libsigrok/src/hardware/pipistrello-ols/api.c

753 lines
20 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "protocol.h"
static const uint32_t devopts[] = {
SR_CONF_LOGIC_ANALYZER,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
SR_CONF_PATTERN_MODE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_EXTERNAL_CLOCK | SR_CONF_GET | SR_CONF_SET,
SR_CONF_SWAP | SR_CONF_SET,
SR_CONF_RLE | SR_CONF_GET | SR_CONF_SET,
};
static const int32_t trigger_matches[] = {
SR_TRIGGER_ZERO,
SR_TRIGGER_ONE,
SR_TRIGGER_RISING,
SR_TRIGGER_FALLING,
};
#define STR_PATTERN_NONE "None"
#define STR_PATTERN_EXTERNAL "External"
#define STR_PATTERN_INTERNAL "Internal"
/* Supported methods of test pattern outputs */
enum {
/**
* Capture pins 31:16 (unbuffered wing) output a test pattern
* that can captured on pins 0:15.
*/
PATTERN_EXTERNAL,
/** Route test pattern internally to capture buffer. */
PATTERN_INTERNAL,
};
static const char *patterns[] = {
STR_PATTERN_NONE,
STR_PATTERN_EXTERNAL,
STR_PATTERN_INTERNAL,
};
/* Channels are numbered 0-31 (on the PCB silkscreen). */
SR_PRIV const char *p_ols_channel_names[NUM_CHANNELS + 1] = {
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12",
"13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23",
"24", "25", "26", "27", "28", "29", "30", "31",
NULL,
};
/* Default supported samplerates, can be overridden by device metadata. */
static const uint64_t samplerates[] = {
SR_HZ(10),
SR_MHZ(200),
SR_HZ(1),
};
SR_PRIV struct sr_dev_driver p_ols_driver_info;
static int init(struct sr_dev_driver *di, struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
struct sr_dev_inst *sdi;
struct drv_context *drvc;
struct dev_context *devc;
GSList *devices;
int ret, i;
char buf[70];
int bytes_read;
(void)options;
drvc = di->priv;
devices = NULL;
/* Allocate memory for our private device context. */
devc = g_malloc0(sizeof(struct dev_context));
/* Device-specific settings */
devc->max_samplebytes = devc->max_samplerate = devc->protocol_version = 0;
/* Acquisition settings */
devc->limit_samples = devc->capture_ratio = 0;
devc->trigger_at = -1;
devc->channel_mask = 0xffffffff;
devc->flag_reg = 0;
/* Allocate memory for the incoming ftdi data. */
if (!(devc->ftdi_buf = g_try_malloc0(FTDI_BUF_SIZE))) {
sr_err("ftdi_buf malloc failed.");
goto err_free_devc;
}
/* Allocate memory for the FTDI context (ftdic) and initialize it. */
if (!(devc->ftdic = ftdi_new())) {
sr_err("Failed to initialize libftdi.");
goto err_free_ftdi_buf;;
}
/* Try to open the FTDI device */
if (p_ols_open(devc) != SR_OK) {
goto err_free_ftdic;
}
/* The discovery procedure is like this: first send the Reset
* command (0x00) 5 times, since the device could be anywhere
* in a 5-byte command. Then send the ID command (0x02).
* If the device responds with 4 bytes ("OLS1" or "SLA1"), we
* have a match.
*/
ret = SR_OK;
for (i = 0; i < 5; i++) {
if ((ret = write_shortcommand(devc, CMD_RESET)) != SR_OK) {
break;
}
}
if (ret != SR_OK) {
sr_err("Could not reset device. Quitting.");
goto err_close_ftdic;
}
write_shortcommand(devc, CMD_ID);
/* Read the response data. */
bytes_read = ftdi_read_data(devc->ftdic, (uint8_t *)buf, 4);
if (bytes_read < 0) {
sr_err("Failed to read FTDI data (%d): %s.",
bytes_read, ftdi_get_error_string(devc->ftdic));
goto err_close_ftdic;
}
if (bytes_read == 0) {
goto err_close_ftdic;
}
if (strncmp(buf, "1SLO", 4) && strncmp(buf, "1ALS", 4))
goto err_close_ftdic;
/* Definitely using the OLS protocol, check if it supports
* the metadata command.
*/
write_shortcommand(devc, CMD_METADATA);
/* Read the metadata. */
bytes_read = ftdi_read_data(devc->ftdic, (uint8_t *)buf, 64);
if (bytes_read < 0) {
sr_err("Failed to read FTDI data (%d): %s.",
bytes_read, ftdi_get_error_string(devc->ftdic));
goto err_close_ftdic;
}
if (bytes_read == 0) {
goto err_close_ftdic;
}
/* Close device. We'll reopen it again when we need it. */
p_ols_close(devc);
/* Parse the metadata. */
sdi = p_ols_get_metadata((uint8_t *)buf, bytes_read, devc);
/* Configure samplerate and divider. */
if (p_ols_set_samplerate(sdi, DEFAULT_SAMPLERATE) != SR_OK)
sr_dbg("Failed to set default samplerate (%"PRIu64").",
DEFAULT_SAMPLERATE);
drvc->instances = g_slist_append(drvc->instances, sdi);
devices = g_slist_append(devices, sdi);
return devices;
err_close_ftdic:
p_ols_close(devc);
err_free_ftdic:
ftdi_free(devc->ftdic); /* NOT free() or g_free()! */
err_free_ftdi_buf:
g_free(devc->ftdi_buf);
err_free_devc:
g_free(devc);
return NULL;
}
static GSList *dev_list(const struct sr_dev_driver *di)
{
return ((struct drv_context *)(di->priv))->instances;
}
static void clear_helper(void *priv)
{
struct dev_context *devc;
devc = priv;
ftdi_free(devc->ftdic);
g_free(devc->ftdi_buf);
}
static int dev_clear(const struct sr_dev_driver *di)
{
return std_dev_clear(di, clear_helper);
}
static int cleanup(const struct sr_dev_driver *di)
{
return dev_clear(di);
}
static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
(void)cg;
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
switch (key) {
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->cur_samplerate);
break;
case SR_CONF_CAPTURE_RATIO:
*data = g_variant_new_uint64(devc->capture_ratio);
break;
case SR_CONF_LIMIT_SAMPLES:
*data = g_variant_new_uint64(devc->limit_samples);
break;
case SR_CONF_PATTERN_MODE:
if (devc->flag_reg & FLAG_EXTERNAL_TEST_MODE)
*data = g_variant_new_string(STR_PATTERN_EXTERNAL);
else if (devc->flag_reg & FLAG_INTERNAL_TEST_MODE)
*data = g_variant_new_string(STR_PATTERN_INTERNAL);
else
*data = g_variant_new_string(STR_PATTERN_NONE);
break;
case SR_CONF_RLE:
*data = g_variant_new_boolean(devc->flag_reg & FLAG_RLE ? TRUE : FALSE);
break;
case SR_CONF_EXTERNAL_CLOCK:
*data = g_variant_new_boolean(devc->flag_reg & FLAG_CLOCK_EXTERNAL ? TRUE : FALSE);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
uint16_t flag;
uint64_t tmp_u64;
int ret;
const char *stropt;
(void)cg;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
switch (key) {
case SR_CONF_SAMPLERATE:
tmp_u64 = g_variant_get_uint64(data);
if (tmp_u64 < samplerates[0] || tmp_u64 > samplerates[1])
return SR_ERR_SAMPLERATE;
ret = p_ols_set_samplerate(sdi, g_variant_get_uint64(data));
break;
case SR_CONF_LIMIT_SAMPLES:
tmp_u64 = g_variant_get_uint64(data);
if (tmp_u64 < MIN_NUM_SAMPLES)
return SR_ERR;
devc->limit_samples = tmp_u64;
ret = SR_OK;
break;
case SR_CONF_CAPTURE_RATIO:
devc->capture_ratio = g_variant_get_uint64(data);
if (devc->capture_ratio < 0 || devc->capture_ratio > 100) {
devc->capture_ratio = 0;
ret = SR_ERR;
} else
ret = SR_OK;
break;
case SR_CONF_EXTERNAL_CLOCK:
if (g_variant_get_boolean(data)) {
sr_info("Enabling external clock.");
devc->flag_reg |= FLAG_CLOCK_EXTERNAL;
} else {
sr_info("Disabled external clock.");
devc->flag_reg &= ~FLAG_CLOCK_EXTERNAL;
}
ret = SR_OK;
break;
case SR_CONF_PATTERN_MODE:
stropt = g_variant_get_string(data, NULL);
ret = SR_OK;
flag = 0xffff;
if (!strcmp(stropt, STR_PATTERN_NONE)) {
sr_info("Disabling test modes.");
flag = 0x0000;
}else if (!strcmp(stropt, STR_PATTERN_INTERNAL)) {
sr_info("Enabling internal test mode.");
flag = FLAG_INTERNAL_TEST_MODE;
} else if (!strcmp(stropt, STR_PATTERN_EXTERNAL)) {
sr_info("Enabling external test mode.");
flag = FLAG_EXTERNAL_TEST_MODE;
} else {
ret = SR_ERR;
}
if (flag != 0xffff) {
devc->flag_reg &= ~(FLAG_INTERNAL_TEST_MODE | FLAG_EXTERNAL_TEST_MODE);
devc->flag_reg |= flag;
}
break;
case SR_CONF_SWAP:
if (g_variant_get_boolean(data)) {
sr_info("Enabling channel swapping.");
devc->flag_reg |= FLAG_SWAP_CHANNELS;
} else {
sr_info("Disabling channel swapping.");
devc->flag_reg &= ~FLAG_SWAP_CHANNELS;
}
ret = SR_OK;
break;
case SR_CONF_RLE:
if (g_variant_get_boolean(data)) {
sr_info("Enabling RLE.");
devc->flag_reg |= FLAG_RLE;
} else {
sr_info("Disabling RLE.");
devc->flag_reg &= ~FLAG_RLE;
}
ret = SR_OK;
break;
default:
ret = SR_ERR_NA;
}
return ret;
}
static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
GVariant *gvar, *grange[2];
GVariantBuilder gvb;
int num_pols_changrp, i;
(void)cg;
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
ARRAY_SIZE(samplerates), sizeof(uint64_t));
g_variant_builder_add(&gvb, "{sv}", "samplerate-steps", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TRIGGER_MATCH:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
trigger_matches, ARRAY_SIZE(trigger_matches),
sizeof(int32_t));
break;
case SR_CONF_PATTERN_MODE:
*data = g_variant_new_strv(patterns, ARRAY_SIZE(patterns));
break;
case SR_CONF_LIMIT_SAMPLES:
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
if (devc->flag_reg & FLAG_RLE)
return SR_ERR_NA;
if (devc->max_samplebytes == 0)
/* Device didn't specify sample memory size in metadata. */
return SR_ERR_NA;
/*
* Channel groups are turned off if no channels in that group are
* enabled, making more room for samples for the enabled group.
*/
pols_channel_mask(sdi);
num_pols_changrp = 0;
for (i = 0; i < 4; i++) {
if (devc->channel_mask & (0xff << (i * 8)))
num_pols_changrp++;
}
/* 3 channel groups takes as many bytes as 4 channel groups */
if (num_pols_changrp == 3)
num_pols_changrp = 4;
grange[0] = g_variant_new_uint64(MIN_NUM_SAMPLES);
if (num_pols_changrp)
grange[1] = g_variant_new_uint64(devc->max_samplebytes / num_pols_changrp);
else
grange[1] = g_variant_new_uint64(MIN_NUM_SAMPLES);
*data = g_variant_new_tuple(grange, 2);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
devc = sdi->priv;
if (p_ols_open(devc) != SR_OK) {
return SR_ERR;
} else {
sdi->status = SR_ST_ACTIVE;
return SR_OK;
}
}
static int dev_close(struct sr_dev_inst *sdi)
{
int ret;
struct dev_context *devc;
ret = SR_OK;
devc = sdi->priv;
if (sdi->status == SR_ST_ACTIVE) {
sr_dbg("Status ACTIVE, closing device.");
ret = p_ols_close(devc);
} else {
sr_spew("Status not ACTIVE, nothing to do.");
}
sdi->status = SR_ST_INACTIVE;
return ret;
}
static int set_trigger(const struct sr_dev_inst *sdi, int stage)
{
struct dev_context *devc;
uint8_t cmd, arg[4];
devc = sdi->priv;
cmd = CMD_SET_TRIGGER_MASK + stage * 4;
arg[0] = devc->trigger_mask[stage] & 0xff;
arg[1] = (devc->trigger_mask[stage] >> 8) & 0xff;
arg[2] = (devc->trigger_mask[stage] >> 16) & 0xff;
arg[3] = (devc->trigger_mask[stage] >> 24) & 0xff;
if (write_longcommand(devc, cmd, arg) != SR_OK)
return SR_ERR;
cmd = CMD_SET_TRIGGER_VALUE + stage * 4;
arg[0] = devc->trigger_value[stage] & 0xff;
arg[1] = (devc->trigger_value[stage] >> 8) & 0xff;
arg[2] = (devc->trigger_value[stage] >> 16) & 0xff;
arg[3] = (devc->trigger_value[stage] >> 24) & 0xff;
if (write_longcommand(devc, cmd, arg) != SR_OK)
return SR_ERR;
cmd = CMD_SET_TRIGGER_CONFIG + stage * 4;
arg[0] = arg[1] = arg[3] = 0x00;
arg[2] = stage;
if (stage == devc->num_stages)
/* Last stage, fire when this one matches. */
arg[3] |= TRIGGER_START;
if (write_longcommand(devc, cmd, arg) != SR_OK)
return SR_ERR;
cmd = CMD_SET_TRIGGER_EDGE + stage * 4;
arg[0] = devc->trigger_edge[stage] & 0xff;
arg[1] = (devc->trigger_edge[stage] >> 8) & 0xff;
arg[2] = (devc->trigger_edge[stage] >> 16) & 0xff;
arg[3] = (devc->trigger_edge[stage] >> 24) & 0xff;
if (write_longcommand(devc, cmd, arg) != SR_OK)
return SR_ERR;
return SR_OK;
}
static int disable_trigger(const struct sr_dev_inst *sdi, int stage)
{
struct dev_context *devc;
uint8_t cmd, arg[4];
devc = sdi->priv;
cmd = CMD_SET_TRIGGER_MASK + stage * 4;
arg[0] = arg[1] = arg[2] = arg[3] = 0x00;
if (write_longcommand(devc, cmd, arg) != SR_OK)
return SR_ERR;
cmd = CMD_SET_TRIGGER_VALUE + stage * 4;
if (write_longcommand(devc, cmd, arg) != SR_OK)
return SR_ERR;
cmd = CMD_SET_TRIGGER_CONFIG + stage * 4;
arg[2] = 0x03;
if (write_longcommand(devc, cmd, arg) != SR_OK)
return SR_ERR;
cmd = CMD_SET_TRIGGER_EDGE + stage * 4;
arg[2] = 0x00;
if (write_longcommand(devc, cmd, arg) != SR_OK)
return SR_ERR;
return SR_OK;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi,
void *cb_data)
{
struct dev_context *devc;
uint32_t samplecount, readcount, delaycount;
uint8_t pols_changrp_mask, arg[4];
uint16_t flag_tmp;
int num_pols_changrp, samplespercount;
int ret, i;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
pols_channel_mask(sdi);
/*
* Enable/disable channel groups in the flag register according to the
* channel mask. Calculate this here, because num_pols_changrp is
* needed to limit readcount.
*/
pols_changrp_mask = 0;
num_pols_changrp = 0;
for (i = 0; i < 4; i++) {
if (devc->channel_mask & (0xff << (i * 8))) {
pols_changrp_mask |= (1 << i);
num_pols_changrp++;
}
}
/* 3 channel groups takes as many bytes as 4 channel groups */
if (num_pols_changrp == 3)
num_pols_changrp = 4;
/* maximum number of samples (or RLE counts) the buffer memory can hold */
devc->max_samples = devc->max_samplebytes / num_pols_changrp;
/*
* Limit readcount to prevent reading past the end of the hardware
* buffer.
*/
sr_dbg("max_samples = %d", devc->max_samples);
sr_dbg("limit_samples = %d", devc->limit_samples);
samplecount = MIN(devc->max_samples, devc->limit_samples);
sr_dbg("Samplecount = %d", samplecount);
/* In demux mode the OLS is processing two samples per clock */
if (devc->flag_reg & FLAG_DEMUX) {
samplespercount = 8;
}
else {
samplespercount = 4;
}
readcount = samplecount / samplespercount;
/* Rather read too many samples than too few. */
if (samplecount % samplespercount != 0)
readcount++;
/* Basic triggers. */
if (pols_convert_trigger(sdi) != SR_OK) {
sr_err("Failed to configure channels.");
return SR_ERR;
}
if (devc->num_stages > 0) {
delaycount = readcount * (1 - devc->capture_ratio / 100.0);
devc->trigger_at = (readcount - delaycount) * samplespercount - devc->num_stages;
for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
if (i <= devc->num_stages) {
sr_dbg("Setting p-ols stage %d trigger.", i);
if ((ret = set_trigger(sdi, i)) != SR_OK)
return ret;
}
else {
sr_dbg("Disabling p-ols stage %d trigger.", i);
if ((ret = disable_trigger(sdi, i)) != SR_OK)
return ret;
}
}
} else {
/* No triggers configured, force trigger on first stage. */
sr_dbg("Forcing trigger at stage 0.");
if ((ret = set_trigger(sdi, 0)) != SR_OK)
return ret;
delaycount = readcount;
}
/* Samplerate. */
sr_dbg("Setting samplerate to %" PRIu64 "Hz (divider %u)",
devc->cur_samplerate, devc->cur_samplerate_divider);
arg[0] = devc->cur_samplerate_divider & 0xff;
arg[1] = (devc->cur_samplerate_divider & 0xff00) >> 8;
arg[2] = (devc->cur_samplerate_divider & 0xff0000) >> 16;
arg[3] = 0x00;
if (write_longcommand(devc, CMD_SET_DIVIDER, arg) != SR_OK)
return SR_ERR;
/* Send extended sample limit and pre/post-trigger capture ratio. */
arg[0] = ((readcount - 1) & 0xff);
arg[1] = ((readcount - 1) & 0xff00) >> 8;
arg[2] = ((readcount - 1) & 0xff0000) >> 16;
arg[3] = ((readcount - 1) & 0xff000000) >> 24;
if (write_longcommand(devc, CMD_CAPTURE_DELAY, arg) != SR_OK)
return SR_ERR;
arg[0] = ((delaycount - 1) & 0xff);
arg[1] = ((delaycount - 1) & 0xff00) >> 8;
arg[2] = ((delaycount - 1) & 0xff0000) >> 16;
arg[3] = ((delaycount - 1) & 0xff000000) >> 24;
if (write_longcommand(devc, CMD_CAPTURE_COUNT, arg) != SR_OK)
return SR_ERR;
/* Flag register. */
sr_dbg("Setting intpat %s, extpat %s, RLE %s, noise_filter %s, demux %s",
devc->flag_reg & FLAG_INTERNAL_TEST_MODE ? "on": "off",
devc->flag_reg & FLAG_EXTERNAL_TEST_MODE ? "on": "off",
devc->flag_reg & FLAG_RLE ? "on" : "off",
devc->flag_reg & FLAG_FILTER ? "on": "off",
devc->flag_reg & FLAG_DEMUX ? "on" : "off");
/*
* Enable/disable OLS channel groups in the flag register according
* to the channel mask. 1 means "disable channel".
*/
devc->flag_reg &= ~0x3c;
devc->flag_reg |= ~(pols_changrp_mask << 2) & 0x3c;
sr_dbg("flag_reg = %x", devc->flag_reg);
/*
* In demux mode the OLS is processing two 8-bit or 16-bit samples
* in parallel and for this to work the lower two bits of the four
* "channel_disable" bits must be replicated to the upper two bits.
*/
flag_tmp = devc->flag_reg;
if (devc->flag_reg & FLAG_DEMUX) {
flag_tmp &= ~0x30;
flag_tmp |= ~(pols_changrp_mask << 4) & 0x30;
}
arg[0] = flag_tmp & 0xff;
arg[1] = flag_tmp >> 8;
arg[2] = arg[3] = 0x00;
if (write_longcommand(devc, CMD_SET_FLAGS, arg) != SR_OK)
return SR_ERR;
/* Start acquisition on the device. */
if (write_shortcommand(devc, CMD_RUN) != SR_OK)
return SR_ERR;
/* Reset all operational states. */
devc->rle_count = devc->num_transfers = 0;
devc->num_samples = devc->num_bytes = 0;
devc->cnt_bytes = devc->cnt_samples = devc->cnt_samples_rle = 0;
memset(devc->sample, 0, 4);
/* Send header packet to the session bus. */
std_session_send_df_header(cb_data, LOG_PREFIX);
/* Hook up a dummy handler to receive data from the device. */
sr_session_source_add(sdi->session, 0, G_IO_IN, 10, p_ols_receive_data,
cb_data);
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
struct sr_datafeed_packet packet;
devc = sdi->priv;
sr_dbg("Stopping acquisition.");
write_shortcommand(devc, CMD_RESET);
write_shortcommand(devc, CMD_RESET);
write_shortcommand(devc, CMD_RESET);
write_shortcommand(devc, CMD_RESET);
write_shortcommand(devc, CMD_RESET);
sr_session_source_remove(sdi->session, 0);
/* Send end packet to the session bus. */
sr_dbg("Sending SR_DF_END.");
packet.type = SR_DF_END;
sr_session_send(cb_data, &packet);
return SR_OK;
}
SR_PRIV struct sr_dev_driver p_ols_driver_info = {
.name = "p-ols",
.longname = "Pipistrello OLS",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};