libsigrok/src/hardware/baylibre-acme/protocol.c

648 lines
14 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2015 Bartosz Golaszewski <bgolaszewski@baylibre.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <glib/gstdio.h>
#include "protocol.h"
#include "gpio.h"
struct channel_group_priv {
int hwmon_num;
int probe_type;
int index;
};
struct channel_priv {
int ch_type;
int fd;
struct channel_group_priv *probe;
};
static const uint8_t enrg_i2c_addrs[] = {
0x40, 0x41, 0x44, 0x45, 0x42, 0x43, 0x46, 0x47,
};
static const uint8_t temp_i2c_addrs[] = {
0x0, 0x0, 0x0, 0x0, 0x4c, 0x49, 0x4f, 0x4b,
};
static const uint32_t pws_gpios[] = {
486, 498, 502, 482, 478, 506, 510, 474,
};
static const uint32_t pws_info_gpios[] = {
487, 499, 503, 483, 479, 507, 511, 475,
};
#define MOHM_TO_UOHM(x) ((x) * 1000)
#define UOHM_TO_MOHM(x) ((x) / 1000)
SR_PRIV uint8_t bl_acme_get_enrg_addr(int index)
{
return enrg_i2c_addrs[index];
}
SR_PRIV uint8_t bl_acme_get_temp_addr(int index)
{
return temp_i2c_addrs[index];
}
SR_PRIV gboolean bl_acme_is_sane(void)
{
gboolean status;
/*
* We expect sysfs to be present and mounted at /sys, ina226 and
* tmp435 sensors detected by the system and their appropriate
* drivers loaded and functional.
*/
status = g_file_test("/sys", G_FILE_TEST_IS_DIR);
if (!status) {
sr_err("/sys/ directory not found - sysfs not mounted?");
return FALSE;
}
return TRUE;
}
static void probe_name_path(unsigned int addr, GString *path)
{
g_string_printf(path,
"/sys/class/i2c-adapter/i2c-1/1-00%02x/name", addr);
}
/*
* For given address fill buf with the path to appropriate hwmon entry.
*/
static void probe_hwmon_path(unsigned int addr, GString *path)
{
g_string_printf(path,
"/sys/class/i2c-adapter/i2c-1/1-00%02x/hwmon", addr);
}
SR_PRIV gboolean bl_acme_detect_probe(unsigned int addr,
int prb_num, const char *prb_name)
{
gboolean ret = FALSE, status;
char *buf = NULL;
GString *path = g_string_sized_new(64);
GError *err = NULL;
gsize size;
probe_name_path(addr, path);
status = g_file_get_contents(path->str, &buf, &size, &err);
if (!status) {
sr_dbg("Name for probe %d can't be read: %s",
prb_num, err->message);
g_string_free(path, TRUE);
return ret;
}
if (!strncmp(buf, prb_name, strlen(prb_name))) {
/*
* Correct driver registered on this address - but is
* there an actual probe connected?
*/
probe_hwmon_path(addr, path);
status = g_file_test(path->str, G_FILE_TEST_IS_DIR);
if (status) {
/* We have found an ACME probe. */
ret = TRUE;
}
}
g_free(buf);
g_string_free(path, TRUE);
return ret;
}
static int get_hwmon_index(unsigned int addr)
{
int status, hwmon;
GString *path = g_string_sized_new(64);
GError *err = NULL;
GDir *dir;
probe_hwmon_path(addr, path);
dir = g_dir_open(path->str, 0, &err);
if (!dir) {
sr_err("Error opening %s: %s", path->str, err->message);
g_string_free(path, TRUE);
return -1;
}
g_string_free(path, TRUE);
/*
* The directory should contain a single file named hwmonX where X
* is the hwmon index.
*/
status = sscanf(g_dir_read_name(dir), "hwmon%d", &hwmon);
g_dir_close(dir);
if (status != 1) {
sr_err("Unable to determine the hwmon entry");
return -1;
}
return hwmon;
}
static void append_channel(struct sr_dev_inst *sdi, struct sr_channel_group *cg,
int index, int type)
{
struct channel_priv *cp;
struct dev_context *devc;
struct sr_channel *ch;
char *name;
devc = sdi->priv;
switch (type) {
case ENRG_PWR:
name = g_strdup_printf("P%d_ENRG_PWR", index);
break;
case ENRG_CURR:
name = g_strdup_printf("P%d_ENRG_CURR", index);
break;
case ENRG_VOL:
name = g_strdup_printf("P%d_ENRG_VOL", index);
break;
case TEMP_IN:
name = g_strdup_printf("P%d_TEMP_IN", index);
break;
case TEMP_OUT:
name = g_strdup_printf("P%d_TEMP_OUT", index);
break;
default:
sr_err("Invalid channel type: %d.", type);
return;
}
cp = g_malloc0(sizeof(struct channel_priv));
cp->ch_type = type;
cp->probe = cg->priv;
ch = sr_channel_new(sdi, devc->num_channels++,
SR_CHANNEL_ANALOG, TRUE, name);
g_free(name);
ch->priv = cp;
cg->channels = g_slist_append(cg->channels, ch);
}
SR_PRIV gboolean bl_acme_register_probe(struct sr_dev_inst *sdi, int type,
unsigned int addr, int prb_num)
{
struct sr_channel_group *cg;
struct channel_group_priv *cgp;
int hwmon;
/* Obtain the hwmon index. */
hwmon = get_hwmon_index(addr);
if (hwmon < 0)
return FALSE;
cg = g_malloc0(sizeof(struct sr_channel_group));
cgp = g_malloc0(sizeof(struct channel_group_priv));
cgp->hwmon_num = hwmon;
cgp->probe_type = type;
cgp->index = prb_num - 1;
cg->name = g_strdup_printf("Probe_%d", prb_num);
cg->priv = cgp;
if (type == PROBE_ENRG) {
append_channel(sdi, cg, prb_num, ENRG_PWR);
append_channel(sdi, cg, prb_num, ENRG_CURR);
append_channel(sdi, cg, prb_num, ENRG_VOL);
} else if (type == PROBE_TEMP) {
append_channel(sdi, cg, prb_num, TEMP_IN);
append_channel(sdi, cg, prb_num, TEMP_OUT);
} else {
sr_err("Invalid probe type: %d.", type);
}
sdi->channel_groups = g_slist_append(sdi->channel_groups, cg);
return TRUE;
}
SR_PRIV int bl_acme_get_probe_type(const struct sr_channel_group *cg)
{
struct channel_group_priv *cgp = cg->priv;
return cgp->probe_type;
}
SR_PRIV int bl_acme_probe_has_pws(const struct sr_channel_group *cg)
{
struct channel_group_priv *cgp = cg->priv;
return sr_gpio_getval_export(pws_info_gpios[cgp->index]);
}
/*
* Sets path to the hwmon attribute if this channel group
* supports shunt resistance setting. The caller has to supply
* a valid GString.
*/
static int get_shunt_path(const struct sr_channel_group *cg, GString *path)
{
struct channel_group_priv *cgp;
int ret = SR_OK, status;
cgp = cg->priv;
if (cgp->probe_type != PROBE_ENRG) {
sr_err("Probe doesn't support shunt resistance setting");
return SR_ERR_ARG;
}
g_string_append_printf(path,
"/sys/class/hwmon/hwmon%d/shunt_resistor",
cgp->hwmon_num);
/*
* The shunt_resistor sysfs attribute is available
* in the Linux kernel since version 3.20. We have
* to notify the user if this attribute is not present.
*/
status = g_file_test(path->str, G_FILE_TEST_EXISTS);
if (!status) {
sr_err("shunt_resistance attribute not present, please update "
"your kernel to version >=3.20");
return SR_ERR_NA;
}
return ret;
}
/*
* Try setting the update_interval sysfs attribute for each probe according
* to samplerate.
*/
SR_PRIV void bl_acme_maybe_set_update_interval(const struct sr_dev_inst *sdi,
uint64_t samplerate)
{
struct sr_channel_group *cg;
struct channel_group_priv *cgp;
GString *hwmon;
GSList *l;
FILE *fd;
for (l = sdi->channel_groups; l != NULL; l = l->next) {
cg = l->data;
cgp = cg->priv;
hwmon = g_string_sized_new(64);
g_string_append_printf(hwmon,
"/sys/class/hwmon/hwmon%d/update_interval",
cgp->hwmon_num);
if (g_file_test(hwmon->str, G_FILE_TEST_EXISTS)) {
fd = g_fopen(hwmon->str, "w");
if (!fd) {
g_string_free(hwmon, TRUE);
continue;
}
g_fprintf(fd, "%" PRIu64 "\n", 1000 / samplerate);
fclose(fd);
}
g_string_free(hwmon, TRUE);
}
}
SR_PRIV int bl_acme_get_shunt(const struct sr_channel_group *cg,
uint64_t *shunt)
{
GString *path = g_string_sized_new(64);
gchar *contents;
int status, ret = SR_OK;
GError *err = NULL;
status = get_shunt_path(cg, path);
if (status != SR_OK) {
ret = status;
goto out;
}
status = g_file_get_contents(path->str, &contents, NULL, &err);
if (!status) {
sr_err("Error reading shunt resistance: %s", err->message);
ret = SR_ERR_IO;
goto out;
}
*shunt = UOHM_TO_MOHM(strtol(contents, NULL, 10));
out:
g_string_free(path, TRUE);
return ret;
}
SR_PRIV int bl_acme_set_shunt(const struct sr_channel_group *cg, uint64_t shunt)
{
GString *path = g_string_sized_new(64);;
int status, ret = SR_OK;
FILE *fd;
status = get_shunt_path(cg, path);
if (status != SR_OK) {
ret = status;
goto out;
}
/*
* Can't use g_file_set_contents() here, as it calls open() with
* O_EXEC flag in a sysfs directory thus failing with EACCES.
*/
fd = g_fopen(path->str, "w");
if (!fd) {
sr_err("Error opening %s: %s", path->str, strerror(errno));
ret = SR_ERR_IO;
goto out;
}
g_fprintf(fd, "%" PRIu64 "\n", MOHM_TO_UOHM(shunt));
fclose(fd);
out:
g_string_free(path, TRUE);
return ret;
}
SR_PRIV int bl_acme_read_power_state(const struct sr_channel_group *cg,
gboolean *off)
{
struct channel_group_priv *cgp;
int val;
cgp = cg->priv;
if (!bl_acme_probe_has_pws(cg)) {
sr_err("Probe has no power-switch");
return SR_ERR_ARG;
}
val = sr_gpio_getval_export(pws_gpios[cgp->index]);
*off = val ? FALSE : TRUE;
return SR_OK;
}
SR_PRIV int bl_acme_set_power_off(const struct sr_channel_group *cg,
gboolean off)
{
struct channel_group_priv *cgp;
int val;
cgp = cg->priv;
if (!bl_acme_probe_has_pws(cg)) {
sr_err("Probe has no power-switch");
return SR_ERR_ARG;
}
val = sr_gpio_setval_export(pws_gpios[cgp->index], off ? 0 : 1);
if (val < 0) {
sr_err("Error setting power-off state: gpio: %d",
pws_gpios[cgp->index]);
return SR_ERR_IO;
}
return SR_OK;
}
static int channel_to_mq(struct sr_channel *ch)
{
struct channel_priv *chp;
chp = ch->priv;
switch (chp->ch_type) {
case ENRG_PWR:
return SR_MQ_POWER;
case ENRG_CURR:
return SR_MQ_CURRENT;
case ENRG_VOL:
return SR_MQ_VOLTAGE;
case TEMP_IN: /* Fallthrough */
case TEMP_OUT:
return SR_MQ_TEMPERATURE;
default:
return -1;
}
}
static int channel_to_unit(struct sr_channel *ch)
{
struct channel_priv *chp;
chp = ch->priv;
switch (chp->ch_type) {
case ENRG_PWR:
return SR_UNIT_WATT;
case ENRG_CURR:
return SR_UNIT_AMPERE;
case ENRG_VOL:
return SR_UNIT_VOLT;
case TEMP_IN: /* Fallthrough */
case TEMP_OUT:
return SR_UNIT_CELSIUS;
default:
return -1;
}
}
/* We need to scale measurements down from the units used by the drivers. */
static float adjust_data(int val, int type)
{
switch (type) {
case ENRG_PWR:
return ((float)val) / 1000000.0;
case ENRG_CURR: /* Fallthrough */
case ENRG_VOL: /* Fallthrough */
case TEMP_IN: /* Fallthrough */
case TEMP_OUT:
return ((float)val) / 1000.0;
default:
return 0.0;
}
}
static float read_sample(struct sr_channel *ch)
{
struct channel_priv *chp;
char buf[16];
ssize_t len;
int fd;
chp = ch->priv;
fd = chp->fd;
lseek(fd, 0, SEEK_SET);
len = read(fd, buf, sizeof(buf));
if (len < 0) {
sr_err("Error reading from channel %s (hwmon: %s): %s",
ch->name, chp->probe->hwmon_num, strerror(errno));
ch->enabled = FALSE;
return -1.0;
}
return adjust_data(strtol(buf, NULL, 10), chp->ch_type);
}
SR_PRIV int bl_acme_open_channel(struct sr_channel *ch)
{
struct channel_priv *chp;
char path[64], *file;
int fd;
chp = ch->priv;
switch (chp->ch_type) {
case ENRG_PWR: file = "power1_input"; break;
case ENRG_CURR: file = "curr1_input"; break;
case ENRG_VOL: file = "in1_input"; break;
case TEMP_IN: file = "temp1_input"; break;
case TEMP_OUT: file = "temp2_input"; break;
default:
sr_err("Invalid channel type: %d.", chp->ch_type);
return SR_ERR;
}
snprintf(path, sizeof(path), "/sys/class/hwmon/hwmon%d/%s",
chp->probe->hwmon_num, file);
fd = open(path, O_RDONLY);
if (fd < 0) {
sr_err("Error opening %s: %s", path, strerror(errno));
ch->enabled = FALSE;
return SR_ERR;
}
chp->fd = fd;
return 0;
}
SR_PRIV void bl_acme_close_channel(struct sr_channel *ch)
{
struct channel_priv *chp;
chp = ch->priv;
close(chp->fd);
chp->fd = -1;
}
SR_PRIV int bl_acme_receive_data(int fd, int revents, void *cb_data)
{
uint32_t cur_time, elapsed_time, diff_time;
int64_t time_to_sleep;
struct sr_datafeed_packet packet, framep;
struct sr_datafeed_analog analog;
struct sr_dev_inst *sdi;
struct sr_channel *ch;
struct dev_context *devc;
GSList *chl, chonly;
float valf;
(void)fd;
(void)revents;
sdi = cb_data;
if (!sdi)
return TRUE;
devc = sdi->priv;
if (!devc)
return TRUE;
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
memset(&analog, 0, sizeof(struct sr_datafeed_analog));
analog.data = &valf;
/*
* Reading from sysfs takes some time - try to keep up with samplerate.
*/
if (devc->samples_read) {
cur_time = g_get_monotonic_time();
diff_time = cur_time - devc->last_sample_fin;
time_to_sleep = G_USEC_PER_SEC / devc->samplerate - diff_time;
if (time_to_sleep > 0)
g_usleep(time_to_sleep);
}
framep.type = SR_DF_FRAME_BEGIN;
sr_session_send(cb_data, &framep);
/*
* Due to different units used in each channel we're sending
* samples one-by-one.
*/
for (chl = sdi->channels; chl; chl = chl->next) {
ch = chl->data;
if (!ch->enabled)
continue;
chonly.next = NULL;
chonly.data = ch;
analog.channels = &chonly;
analog.num_samples = 1;
analog.mq = channel_to_mq(chl->data);
analog.unit = channel_to_unit(ch);
valf = read_sample(ch);
sr_session_send(cb_data, &packet);
}
framep.type = SR_DF_FRAME_END;
sr_session_send(cb_data, &framep);
devc->samples_read++;
if (devc->limit_samples > 0 &&
devc->samples_read >= devc->limit_samples) {
sr_info("Requested number of samples reached.");
sdi->driver->dev_acquisition_stop(sdi, cb_data);
devc->last_sample_fin = g_get_monotonic_time();
return TRUE;
} else if (devc->limit_msec > 0) {
cur_time = g_get_monotonic_time();
elapsed_time = cur_time - devc->start_time;
if (elapsed_time >= devc->limit_msec) {
sr_info("Sampling time limit reached.");
sdi->driver->dev_acquisition_stop(sdi, cb_data);
devc->last_sample_fin = g_get_monotonic_time();
return TRUE;
}
}
devc->last_sample_fin = g_get_monotonic_time();
return TRUE;
}