEL_NAME "LA8"
#define USB_MODEL_VERSION ""
#define NUM_PROBES 8
#define TRIGGER_TYPES "01"
#define SDRAM_SIZE (8 * 1024 * 1024)
#define MIN_NUM_SAMPLES 1
#define BS 4096 /* Block size */
#define NUM_BLOCKS 2048 /* Number of blocks */
static GSList *device_instances = NULL;
static const char *probe_names[NUM_PROBES + 1] = {
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
NULL,
};
struct la8 {
/** FTDI device context (used by libftdi). */
struct ftdi_context *ftdic;
/** The currently configured samplerate of the device. */
uint64_t cur_samplerate;
/** period in picoseconds corresponding to the samplerate */
uint64_t period_ps;
/** The current sampling limit (in ms). */
uint64_t limit_msec;
/** The current sampling limit (in number of samples). */
uint64_t limit_samples;
/** TODO */
gpointer session_id;
/**
* A buffer containing some (mangled) samples from the device.
* Format: Pretty mangled-up (due to hardware reasons), see code.
*/
uint8_t mangled_buf[BS];
/**
* An 8MB buffer where we'll store the de-mangled samples.
* Format: Each sample is 1 byte, MSB is channel 7, LSB is channel 0.
*/
uint8_t *final_buf;
/**
* Trigger pattern (MSB = channel 7, LSB = channel 0).
* A 1 bit matches a high signal, 0 matches a low signal on a probe.
* Only low/high triggers (but not e.g. rising/falling) are supported.
*/
uint8_t trigger_pattern;
/**
* Trigger mask (MSB = channel 7, LSB = channel 0).
* A 1 bit means "must match trigger_pattern", 0 means "don't care".
*/
uint8_t trigger_mask;
/** Time (in seconds) before the trigger times out. */
uint64_t trigger_timeout;
/** Tells us whether an SR_DF_TRIGGER packet was already sent. */
int trigger_found;
/** TODO */
time_t done;
/** Counter/index for the data block to be read. */
int block_counter;
/** The divcount value (determines the sample period) for the LA8. */
uint8_t divcount;
};
/* This will be initialized via hw_get_device_info()/SR_DI_SAMPLERATES. */
static uint64_t supported_samplerates[255 + 1] = { 0 };
/*
* Min: 1 sample per 0.01us -> sample time is 0.084s, samplerate 100MHz
* Max: 1 sample per 2.55us -> sample time is 21.391s, samplerate 392.15kHz
*/
static struct sr_samplerates samplerates = {
.low = 0,
.high = 0,
.step = 0,
.list = supported_samplerates,
};
/* Note: Continuous sampling is not supported by the hardware. */
static int capabilities[] = {
SR_HWCAP_LOGIC_ANALYZER,
SR_HWCAP_SAMPLERATE,
SR_HWCAP_LIMIT_MSEC, /* TODO: Not yet implemented. */
SR_HWCAP_LIMIT_SAMPLES, /* TODO: Not yet implemented. */
0,
};
/* Function prototypes. */
static int la8_close_usb_reset_sequencer(struct la8 *la8);
static void hw_stop_acquisition(int device_index, gpointer session_data);
static int la8_reset(struct la8 *la8);
static void fill_supported_samplerates_if_needed(void)
{
int i;
/* Do nothing if supported_samplerates[] is already filled. */
if (supported_samplerates[0] != 0)
return;
/* Fill supported_samplerates[] with the proper values. */
for (i = 0; i < 255; i++)
supported_samplerates[254 - i] = SR_MHZ(100) / (i + 1);
supported_samplerates[255] = 0;
}
/**
* Check if the given samplerate is supported by the LA8 hardware.
*
* @param samplerate The samplerate (in Hz) to check.
* @return 1 if the samplerate is supported/valid, 0 otherwise.
*/
static int is_valid_samplerate(uint64_t samplerate)
{
int i;
fill_supported_samplerates_if_needed();
for (i = 0; i < 255; i++) {
if (supported_samplerates[i] == samplerate)
return 1;
}
sr_warn("la8: %s: invalid samplerate (%" PRIu64 "Hz)",
__func__, samplerate);
return 0;
}
/**
* Convert a samplerate (in Hz) to the 'divcount' value the LA8 wants.
*
* LA8 hardware: sample period = (divcount + 1) * 10ns.
* Min. value for divcount: 0x00 (10ns sample period, 100MHz samplerate).
* Max. value for divcount: 0xfe (2550ns sample period, 392.15kHz samplerate).
*
* @param samplerate The samplerate in Hz.
* @return The divcount value as needed by the hardware, or 0xff upon errors.
*/
static uint8_t samplerate_to_divcount(uint64_t samplerate)
{
if (samplerate == 0) {
sr_err("la8: %s: samplerate was 0", __func__);
return 0xff;
}
if (!is_valid_samplerate(samplerate)) {
sr_err("la8: %s: can't get divcount, samplerate invalid",
__func__);
return 0xff;
}
return (SR_MHZ(100) / samplerate) - 1;
}
/**
* Write data of a certain length to the LA8's FTDI device.
*
* @param la8 The LA8 struct containing private per-device-instance data.
* @param buf The buffer containing the data to write.
* @param size The number of bytes to write.
* @return The number of bytes written, or a negative value upon errors.
*/
static int la8_write(struct la8 *la8, uint8_t *buf, int size)
{
int bytes_written;
if (!la8) {
sr_err("la8: %s: la8 was NULL", __func__);
return SR_ERR_ARG;
}
if (!la8->ftdic) {
sr_err("la8: %s: la8->ftdic was NULL", __func__);
return SR_ERR_ARG;
}
if (!buf) {
sr_err("la8: %s: buf was NULL", __func__);
return SR_ERR_ARG;
}
if (size < 0) {
sr_err("la8: %s: size was < 0", __func__);
return SR_ERR_ARG;
}
bytes_written = ftdi_write_data(la8->ftdic, buf, size);
if (bytes_written < 0) {
sr_warn("la8: %s: ftdi_write_data: (%d) %s", __func__,
bytes_written, ftdi_get_error_string(la8->ftdic));
(void) la8_close_usb_reset_sequencer(la8); /* Ignore errors. */
} else if (bytes_written != size) {
sr_warn("la8: %s: bytes to write: %d, bytes written: %d",
__func__, size, bytes_written);
(void) la8_close_usb_reset_sequencer(la8); /* Ignore errors. */
}
return bytes_written;
}
/**
* Read a certain amount of bytes from the LA8's FTDI device.
*
* @param la8 The LA8 struct containing private per-device-instance data.
* @param buf The buffer where the received data will be stored.
* @param size The number of bytes to read.
* @return The number of bytes read, or a negative value upon errors.
*/
static int la8_read(struct la8 *la8, uint8_t *buf, int size)
{
int bytes_read;
if (!la8) {
sr_err("la8: %s: la8 was NULL", __func__);
return SR_ERR_ARG;
}
if (!la8->ftdic) {
sr_err("la8: %s: la8->ftdic was NULL", __func__);
return SR_ERR_ARG;
}
if (!buf) {
sr_err("la8: %s: buf was NULL", __func__);
return SR_ERR_ARG;
}
if (size <= 0) {
sr_err("la8: %s: size was <= 0", __func__);
return SR_ERR_ARG;
}
bytes_read = ftdi_read_data(la8->ftdic, buf, size);
if (bytes_read < 0) {
sr_warn("la8: %s: ftdi_read_data: (%d) %s", __func__,
bytes_read, ftdi_get_error_string(la8->ftdic));
} else if (bytes_read != size) {
// sr_warn("la8: %s: bytes to read: %d, bytes read: %d",
// __func__, size, bytes_read);
}
return bytes_read;
}
static int la8_close(struct la8 *la8)
{
int ret;
if (!la8) {
sr_err("la8: %s: la8 was NULL", __func__);
return SR_ERR_ARG;
}
if (!la8->ftdic) {
sr_err("la8: %s: la8->ftdic was NULL", __func__);
return SR_ERR_ARG;
}
if ((ret = ftdi_usb_close(la8->ftdic)) < 0) {
sr_warn("la8: %s: ftdi_usb_close: (%d) %s",
__func__, ret, ftdi_get_error_string(la8->ftdic));
}
return ret;
}
/**
* Close the ChronoVu LA8 USB port and reset the LA8 sequencer logic.
*
* @param la8 The LA8 struct containing private per-device-instance data.
* @return SR_OK upon success, SR_ERR upon failure.
*/
static int la8_close_usb_reset_sequencer(struct la8 *la8)
{
/* Magic sequence of bytes for resetting the LA8 sequencer logic. */
uint8_t buf[8] = {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01};
int ret;
sr_spew("la8: entering %s", __func__);
if (!la8) {
sr_err("la8: %s: la8 was NULL", __func__);
return SR_ERR_ARG;
}
if (!la8->ftdic) {
sr_err("la8: %s: la8->ftdic was NULL", __func__);
return SR_ERR_ARG;
}
if (la8->ftdic->usb_dev) {
/* Reset the LA8 sequencer logic, then wait 100ms. */
sr_dbg("la8: resetting sequencer logic");
(void) la8_write(la8, buf, 8); /* Ignore errors. */
g_usleep(100 * 1000);
/* Purge FTDI buffers, then reset and close the FTDI device. */
sr_dbg("la8: purging buffers, resetting+closing FTDI device");
/* Log errors, but ignore them (i.e., don't abort). */
if ((ret = ftdi_usb_purge_buffers(la8->ftdic)) < 0)
sr_warn("la8: %s: ftdi_usb_purge_buffers: (%d) %s",
__func__, ret, ftdi_get_error_string(la8->ftdic));
if ((ret = ftdi_usb_reset(la8->ftdic)) < 0)
sr_warn("la8: %s: ftdi_usb_reset: (%d) %s", __func__,
ret, ftdi_get_error_string(la8->ftdic));
if ((ret = ftdi_usb_close(la8->ftdic)) < 0)
sr_warn("la8: %s: ftdi_usb_close: (%d) %s", __func__,
ret, ftdi_get_error_string(la8->ftdic));
} else {
sr_spew("la8: %s: usb_dev was NULL, nothing to do", __func__);
}
ftdi_free(la8->ftdic); /* Returns void. */
la8->ftdic = NULL;
return SR_OK;
}
/**
* Reset the ChronoVu LA8.
*
* The LA8 must be reset after a failed read/write operation or upon timeouts.
*
* @param la8 The LA8 struct containing private per-device-instance data.
* @return SR_OK upon success, SR_ERR upon failure.
*/
static int la8_reset(struct la8 *la8)
{
uint8_t buf[BS];
time_t done, now;
int bytes_read;
if (!la8) {
sr_err("la8: %s: la8 was NULL", __func__);
return SR_ERR_ARG;
}
if (!la8->ftdic) {
sr_err("la8: %s: la8->ftdic was NULL", __func__);
return SR_ERR_ARG;
}
sr_dbg("la8: resetting the device");
/*
* Purge pending read data from the FTDI hardware FIFO until
* no more data is left, or a timeout occurs (after 20s).
*/
done = 20 + time(NULL);
do {
/* TODO: Ignore errors? Check for < 0 at least! */
bytes_read = la8_read(la8, (uint8_t *)&buf, BS);
now = time(NULL);
} while ((done > now) && (bytes_read > 0));
/* Reset the LA8 sequencer logic and close the USB port. */
(void) la8_close_usb_reset_sequencer(la8); /* Ignore errors. */
sr_dbg("la8: device reset finished");
return SR_OK;
}
static int configure_probes(struct la8 *la8, GSList *probes)
{
struct sr_probe *probe;
GSList *l;
uint8_t probe_bit;
char *tc;
la8->trigger_pattern = 0;
la8->trigger_mask = 0; /* Default to "don't care" for all probes. */
for (l = probes; l; l = l->next) {
probe = (struct sr_probe *)l->data;
if (!probe) {
sr_err("la8: %s: probe was NULL", __func__);
return SR_ERR;
}
/* Skip disabled probes. */
if (!probe->enabled)
continue;
/* Skip (enabled) probes with no configured trigger. */
if (!probe->trigger)
continue;
/* Note: Must only be run if probe->trigger != NULL. */
if (probe->index < 0 || probe->index > 7) {
sr_err("la8: %s: invalid probe index %d, must be "
"between 0 and 7", __func__, probe->index);
return SR_ERR;
}
probe_bit = (1 << (probe->index - 1));
/* Configure the probe's trigger mask and trigger pattern. */
for (tc = probe->trigger; tc && *tc; tc++) {
la8->trigger_mask |= probe_bit;
/* Sanity check, LA8 only supports low/high trigger. */
if (*tc != '0' && *tc != '1') {
sr_err("la8: %s: invalid trigger '%c', only "
"'0'/'1' supported", __func__, *tc);
return SR_ERR;
}
if (*tc == '1')
la8->trigger_pattern |= probe_bit;
}
}
sr_dbg("la8: %s: trigger_mask = 0x%x, trigger_pattern = 0x%x",
__func__, la8->trigger_mask, la8->trigger_pattern);
return SR_OK;
}
static int hw_init(const char *deviceinfo)
{
int ret;
struct sr_device_instance *sdi;
struct la8 *la8;
sr_spew("la8: entering %s", __func__);
/* Avoid compiler errors. */
(void)deviceinfo;
/* Allocate memory for our private driver context. */
if (!(la8 = g_try_malloc(sizeof(struct la8)))) {
sr_err("la8: %s: struct la8 malloc failed", __func__);
goto err_free_nothing;
}
/* Set some sane defaults. */
la8->ftdic = NULL;
la8->cur_samplerate = SR_MHZ(100); /* 100MHz == max. samplerate */
la8->period_ps = 10000;
la8->limit_msec = 0;
la8->limit_samples = 0;
la8->session_id = NULL;
memset(la8->mangled_buf, 0, BS);
la8->final_buf = NULL;
la8->trigger_pattern = 0x00; /* Value irrelevant, see trigger_mask. */
la8->trigger_mask = 0x00; /* All probes are "don't care". */
la8->trigger_timeout = 10; /* Default to 10s trigger timeout. */
la8->trigger_found = 0;
la8->done = 0;
la8->block_counter = 0;
la8->divcount = 0; /* 10ns sample period == 100MHz samplerate */
/* Allocate memory where we'll store the de-mangled data. */
if (!(la8->final_buf = g_try_malloc(SDRAM_SIZE))) {
sr_err("la8: %s: final_buf malloc failed", __func__);
goto err_free_la8;
}
/* Allocate memory for the FTDI context (ftdic) and initialize it. */
if (!(la8->ftdic = ftdi_new())) {
sr_err("la8: %s: ftdi_new failed", __func__);
goto err_free_final_buf;
}
/* Check for the device and temporarily open it. */
if ((ret = ftdi_usb_open_desc(la8->ftdic, USB_VENDOR_ID,
USB_PRODUCT_ID, USB_DESCRIPTION, NULL)) < 0) {
sr_dbg("la8: %s: ftdi_usb_open_desc: (%d) %s",
__func__, ret, ftdi_get_error_string(la8->ftdic));
(void) la8_close_usb_reset_sequencer(la8); /* Ignore errors. */
goto err_free_ftdic;
}
sr_dbg("la8: found device");
/* Register the device with libsigrok. */
sdi = sr_device_instance_new(0, SR_ST_INITIALIZING,
USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION);
if (!sdi) {
sr_err("la8: %s: sr_device_instance_new failed", __func__);
goto err_close_ftdic;
}
sdi->priv = la8;
device_instances = g_slist_append(device_instances, sdi);
sr_spew("la8: %s finished successfully", __func__);
/* Close device. We'll reopen it again when we need it. */
(void) la8_close(la8); /* Log, but ignore errors. */
return 1;
err_close_ftdic:
(void) la8_close(la8); /* Log, but ignore errors. */
err_free_ftdic:
free(la8->ftdic); /* NOT g_free()! */
err_free_final_buf:
g_free(la8->final_buf);
err_free_la8:
g_free(la8);
err_free_nothing:
return 0;
}
static int hw_opendev(int device_index)
{
int ret;
struct sr_device_instance *sdi;
struct la8 *la8;
if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
sr_err("la8: %s: sdi was NULL", __func__);
return SR_ERR; /* TODO: SR_ERR_ARG? */
}
if (!(la8 = sdi->priv)) {
sr_err("la8: %s: sdi->priv was NULL", __func__);
return SR_ERR; /* TODO: SR_ERR_ARG? */
}
sr_dbg("la8: opening device");
/* Open the device. */
if ((ret = ftdi_usb_open_desc(la8->ftdic, USB_VENDOR_ID,
USB_PRODUCT_ID, USB_DESCRIPTION, NULL)) < 0) {
sr_err("la8: %s: ftdi_usb_open_desc: (%d) %s",
__func__, ret, ftdi_get_error_string(la8->ftdic));
(void) la8_close_usb_reset_sequencer(la8); /* Ignore errors. */
return SR_ERR;
}
sr_dbg("la8: device opened successfully");
/* Purge RX/TX buffers in the FTDI chip. */
if ((ret = ftdi_usb_purge_buffers(la8->ftdic)) < 0) {
sr_err("la8: %s: ftdi_usb_purge_buffers: (%d) %s",
__func__, ret, ftdi_get_error_string(la8->ftdic));
(void) la8_close_usb_reset_sequencer(la8); /* Ignore errors. */
goto err_opendev_close_ftdic;
}
sr_dbg("la8: FTDI buffers purged successfully");
/* Enable flow control in the FTDI chip. */
if ((ret = ftdi_setflowctrl(la8->ftdic, SIO_RTS_CTS_HS)) < 0) {
sr_err("la8: %s: ftdi_setflowcontrol: (%d) %s",
__func__, ret, ftdi_get_error_string(la8->ftdic));
(void) la8_close_usb_reset_sequencer(la8); /* Ignore errors. */
goto err_opendev_close_ftdic;
}
sr_dbg("la8: FTDI flow control enabled successfully");
/* Wait 100ms. */
g_usleep(100 * 1000);
sdi->status = SR_ST_ACTIVE;
return SR_OK;
err_opendev_close_ftdic:
(void) la8_close(la8); /* Log, but ignore errors. */
return SR_ERR;
}
static int set_samplerate(struct sr_device_instance *sdi, uint64_t samplerate)
{
struct la8 *la8;
if (!sdi) {
sr_err("la8: %s: sdi was NULL", __func__);
return SR_ERR_ARG;
}
if (!(la8 = sdi->priv)) {
sr_err("la8: %s: sdi->priv was NULL", __func__);
return SR_ERR_ARG;
}
sr_spew("la8: setting samplerate");
fill_supported_samplerates_if_needed();
/* Check if this is a samplerate supported by the hardware. */
if (!is_valid_samplerate(samplerate))
return SR_ERR;
/* Set the new samplerate. */
la8->cur_samplerate = samplerate;
la8->period_ps = 1000000000000 / samplerate;
sr_dbg("la8: samplerate set to %" PRIu64 "Hz", la8->cur_samplerate);
return SR_OK;
}
static int hw_closedev(int device_index)
{
struct sr_device_instance *sdi;
struct la8 *la8;
if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
sr_err("la8: %s: sdi was NULL", __func__);
return SR_ERR; /* TODO: SR_ERR_ARG? */
}
if (!(la8 = sdi->priv)) {
sr_err("la8: %s: sdi->priv was NULL", __func__);
return SR_ERR; /* TODO: SR_ERR_ARG? */
}
sr_dbg("la8: closing device");
if (sdi->status == SR_ST_ACTIVE) {
sr_dbg("la8: %s: status ACTIVE, closing device", __func__);
/* TODO: Really ignore errors here, or return SR_ERR? */
(void) la8_close_usb_reset_sequencer(la8); /* Ignore errors. */
} else {
sr_spew("la8: %s: status not ACTIVE, nothing to do", __func__);
}
sdi->status = SR_ST_INACTIVE;
sr_dbg("la8: %s: freeing sample buffers", __func__);
g_free(la8->final_buf);
return SR_OK;
}
static void hw_cleanup(void)
{
GSList *l;
struct sr_device_instance *sdi;
sr_spew("la8: entering %s", __func__);
/* Properly close all devices. */
for (l = device_instances; l; l = l->next) {
if ((sdi = l->data) == NULL) {
sr_warn("la8: %s: sdi was NULL, continuing", __func__);
continue;
}
#if 0
/*
* Fixes a segfault as it's free()d elsewhere already.
* TODO: Document who is supposed to free this, and when.
*/
if (sdi->priv != NULL)
free(sdi->priv);
else
sr_warn("la8: %s: sdi->priv was NULL, nothing "
"to do", __func__);
#endif
sr_device_instance_free(sdi); /* Returns void. */
}
g_slist_free(device_instances); /* Returns void. */
device_instances = NULL;
}
static void *hw_get_device_info(int device_index, int device_info_id)
{
struct sr_device_instance *sdi;
struct la8 *la8;
void *info;
sr_spew("la8: entering %s", __func__);
if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
sr_err("la8: %s: sdi was NULL", __func__);
return NULL;
}
if (!(la8 = sdi->priv)) {
sr_err("la8: %s: sdi->priv was NULL", __func__);
return NULL;
}
switch (device_info_id) {
case SR_DI_INSTANCE:
info = sdi;
break;
case SR_DI_NUM_PROBES:
info = GINT_TO_POINTER(NUM_PROBES);
break;
case SR_DI_PROBE_NAMES:
info = probe_names;
break;
case SR_DI_SAMPLERATES:
fill_supported_samplerates_if_needed();
info = &samplerates;
break;
case SR_DI_TRIGGER_TYPES:
info = (char *)TRIGGER_TYPES;
break;
case SR_DI_CUR_SAMPLERATE:
info = &la8->cur_samplerate;
break;
default:
/* Unknown device info ID, return NULL. */
sr_err("la8: %s: Unknown device info ID", __func__);
info = NULL;
break;
}
return info;
}
static int hw_get_status(int device_index)
{
struct sr_device_instance *sdi;
if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
sr_warn("la8: %s: sdi was NULL, device not found", __func__);
return SR_ST_NOT_FOUND;
}
sr_dbg("la8: %s: returning status %d", __func__, sdi->status);
return sdi->status;
}
static int *hw_get_capabilities(void)
{
sr_spew("la8: entering %s", __func__);
return capabilities;
}
static int hw_set_configuration(int device_index, int capability, void *value)
{
struct sr_device_instance *sdi;
struct la8 *la8;
sr_spew("la8: entering %s", __func__);
if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
sr_err("la8: %s: sdi was NULL", __func__);
return SR_ERR; /* TODO: SR_ERR_ARG? */
}
if (!(la8 = sdi->priv)) {
sr_err("la8: %s: sdi->priv was NULL", __func__);
return SR_ERR; /* TODO: SR_ERR_ARG? */
}
switch (capability) {
case SR_HWCAP_SAMPLERATE:
if (set_samplerate(sdi, *(uint64_t *)value) == SR_ERR)
return SR_ERR;
sr_dbg("la8: SAMPLERATE = %" PRIu64, la8->cur_samplerate);
break;
case SR_HWCAP_PROBECONFIG:
if (configure_probes(la8, (GSList *)value) != SR_OK) {
sr_err("la8: %s: probe config failed", __func__);
return SR_ERR;
}
break;
case SR_HWCAP_LIMIT_MSEC:
if (*(uint64_t *)value == 0) {
sr_err("la8: %s: LIMIT_MSEC can't be 0", __func__);
return SR_ERR;
}
la8->limit_msec = *(uint64_t *)value;
sr_dbg("la8: LIMIT_MSEC = %" PRIu64, la8->limit_msec);
break;
case SR_HWCAP_LIMIT_SAMPLES:
if (*(uint64_t *)value < MIN_NUM_SAMPLES) {
sr_err("la8: %s: LIMIT_SAMPLES too small", __func__);
return SR_ERR;
}
la8->limit_samples = *(uint64_t *)value;
sr_dbg("la8: LIMIT_SAMPLES = %" PRIu64, la8->limit_samples);
break;
default:
/* Unknown capability, return SR_ERR. */
sr_err("la8: %s: Unknown capability", __func__);
return SR_ERR;
break;
}
return SR_OK;
}
/**
* Get a block of data from the LA8.
*
* @param la8 The LA8 struct containing private per-device-instance data.
* @return SR_OK upon success, or SR_ERR upon errors.
*/
static int la8_read_block(struct la8 *la8)
{
int i, byte_offset, m, mi, p, index, bytes_read;
time_t now;
if (!la8) {
sr_err("la8: %s: la8 was NULL", __func__);
return SR_ERR_ARG;
}
if (!la8->ftdic) {
sr_err("la8: %s: la8->ftdic was NULL", __func__);
return SR_ERR_ARG;
}
sr_spew("la8: %s: reading block %d", __func__, la8->block_counter);
bytes_read = la8_read(la8, la8->mangled_buf, BS);
/* If first block read got 0 bytes, retry until success or timeout. */
if ((bytes_read == 0) && (la8->block_counter == 0)) {
do {
sr_spew("la8: %s: reading block 0 again", __func__);
bytes_read = la8_read(la8, la8->mangled_buf, BS);
/* TODO: How to handle read errors here? */
now = time(NULL);
} while ((la8->done > now) && (bytes_read == 0));
}
/* Check if block read was successful or a timeout occured. */
if (bytes_read != BS) {
sr_warn("la8: %s: trigger timed out", __func__);
(void) la8_reset(la8); /* Ignore errors. */
return SR_ERR;
}
/* De-mangle the data. */
sr_spew("la8: de-mangling samples of block %d", la8->block_counter);
byte_offset = la8->block_counter * BS;
m = byte_offset / (1024 * 1024);
mi = m * (1024 * 1024);
for (i = 0; i < BS; i++) {
p = i & (1 << 0);
index = m * 2 + (((byte_offset + i) - mi) / 2) * 16;
index += (la8->divcount == 0) ? p : (1 - p);
la8->final_buf[index] = la8->mangled_buf[i];
}
return SR_OK;
}
static void send_block_to_session_bus(struct la8 *la8, int block)
{
int i;
uint8_t sample, expected_sample;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
int trigger_point; /* Relative trigger point (in this block). */
/* Note: No sanity checks on la8/block, caller is responsible. */
/* Check if we can find the trigger condition in this block. */
trigger_point = -1;
expected_sample = la8->trigger_pattern & la8->trigger_mask;
for (i = 0; i < BS; i++) {
/* Don't continue if the trigger was found previously. */
if (la8->trigger_found)
break;
/*
* Also, don't continue if triggers are "don't care", i.e. if
* no trigger conditions were specified by the user. In that
* case we don't want to send an SR_DF_TRIGGER packet at all.
*/
if (la8->trigger_mask == 0x00)
break;
sample = *(la8->final_buf + (block * BS) + i);
if ((sample & la8->trigger_mask) == expected_sample) {
trigger_point = i;
la8->trigger_found = 1;
break;
}
}
/* If no trigger was found, send one SR_DF_LOGIC packet. */
if (trigger_point == -1) {
/* Send an SR_DF_LOGIC packet to the session bus. */
sr_spew("la8: sending SR_DF_LOGIC packet (%d bytes) for "
"block %d", BS, block);
packet.type = SR_DF_LOGIC;
packet.timeoffset = block * BS * la8->period_ps;
packet.duration = BS * la8->period_ps;
packet.payload = &logic;
logic.length = BS;
logic.unitsize = 1;
logic.data = la8->final_buf + (block * BS);
sr_session_bus(la8->session_id, &packet);
return;
}
/*
* We found the trigger, so some special handling is needed. We have
* to send an SR_DF_LOGIC packet with the samples before the trigger
* (if any), then the SD_DF_TRIGGER packet itself, then another
* SR_DF_LOGIC packet with the samples after the trigger (if any).
*/
/* TODO: Send SR_DF_TRIGGER packet before or after the actual sample? */
/* If at least one sample is located before the trigger... */
if (trigger_point > 0) {
/* Send pre-trigger SR_DF_LOGIC packet to the session bus. */
sr_spew("la8: sending pre-trigger SR_DF_LOGIC packet, "
"start = %d, length = %d", block * BS, trigger_point);
packet.type = SR_DF_LOGIC;
packet.timeoffset = block * BS * la8->period_ps;
packet.duration = trigger_point * la8->period_ps;
packet.payload = &logic;
logic.length = trigger_point;
logic.unitsize = 1;
logic.data = la8->final_buf + (block * BS);
sr_session_bus(la8->session_id, &packet);
}
/* Send the SR_DF_TRIGGER packet to the session bus. */
sr_spew("la8: sending SR_DF_TRIGGER packet, sample = %d",
(block * BS) + trigger_point);
packet.type = SR_DF_TRIGGER;
packet.timeoffset = (block * BS + trigger_point) * la8->period_ps;
packet.duration = 0;
packet.payload = NULL;
sr_session_bus(la8->session_id, &packet);
/* If at least one sample is located after the trigger... */
if (trigger_point < (BS - 1)) {
/* Send post-trigger SR_DF_LOGIC packet to the session bus. */
sr_spew("la8: sending post-trigger SR_DF_LOGIC packet, "
"start = %d, length = %d",
(block * BS) + trigger_point, BS - trigger_point);
packet.type = SR_DF_LOGIC;
packet.timeoffset = (block * BS + trigger_point) * la8->period_ps;
packet.duration = (BS - trigger_point) * la8->period_ps;
packet.payload = &logic;
logic.length = BS - trigger_point;
logic.unitsize = 1;
logic.data = la8->final_buf + (block * BS) + trigger_point;
sr_session_bus(la8->session_id, &packet);
}
}
static int receive_data(int fd, int revents, void *session_data)
{
int i, ret;
struct sr_device_instance *sdi;
struct la8 *la8;
/* Avoid compiler errors. */
(void)fd;
(void)revents;
if (!(sdi = session_data)) {
sr_err("la8: %s: user_data was NULL", __func__);
return FALSE;
}
if (!(la8 = sdi->priv)) {
sr_err("la8: %s: sdi->priv was NULL", __func__);
return FALSE;
}
/* Get one block of data. */
if ((ret = la8_read_block(la8)) < 0) {
sr_err("la8: %s: la8_read_block error: %d", __func__, ret);
hw_stop_acquisition(sdi->index, session_data);
return FALSE;
}
/* We need to get exactly NUM_BLOCKS blocks (i.e. 8MB) of data. */
if (la8->block_counter != (NUM_BLOCKS - 1)) {
la8->block_counter++;
return TRUE;
}
sr_dbg("la8: sampling finished, sending data to session bus now");
/* All data was received and demangled, send it to the session bus. */
for (i = 0; i < NUM_BLOCKS; i++)
send_block_to_session_bus(la8, i);
hw_stop_acquisition(sdi->index, session_data);
// return FALSE; /* FIXME? */
return TRUE;
}
static int hw_start_acquisition(int device_index, gpointer session_data)
{
struct sr_device_instance *sdi;
struct la8 *la8;
struct sr_datafeed_packet packet;
struct sr_datafeed_header header;
uint8_t buf[4];
int bytes_written;
sr_spew("la8: entering %s", __func__);
if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
sr_err("la8: %s: sdi was NULL", __func__);
return SR_ERR; /* TODO: SR_ERR_ARG? */
}
if (!(la8 = sdi->priv)) {
sr_err("la8: %s: sdi->priv was NULL", __func__);
return SR_ERR; /* TODO: SR_ERR_ARG? */
}
if (!la8->ftdic) {
sr_err("la8: %s: la8->ftdic was NULL", __func__);
return SR_ERR_ARG;
}
la8->divcount = samplerate_to_divcount(la8->cur_samplerate);
if (la8->divcount == 0xff) {
sr_err("la8: %s: invalid divcount/samplerate", __func__);
return SR_ERR;
}
/* Fill acquisition parameters into buf[]. */
buf[0] = la8->divcount;
buf[1] = 0xff; /* This byte must always be 0xff. */
buf[2] = la8->trigger_pattern;
buf[3] = la8->trigger_mask;
/* Start acquisition. */
bytes_written = la8_write(la8, buf, 4);
if (bytes_written < 0) {
sr_err("la8: acquisition failed to start");
return SR_ERR;
} else if (bytes_written != 4) {
sr_err("la8: acquisition failed to start");
return SR_ERR; /* TODO: Other error and return code? */
}
sr_dbg("la8: acquisition started successfully");
la8->session_id = session_data;
/* Send header packet to the session bus. */
sr_dbg("la8: %s: sending SR_DF_HEADER", __func__);
packet.type = SR_DF_HEADER;
packet.payload = &header;
header.feed_version = 1;
gettimeofday(&header.starttime, NULL);
header.samplerate = la8->cur_samplerate;
header.num_logic_probes = NUM_PROBES;
header.num_analog_probes = 0;
sr_session_bus(session_data, &packet);
/* Time when we should be done (for detecting trigger timeouts). */
la8->done = (la8->divcount + 1) * 0.08388608 + time(NULL)
+ la8->trigger_timeout;
la8->block_counter = 0;
la8->trigger_found = 0;
/* Hook up a dummy handler to receive data from the LA8. */
sr_source_add(-1, G_IO_IN, 0, receive_data, sdi);
return SR_OK;
}
static void hw_stop_acquisition(int device_index, gpointer session_data)
{
struct sr_device_instance *sdi;
struct la8 *la8;
struct sr_datafeed_packet packet;
sr_dbg("la8: stopping acquisition");
if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
sr_err("la8: %s: sdi was NULL", __func__);
return;
}
if (!(la8 = sdi->priv)) {
sr_err("la8: %s: sdi->priv was NULL", __func__);
return;
}
/* Send end packet to the session bus. */
sr_dbg("la8: %s: sending SR_DF_END", __func__);
packet.type = SR_DF_END;
sr_session_bus(session_data, &packet);
}
struct sr_device_plugin chronovu_la8_plugin_info = {
.name = "chronovu-la8",
.longname = "ChronoVu LA8",
.api_version = 1,
.init = hw_init,
.cleanup = hw_cleanup,
.opendev = hw_opendev,
.closedev = hw_closedev,
.get_device_info = hw_get_device_info,
.get_status = hw_get_status,
.get_capabilities = hw_get_capabilities,
.set_configuration = hw_set_configuration,
.start_acquisition = hw_start_acquisition,
.stop_acquisition = hw_stop_acquisition,
};