libsigrok/src/hardware/scpi-pps/api.c

625 lines
16 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2014 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <strings.h>
#include "protocol.h"
SR_PRIV struct sr_dev_driver scpi_pps_driver_info;
static const uint32_t scanopts[] = {
SR_CONF_CONN,
SR_CONF_SERIALCOMM,
};
static const uint32_t drvopts[] = {
SR_CONF_POWER_SUPPLY,
};
static const struct pps_channel_instance pci[] = {
{ SR_MQ_VOLTAGE, SCPI_CMD_GET_MEAS_VOLTAGE, "V" },
{ SR_MQ_CURRENT, SCPI_CMD_GET_MEAS_CURRENT, "I" },
{ SR_MQ_POWER, SCPI_CMD_GET_MEAS_POWER, "P" },
{ SR_MQ_FREQUENCY, SCPI_CMD_GET_MEAS_FREQUENCY, "F" },
};
static int init(struct sr_dev_driver *di, struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
static struct sr_dev_inst *probe_device(struct sr_scpi_dev_inst *scpi)
{
struct dev_context *devc;
struct sr_dev_inst *sdi;
struct sr_scpi_hw_info *hw_info;
struct sr_channel_group *cg;
struct sr_channel *ch;
const struct scpi_pps *device;
struct pps_channel *pch;
struct channel_spec *channels;
struct channel_group_spec *channel_groups, *cgs;
struct pps_channel_group *pcg;
GRegex *model_re;
GMatchInfo *model_mi;
GSList *l;
uint64_t mask;
unsigned int num_channels, num_channel_groups, ch_num, ch_idx, i, j;
int ret;
const char *vendor;
char ch_name[16];
if (sr_scpi_get_hw_id(scpi, &hw_info) != SR_OK) {
sr_info("Couldn't get IDN response.");
return NULL;
}
device = NULL;
for (i = 0; i < num_pps_profiles; i++) {
vendor = get_vendor(hw_info->manufacturer);
if (strcasecmp(vendor, pps_profiles[i].vendor))
continue;
model_re = g_regex_new(pps_profiles[i].model, 0, 0, NULL);
if (g_regex_match(model_re, hw_info->model, 0, &model_mi))
device = &pps_profiles[i];
g_match_info_unref(model_mi);
g_regex_unref(model_re);
if (device)
break;
}
if (!device) {
sr_scpi_hw_info_free(hw_info);
return NULL;
}
sdi = g_malloc0(sizeof(struct sr_dev_inst));
sdi->status = SR_ST_INACTIVE;
sdi->vendor = g_strdup(vendor);
sdi->model = g_strdup(hw_info->model);
sdi->version = g_strdup(hw_info->firmware_version);
sdi->conn = scpi;
sdi->driver = &scpi_pps_driver_info;
sdi->inst_type = SR_INST_SCPI;
sdi->serial_num = g_strdup(hw_info->serial_number);
devc = g_malloc0(sizeof(struct dev_context));
devc->device = device;
sdi->priv = devc;
if (device->num_channels) {
/* Static channels and groups. */
channels = (struct channel_spec *)device->channels;
num_channels = device->num_channels;
channel_groups = (struct channel_group_spec *)device->channel_groups;
num_channel_groups = device->num_channel_groups;
} else {
/* Channels and groups need to be probed. */
ret = device->probe_channels(sdi, hw_info, &channels, &num_channels,
&channel_groups, &num_channel_groups);
if (ret != SR_OK) {
sr_err("Failed to probe for channels.");
return NULL;
}
/*
* Since these were dynamically allocated, we'll need to free them
* later.
*/
devc->channels = channels;
devc->channel_groups = channel_groups;
}
ch_idx = 0;
for (ch_num = 0; ch_num < num_channels; ch_num++) {
/* Create one channel per measurable output unit. */
for (i = 0; i < ARRAY_SIZE(pci); i++) {
if (!scpi_cmd_get(sdi, pci[i].command))
continue;
g_snprintf(ch_name, 16, "%s%s", pci[i].prefix,
channels[ch_num].name);
ch = sr_channel_new(sdi, ch_idx++, SR_CHANNEL_ANALOG, TRUE,
ch_name);
pch = g_malloc0(sizeof(struct pps_channel));
pch->hw_output_idx = ch_num;
pch->hwname = channels[ch_num].name;
pch->mq = pci[i].mq;
ch->priv = pch;
}
}
for (i = 0; i < num_channel_groups; i++) {
cgs = &channel_groups[i];
cg = g_malloc0(sizeof(struct sr_channel_group));
cg->name = g_strdup(cgs->name);
for (j = 0, mask = 1; j < 64; j++, mask <<= 1) {
if (cgs->channel_index_mask & mask) {
for (l = sdi->channels; l; l = l->next) {
ch = l->data;
pch = ch->priv;
if (pch->hw_output_idx == j)
cg->channels = g_slist_append(cg->channels, ch);
}
}
}
pcg = g_malloc0(sizeof(struct pps_channel_group));
pcg->features = cgs->features;
cg->priv = pcg;
sdi->channel_groups = g_slist_append(sdi->channel_groups, cg);
}
sr_scpi_hw_info_free(hw_info);
hw_info = NULL;
scpi_cmd(sdi, SCPI_CMD_LOCAL);
sr_scpi_close(scpi);
return sdi;
}
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
return sr_scpi_scan(di->priv, options, probe_device);
}
static GSList *dev_list(const struct sr_dev_driver *di)
{
return ((struct drv_context *)(di->priv))->instances;
}
static int dev_clear(const struct sr_dev_driver *di)
{
return std_dev_clear(di, NULL);
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_scpi_dev_inst *scpi;
GVariant *beeper;
if (sdi->status != SR_ST_INACTIVE)
return SR_ERR;
scpi = sdi->conn;
if (sr_scpi_open(scpi) < 0)
return SR_ERR;
sdi->status = SR_ST_ACTIVE;
scpi_cmd(sdi, SCPI_CMD_REMOTE);
devc = sdi->priv;
devc->beeper_was_set = FALSE;
if (scpi_cmd_resp(sdi, &beeper, G_VARIANT_TYPE_BOOLEAN, SCPI_CMD_BEEPER) == SR_OK) {
if (g_variant_get_boolean(beeper)) {
devc->beeper_was_set = TRUE;
scpi_cmd(sdi, SCPI_CMD_BEEPER_DISABLE);
}
g_variant_unref(beeper);
}
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
struct sr_scpi_dev_inst *scpi;
struct dev_context *devc;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
scpi = sdi->conn;
if (scpi) {
if (devc->beeper_was_set)
scpi_cmd(sdi, SCPI_CMD_BEEPER_ENABLE);
scpi_cmd(sdi, SCPI_CMD_LOCAL);
sr_scpi_close(scpi);
sdi->status = SR_ST_INACTIVE;
}
return SR_OK;
}
static void clear_helper(void *priv)
{
struct dev_context *devc;
devc = priv;
g_free(devc->channels);
g_free(devc->channel_groups);
g_free(devc);
}
static int cleanup(const struct sr_dev_driver *di)
{
return std_dev_clear(di, clear_helper);
}
static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
const GVariantType *gvtype;
unsigned int i;
int cmd, ret;
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
if (cg) {
/*
* These options only apply to channel groups with a single
* channel -- they're per-channel settings for the device.
*/
/*
* Config keys are handled below depending on whether a channel
* group was provided by the frontend. However some of these
* take a CG on one PPS but not on others. Check the device's
* profile for that here, and NULL out the channel group as needed.
*/
for (i = 0; i < devc->device->num_devopts; i++) {
if (devc->device->devopts[i] == key) {
cg = NULL;
break;
}
}
}
gvtype = NULL;
cmd = -1;
switch (key) {
case SR_CONF_OUTPUT_ENABLED:
gvtype = G_VARIANT_TYPE_BOOLEAN;
cmd = SCPI_CMD_GET_OUTPUT_ENABLED;
break;
case SR_CONF_OUTPUT_VOLTAGE:
gvtype = G_VARIANT_TYPE_DOUBLE;
cmd = SCPI_CMD_GET_MEAS_VOLTAGE;
break;
case SR_CONF_OUTPUT_VOLTAGE_TARGET:
gvtype = G_VARIANT_TYPE_DOUBLE;
cmd = SCPI_CMD_GET_VOLTAGE_TARGET;
break;
case SR_CONF_OUTPUT_FREQUENCY:
gvtype = G_VARIANT_TYPE_DOUBLE;
cmd = SCPI_CMD_GET_MEAS_FREQUENCY;
break;
case SR_CONF_OUTPUT_FREQUENCY_TARGET:
gvtype = G_VARIANT_TYPE_DOUBLE;
cmd = SCPI_CMD_GET_FREQUENCY_TARGET;
break;
case SR_CONF_OUTPUT_CURRENT:
gvtype = G_VARIANT_TYPE_DOUBLE;
cmd = SCPI_CMD_GET_MEAS_CURRENT;
break;
case SR_CONF_OUTPUT_CURRENT_LIMIT:
gvtype = G_VARIANT_TYPE_DOUBLE;
cmd = SCPI_CMD_GET_CURRENT_LIMIT;
break;
case SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED:
gvtype = G_VARIANT_TYPE_BOOLEAN;
cmd = SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ENABLED;
break;
case SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE:
gvtype = G_VARIANT_TYPE_BOOLEAN;
cmd = SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ACTIVE;
break;
case SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD:
gvtype = G_VARIANT_TYPE_DOUBLE;
cmd = SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_THRESHOLD;
break;
case SR_CONF_OVER_CURRENT_PROTECTION_ENABLED:
gvtype = G_VARIANT_TYPE_BOOLEAN;
cmd = SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ENABLED;
break;
case SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE:
gvtype = G_VARIANT_TYPE_BOOLEAN;
cmd = SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ACTIVE;
break;
case SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD:
gvtype = G_VARIANT_TYPE_DOUBLE;
cmd = SCPI_CMD_GET_OVER_CURRENT_PROTECTION_THRESHOLD;
break;
case SR_CONF_OVER_TEMPERATURE_PROTECTION:
gvtype = G_VARIANT_TYPE_BOOLEAN;
cmd = SCPI_CMD_GET_OVER_TEMPERATURE_PROTECTION;
break;
case SR_CONF_OUTPUT_REGULATION:
gvtype = G_VARIANT_TYPE_STRING;
cmd = SCPI_CMD_GET_OUTPUT_REGULATION;
}
if (gvtype) {
if (cg)
select_channel(sdi, cg->channels->data);
ret = scpi_cmd_resp(sdi, data, gvtype, cmd);
} else
ret = SR_ERR_NA;
return ret;
}
static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
double d;
int ret;
if (!sdi)
return SR_ERR_ARG;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
if (cg)
/* Channel group specified. */
select_channel(sdi, cg->channels->data);
ret = SR_OK;
switch (key) {
case SR_CONF_OUTPUT_ENABLED:
if (g_variant_get_boolean(data))
ret = scpi_cmd(sdi, SCPI_CMD_SET_OUTPUT_ENABLE);
else
ret = scpi_cmd(sdi, SCPI_CMD_SET_OUTPUT_DISABLE);
break;
case SR_CONF_OUTPUT_VOLTAGE_TARGET:
d = g_variant_get_double(data);
ret = scpi_cmd(sdi, SCPI_CMD_SET_VOLTAGE_TARGET, d);
break;
case SR_CONF_OUTPUT_FREQUENCY_TARGET:
d = g_variant_get_double(data);
ret = scpi_cmd(sdi, SCPI_CMD_SET_FREQUENCY_TARGET, d);
break;
case SR_CONF_OUTPUT_CURRENT_LIMIT:
d = g_variant_get_double(data);
ret = scpi_cmd(sdi, SCPI_CMD_SET_CURRENT_LIMIT, d);
break;
case SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED:
if (g_variant_get_boolean(data))
ret = scpi_cmd(sdi, SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_ENABLE);
else
ret = scpi_cmd(sdi, SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_DISABLE);
break;
case SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD:
d = g_variant_get_double(data);
ret = scpi_cmd(sdi, SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, d);
break;
case SR_CONF_OVER_CURRENT_PROTECTION_ENABLED:
if (g_variant_get_boolean(data))
ret = scpi_cmd(sdi, SCPI_CMD_SET_OVER_CURRENT_PROTECTION_ENABLE);
else
ret = scpi_cmd(sdi, SCPI_CMD_SET_OVER_CURRENT_PROTECTION_DISABLE);
break;
case SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD:
d = g_variant_get_double(data);
ret = scpi_cmd(sdi, SCPI_CMD_SET_OVER_CURRENT_PROTECTION_THRESHOLD, d);
break;
case SR_CONF_OVER_TEMPERATURE_PROTECTION:
if (g_variant_get_boolean(data))
ret = scpi_cmd(sdi, SCPI_CMD_SET_OVER_TEMPERATURE_PROTECTION_ENABLE);
else
ret = scpi_cmd(sdi, SCPI_CMD_SET_OVER_TEMPERATURE_PROTECTION_DISABLE);
break;
default:
ret = SR_ERR_NA;
}
return ret;
}
static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
struct sr_channel *ch;
const struct channel_spec *ch_spec;
GVariant *gvar;
GVariantBuilder gvb;
int ret, i;
const char *s[16];
/* Always available, even without sdi. */
if (key == SR_CONF_SCAN_OPTIONS) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
return SR_OK;
} else if (key == SR_CONF_DEVICE_OPTIONS && !sdi) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
return SR_OK;
}
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
ret = SR_OK;
if (!cg) {
/* No channel group: global options. */
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devc->device->devopts, devc->device->num_devopts,
sizeof(uint32_t));
break;
case SR_CONF_OUTPUT_CHANNEL_CONFIG:
/* Not used. */
i = 0;
if (devc->device->features & PPS_INDEPENDENT)
s[i++] = "Independent";
if (devc->device->features & PPS_SERIES)
s[i++] = "Series";
if (devc->device->features & PPS_PARALLEL)
s[i++] = "Parallel";
if (i == 0) {
/*
* Shouldn't happen: independent-only devices
* shouldn't advertise this option at all.
*/
return SR_ERR_NA;
}
*data = g_variant_new_strv(s, i);
break;
default:
return SR_ERR_NA;
}
} else {
/* Channel group specified. */
/*
* Per-channel-group options depending on a channel are actually
* done with the first channel. Channel groups in PPS can have
* more than one channel, but they will typically be of equal
* specification for use in series or parallel mode.
*/
ch = cg->channels->data;
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devc->device->devopts_cg, devc->device->num_devopts_cg,
sizeof(uint32_t));
break;
case SR_CONF_OUTPUT_VOLTAGE_TARGET:
ch_spec = &(devc->device->channels[ch->index]);
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
/* Min, max, write resolution. */
for (i = 0; i < 3; i++) {
gvar = g_variant_new_double(ch_spec->voltage[i]);
g_variant_builder_add_value(&gvb, gvar);
}
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_OUTPUT_FREQUENCY_TARGET:
ch_spec = &(devc->device->channels[ch->index]);
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
/* Min, max, write resolution. */
for (i = 0; i < 3; i++) {
gvar = g_variant_new_double(ch_spec->frequency[i]);
g_variant_builder_add_value(&gvb, gvar);
}
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_OUTPUT_CURRENT_LIMIT:
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
/* Min, max, step. */
for (i = 0; i < 3; i++) {
ch_spec = &(devc->device->channels[ch->index]);
gvar = g_variant_new_double(ch_spec->current[i]);
g_variant_builder_add_value(&gvb, gvar);
}
*data = g_variant_builder_end(&gvb);
break;
default:
return SR_ERR_NA;
}
}
return ret;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi,
void *cb_data)
{
struct dev_context *devc;
struct sr_scpi_dev_inst *scpi;
struct sr_channel *ch;
struct pps_channel *pch;
int cmd, ret;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
scpi = sdi->conn;
devc->cb_data = cb_data;
if ((ret = sr_scpi_source_add(sdi->session, scpi, G_IO_IN, 10,
scpi_pps_receive_data, (void *)sdi)) != SR_OK)
return ret;
std_session_send_df_header(sdi, LOG_PREFIX);
/* Prime the pipe with the first channel's fetch. */
ch = next_enabled_channel(sdi, NULL);
pch = ch->priv;
if ((ret = select_channel(sdi, ch)) != SR_OK)
return ret;
if (pch->mq == SR_MQ_VOLTAGE)
cmd = SCPI_CMD_GET_MEAS_VOLTAGE;
else if (pch->mq == SR_MQ_FREQUENCY)
cmd = SCPI_CMD_GET_MEAS_FREQUENCY;
else if (pch->mq == SR_MQ_CURRENT)
cmd = SCPI_CMD_GET_MEAS_CURRENT;
else if (pch->mq == SR_MQ_POWER)
cmd = SCPI_CMD_GET_MEAS_POWER;
else
return SR_ERR;
scpi_cmd(sdi, cmd, pch->hwname);
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct sr_datafeed_packet packet;
struct sr_scpi_dev_inst *scpi;
float f;
(void)cb_data;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
scpi = sdi->conn;
/*
* A requested value is certainly on the way. Retrieve it now,
* to avoid leaving the device in a state where it's not expecting
* commands.
*/
sr_scpi_get_float(scpi, NULL, &f);
sr_scpi_source_remove(sdi->session, scpi);
packet.type = SR_DF_END;
sr_session_send(sdi, &packet);
return SR_OK;
}
SR_PRIV struct sr_dev_driver scpi_pps_driver_info = {
.name = "scpi-pps",
.longname = "SCPI PPS",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};