libsigrok/hardware/fluke-dmm/fluke.c

360 lines
9.8 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <glib.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "fluke-dmm.h"
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <errno.h>
static struct sr_datafeed_analog *handle_qm_v1(const struct sr_dev_inst *sdi,
char **tokens)
{
struct sr_datafeed_analog *analog;
float fvalue;
char *e, *u;
gboolean is_oor;
(void)sdi;
if (strcmp(tokens[0], "QM"))
return NULL;
if ((e = strstr(tokens[1], "Out of range"))) {
is_oor = TRUE;
fvalue = -1;
} else {
is_oor = FALSE;
fvalue = strtof(tokens[1], &e);
if (fvalue == 0.0 && e == tokens[1]) {
/* Happens all the time, when switching modes. */
sr_dbg("Invalid float.");
return NULL;
}
}
while(*e && *e == ' ')
e++;
/* TODO: Check malloc return value. */
analog = g_try_malloc0(sizeof(struct sr_datafeed_analog));
analog->num_samples = 1;
/* TODO: Check malloc return value. */
analog->data = g_try_malloc(sizeof(float));
if (is_oor)
*analog->data = NAN;
else
*analog->data = fvalue;
analog->mq = -1;
if ((u = strstr(e, "V DC")) || (u = strstr(e, "V AC"))) {
analog->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT;
if (!is_oor && e[0] == 'm')
*analog->data /= 1000;
/* This catches "V AC", "V DC" and "V AC+DC". */
if (strstr(u, "AC"))
analog->mqflags |= SR_MQFLAG_AC | SR_MQFLAG_RMS;
if (strstr(u, "DC"))
analog->mqflags |= SR_MQFLAG_DC;
} else if ((u = strstr(e, "dBV")) || (u = strstr(e, "dBm"))) {
analog->mq = SR_MQ_VOLTAGE;
if (u[2] == 'm')
analog->unit = SR_UNIT_DECIBEL_MW;
else
analog->unit = SR_UNIT_DECIBEL_VOLT;
analog->mqflags |= SR_MQFLAG_AC | SR_MQFLAG_RMS;
} else if ((u = strstr(e, "Ohms"))) {
analog->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM;
if (is_oor)
*analog->data = INFINITY;
else if (e[0] == 'k')
*analog->data *= 1000;
else if (e[0] == 'M')
*analog->data *= 1000000;
} else if (!strcmp(e, "nS")) {
analog->mq = SR_MQ_CONDUCTANCE;
analog->unit = SR_UNIT_SIEMENS;
*analog->data /= 1e+9;
} else if ((u = strstr(e, "Farads"))) {
analog->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD;
if (!is_oor) {
if (e[0] == 'm')
*analog->data /= 1e+3;
else if (e[0] == 'u')
*analog->data /= 1e+6;
else if (e[0] == 'n')
*analog->data /= 1e+9;
}
} else if ((u = strstr(e, "Deg C")) || (u = strstr(e, "Deg F"))) {
analog->mq = SR_MQ_TEMPERATURE;
if (u[4] == 'C')
analog->unit = SR_UNIT_CELSIUS;
else
analog->unit = SR_UNIT_FAHRENHEIT;
} else if ((u = strstr(e, "A AC")) || (u = strstr(e, "A DC"))) {
analog->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE;
/* This catches "A AC", "A DC" and "A AC+DC". */
if (strstr(u, "AC"))
analog->mqflags |= SR_MQFLAG_AC | SR_MQFLAG_RMS;
if (strstr(u, "DC"))
analog->mqflags |= SR_MQFLAG_DC;
if (!is_oor) {
if (e[0] == 'm')
*analog->data /= 1e+3;
else if (e[0] == 'u')
*analog->data /= 1e+6;
}
} else if ((u = strstr(e, "Hz"))) {
analog->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ;
if (e[0] == 'k')
*analog->data *= 1e+3;
} else if (!strcmp(e, "%")) {
analog->mq = SR_MQ_DUTY_CYCLE;
analog->unit = SR_UNIT_PERCENTAGE;
} else if ((u = strstr(e, "ms"))) {
analog->mq = SR_MQ_PULSE_WIDTH;
analog->unit = SR_UNIT_SECOND;
*analog->data /= 1e+3;
}
if (analog->mq == -1) {
/* Not a valid measurement. */
g_free(analog->data);
g_free(analog);
analog = NULL;
}
return analog;
}
static struct sr_datafeed_analog *handle_qm_v2(const struct sr_dev_inst *sdi,
char **tokens)
{
struct sr_datafeed_analog *analog;
float fvalue;
char *eptr;
(void)sdi;
fvalue = strtof(tokens[0], &eptr);
if (fvalue == 0.0 && eptr == tokens[0]) {
sr_err("Invalid float.");
return NULL;
}
/* TODO: Check malloc return value. */
analog = g_try_malloc0(sizeof(struct sr_datafeed_analog));
analog->num_samples = 1;
/* TODO: Check malloc return value. */
analog->data = g_try_malloc(sizeof(float));
*analog->data = fvalue;
analog->mq = -1;
if (!strcmp(tokens[1], "VAC") || !strcmp(tokens[1], "VDC")) {
analog->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT;
if (!strcmp(tokens[2], "NORMAL")) {
if (tokens[1][1] == 'A') {
analog->mqflags |= SR_MQFLAG_AC;
analog->mqflags |= SR_MQFLAG_RMS;
} else
analog->mqflags |= SR_MQFLAG_DC;
} else if (!strcmp(tokens[2], "OL") || !strcmp(tokens[2], "OL_MINUS")) {
*analog->data = NAN;
} else
analog->mq = -1;
} else if (!strcmp(tokens[1], "dBV") || !strcmp(tokens[1], "dBm")) {
analog->mq = SR_MQ_VOLTAGE;
if (tokens[1][2] == 'm')
analog->unit = SR_UNIT_DECIBEL_MW;
else
analog->unit = SR_UNIT_DECIBEL_VOLT;
analog->mqflags |= SR_MQFLAG_AC | SR_MQFLAG_RMS;
} else if (!strcmp(tokens[1], "CEL") || !strcmp(tokens[1], "FAR")) {
if (!strcmp(tokens[2], "NORMAL")) {
analog->mq = SR_MQ_TEMPERATURE;
if (tokens[1][0] == 'C')
analog->unit = SR_UNIT_CELSIUS;
else
analog->unit = SR_UNIT_FAHRENHEIT;
}
} else if (!strcmp(tokens[1], "OHM")) {
if (!strcmp(tokens[3], "NONE")) {
analog->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM;
if (!strcmp(tokens[2], "OL") || !strcmp(tokens[2], "OL_MINUS")) {
*analog->data = INFINITY;
} else if (strcmp(tokens[2], "NORMAL"))
analog->mq = -1;
} else if (!strcmp(tokens[3], "OPEN_CIRCUIT")) {
analog->mq = SR_MQ_CONTINUITY;
analog->unit = SR_UNIT_BOOLEAN;
*analog->data = 0.0;
} else if (!strcmp(tokens[3], "SHORT_CIRCUIT")) {
analog->mq = SR_MQ_CONTINUITY;
analog->unit = SR_UNIT_BOOLEAN;
*analog->data = 1.0;
}
} else if (!strcmp(tokens[1], "F")
&& !strcmp(tokens[2], "NORMAL")
&& !strcmp(tokens[3], "NONE")) {
analog->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD;
} else if (!strcmp(tokens[1], "AAC") || !strcmp(tokens[1], "ADC")) {
analog->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE;
if (!strcmp(tokens[2], "NORMAL")) {
if (tokens[1][1] == 'A') {
analog->mqflags |= SR_MQFLAG_AC;
analog->mqflags |= SR_MQFLAG_RMS;
} else
analog->mqflags |= SR_MQFLAG_DC;
} else if (!strcmp(tokens[2], "OL") || !strcmp(tokens[2], "OL_MINUS")) {
*analog->data = NAN;
} else
analog->mq = -1;
} if (!strcmp(tokens[1], "Hz") && !strcmp(tokens[2], "NORMAL")) {
analog->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ;
} else if (!strcmp(tokens[1], "PCT") && !strcmp(tokens[2], "NORMAL")) {
analog->mq = SR_MQ_DUTY_CYCLE;
analog->unit = SR_UNIT_PERCENTAGE;
} else if (!strcmp(tokens[1], "S") && !strcmp(tokens[2], "NORMAL")) {
analog->mq = SR_MQ_PULSE_WIDTH;
analog->unit = SR_UNIT_SECOND;
} else if (!strcmp(tokens[1], "SIE") && !strcmp(tokens[2], "NORMAL")) {
analog->mq = SR_MQ_CONDUCTANCE;
analog->unit = SR_UNIT_SIEMENS;
}
if (analog->mq == -1) {
/* Not a valid measurement. */
g_free(analog->data);
g_free(analog);
analog = NULL;
}
return analog;
}
static void handle_line(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_datafeed_packet packet;
struct sr_datafeed_analog *analog;
char **tokens;
devc = sdi->priv;
sr_spew("Received line '%s' (%d).", devc->buf, devc->buflen);
if (devc->buflen == 1) {
if (devc->buf[0] != '0') {
/* Not just a CMD_ACK from the query command. */
sr_dbg("Got CMD_ACK '%c'.", devc->buf[0]);
devc->expect_response = FALSE;
}
devc->buflen = 0;
return;
}
analog = NULL;
tokens = g_strsplit(devc->buf, ",", 0);
if (tokens[0] && tokens[1]) {
if (devc->profile->model == FLUKE_187) {
devc->expect_response = FALSE;
analog = handle_qm_v1(sdi, tokens);
} else if (devc->profile->model == FLUKE_287) {
devc->expect_response = FALSE;
analog = handle_qm_v2(sdi, tokens);
}
}
g_strfreev(tokens);
devc->buflen = 0;
if (analog) {
/* Got a measurement. */
packet.type = SR_DF_ANALOG;
packet.payload = analog;
sr_session_send(devc->cb_data, &packet);
devc->num_samples++;
g_free(analog->data);
g_free(analog);
}
}
SR_PRIV int fluke_receive_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
int len;
int64_t now, elapsed;
if (!(sdi = cb_data))
return TRUE;
if (!(devc = sdi->priv))
return TRUE;
if (revents == G_IO_IN) {
/* Serial data arrived. */
while(FLUKEDMM_BUFSIZE - devc->buflen - 1 > 0) {
len = serial_read(fd, devc->buf + devc->buflen, 1);
if (len < 1)
break;
devc->buflen++;
*(devc->buf + devc->buflen) = '\0';
if (*(devc->buf + devc->buflen - 1) == '\r') {
*(devc->buf + --devc->buflen) = '\0';
handle_line(sdi);
break;
}
}
}
if (devc->num_samples >= devc->limit_samples) {
sdi->driver->dev_acquisition_stop(sdi, cb_data);
return TRUE;
}
now = g_get_monotonic_time() / 1000;
elapsed = now - devc->cmd_sent_at;
/* Send query command at poll_period interval, or after 1 second
* has elapsed. This will make it recover from any out-of-sync
* or temporary disconnect issues. */
if ((devc->expect_response == FALSE && elapsed > devc->profile->poll_period)
|| elapsed > 1000) {
sr_spew("Sending QM.");
if (serial_write(devc->serial->fd, "QM\r", 3) == -1)
sr_err("Unable to send QM: %s.", strerror(errno));
devc->cmd_sent_at = now;
devc->expect_response = TRUE;
}
return TRUE;
}