libsigrok/src/hardware/scpi-pps/profiles.c

1340 lines
47 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2014 Bert Vermeulen <bert@biot.com>
* Copyright (C) 2015 Google, Inc.
* (Written by Alexandru Gagniuc <mrnuke@google.com> for Google, Inc.)
* Copyright (C) 2017,2019 Frank Stettner <frank-stettner@gmx.net>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <string.h>
#include <strings.h>
#include "protocol.h"
#define CH_IDX(x) (1 << x)
#define FREQ_DC_ONLY {0, 0, 0, 0, 0}
#define NO_OVP_LIMITS {0, 0, 0, 0, 0}
#define NO_OCP_LIMITS {0, 0, 0, 0, 0}
/* Agilent/Keysight N5700A series */
static const uint32_t agilent_n5700a_devopts[] = {
SR_CONF_CONTINUOUS,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
};
static const uint32_t agilent_n5700a_devopts_cg[] = {
SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET,
SR_CONF_OVER_CURRENT_PROTECTION_ENABLED | SR_CONF_GET | SR_CONF_SET,
SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET,
SR_CONF_VOLTAGE | SR_CONF_GET,
SR_CONF_VOLTAGE_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_CURRENT | SR_CONF_GET,
SR_CONF_ENABLED | SR_CONF_GET | SR_CONF_SET,
};
static const struct channel_group_spec agilent_n5700a_cg[] = {
{ "1", CH_IDX(0), PPS_OVP | PPS_OCP, SR_MQFLAG_DC },
};
static const struct channel_spec agilent_n5767a_ch[] = {
{ "1", { 0, 60, 0.0072, 3, 4 }, { 0, 25, 0.003, 3, 4 }, { 0, 1500 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
};
static const struct channel_spec agilent_n5763a_ch[] = {
{ "1", { 0, 12.5, 0.0015, 3, 4 }, { 0, 120, 0.0144, 3, 4 }, { 0, 1500 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
};
/*
* TODO: OVER_CURRENT_PROTECTION_ACTIVE status can be determined by the OC bit
* in STAT:QUES:EVEN?, but this is not implemented.
*/
static const struct scpi_command agilent_n5700a_cmd[] = {
{ SCPI_CMD_REMOTE, "SYST:COMM:RLST REM" },
{ SCPI_CMD_LOCAL, "SYST:COMM:RLST LOC" },
{ SCPI_CMD_GET_MEAS_VOLTAGE, ":MEAS:VOLT?" },
{ SCPI_CMD_GET_MEAS_CURRENT, "MEAS:CURR?" },
{ SCPI_CMD_GET_VOLTAGE_TARGET, ":SOUR:VOLT?" },
{ SCPI_CMD_SET_VOLTAGE_TARGET, ":SOUR:VOLT %.6f" },
{ SCPI_CMD_GET_CURRENT_LIMIT, ":SOUR:CURR?" },
{ SCPI_CMD_SET_CURRENT_LIMIT, ":SOUR:CURR %.6f" },
{ SCPI_CMD_GET_OUTPUT_ENABLED, ":OUTP:STAT?" },
{ SCPI_CMD_SET_OUTPUT_ENABLE, ":OUTP ON" },
{ SCPI_CMD_SET_OUTPUT_DISABLE, ":OUTP OFF" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":VOLT:PROT?" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":VOLT:PROT %.6f" },
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ENABLED, ":CURR:PROT:STAT?" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_ENABLE, ":CURR:PROT:STAT ON?"},
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_DISABLE, ":CURR:PROT:STAT OFF?"},
/* Current limit (CC mode) and OCP are set using the same command. */
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_THRESHOLD, ":SOUR:CURR?" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_THRESHOLD, ":SOUR:CURR %.6f" },
ALL_ZERO
};
/* BK Precision 9130 series */
static const uint32_t bk_9130_devopts[] = {
SR_CONF_CONTINUOUS,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
};
static const uint32_t bk_9130_devopts_cg[] = {
SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET,
SR_CONF_VOLTAGE | SR_CONF_GET,
SR_CONF_VOLTAGE_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_CURRENT | SR_CONF_GET,
SR_CONF_CURRENT_LIMIT | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_ENABLED | SR_CONF_GET | SR_CONF_SET,
};
static const struct channel_spec bk_9130_ch[] = {
{ "1", { 0, 30, 0.001, 3, 3 }, { 0, 3, 0.001, 3, 3 }, { 0, 90, 0, 3, 3 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
{ "2", { 0, 30, 0.001, 3, 3 }, { 0, 3, 0.001, 3, 3 }, { 0, 90, 0, 3, 3 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
{ "3", { 0, 5, 0.001, 3, 3 }, { 0, 3, 0.001, 3, 3 }, { 0, 15, 0, 3, 3 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
};
static const struct channel_group_spec bk_9130_cg[] = {
{ "1", CH_IDX(0), PPS_OVP, SR_MQFLAG_DC },
{ "2", CH_IDX(1), PPS_OVP, SR_MQFLAG_DC },
{ "3", CH_IDX(2), PPS_OVP, SR_MQFLAG_DC },
};
static const struct scpi_command bk_9130_cmd[] = {
{ SCPI_CMD_REMOTE, "SYST:REMOTE" },
{ SCPI_CMD_LOCAL, "SYST:LOCAL" },
{ SCPI_CMD_SELECT_CHANNEL, ":INST:NSEL %s" },
{ SCPI_CMD_GET_MEAS_VOLTAGE, ":MEAS:VOLT?" },
{ SCPI_CMD_GET_MEAS_CURRENT, ":MEAS:CURR?" },
{ SCPI_CMD_GET_MEAS_POWER, ":MEAS:POWER?" },
{ SCPI_CMD_GET_VOLTAGE_TARGET, ":SOUR:VOLT?" },
{ SCPI_CMD_SET_VOLTAGE_TARGET, ":SOUR:VOLT %.6f" },
{ SCPI_CMD_GET_CURRENT_LIMIT, ":SOUR:CURR?" },
{ SCPI_CMD_SET_CURRENT_LIMIT, ":SOUR:CURR %.6f" },
{ SCPI_CMD_GET_OUTPUT_ENABLED, ":OUTP?" },
{ SCPI_CMD_SET_OUTPUT_ENABLE, ":OUTP 1" },
{ SCPI_CMD_SET_OUTPUT_DISABLE, ":OUTP 0" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":SOUR:VOLT:PROT?" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":SOUR:VOLT:PROT %.6f" },
ALL_ZERO
};
/* Chroma 61600 series AC source */
static const uint32_t chroma_61604_devopts[] = {
SR_CONF_CONTINUOUS,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
};
static const uint32_t chroma_61604_devopts_cg[] = {
SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET,
SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET,
SR_CONF_VOLTAGE | SR_CONF_GET,
SR_CONF_VOLTAGE_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_OUTPUT_FREQUENCY | SR_CONF_GET,
SR_CONF_OUTPUT_FREQUENCY_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_CURRENT | SR_CONF_GET,
SR_CONF_ENABLED | SR_CONF_GET | SR_CONF_SET,
};
static const struct channel_spec chroma_61604_ch[] = {
{ "1", { 0, 300, 0.1, 1, 1 }, { 0, 16, 0.1, 2, 2 }, { 0, 2000, 0, 1, 1 }, { 1.0, 1000.0, 0.01 }, NO_OVP_LIMITS, NO_OCP_LIMITS },
};
static const struct channel_group_spec chroma_61604_cg[] = {
{ "1", CH_IDX(0), PPS_OVP | PPS_OCP, SR_MQFLAG_AC },
};
static const struct scpi_command chroma_61604_cmd[] = {
{ SCPI_CMD_REMOTE, "SYST:REM" },
{ SCPI_CMD_LOCAL, "SYST:LOC" },
{ SCPI_CMD_GET_MEAS_VOLTAGE, ":FETC:VOLT:ACDC?" },
{ SCPI_CMD_GET_MEAS_FREQUENCY, ":FETC:FREQ?" },
{ SCPI_CMD_GET_MEAS_CURRENT, ":FETC:CURR:AC?" },
{ SCPI_CMD_GET_MEAS_POWER, ":FETC:POW:AC?" },
{ SCPI_CMD_GET_VOLTAGE_TARGET, ":SOUR:VOLT:AC?" },
{ SCPI_CMD_SET_VOLTAGE_TARGET, ":SOUR:VOLT:AC %.1f" },
{ SCPI_CMD_GET_FREQUENCY_TARGET, ":SOUR:FREQ?" },
{ SCPI_CMD_SET_FREQUENCY_TARGET, ":SOUR:FREQ %.2f" },
{ SCPI_CMD_GET_OUTPUT_ENABLED, ":OUTP?" },
{ SCPI_CMD_SET_OUTPUT_ENABLE, ":OUTP ON" },
{ SCPI_CMD_SET_OUTPUT_DISABLE, ":OUTP OFF" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":SOUR:VOLT:LIM:AC?" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":SOUR:VOLT:LIM:AC %.1f" },
/* This is not a current limit mode. It is overcurrent protection. */
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_THRESHOLD, ":SOUR:CURR:LIM?" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_THRESHOLD, ":SOUR:CURR:LIM %.2f" },
ALL_ZERO
};
/* Chroma 62000 series DC source */
static const uint32_t chroma_62000_devopts[] = {
SR_CONF_CONTINUOUS,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
};
static const uint32_t chroma_62000_devopts_cg[] = {
SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET,
SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET,
SR_CONF_VOLTAGE | SR_CONF_GET,
SR_CONF_VOLTAGE_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_CURRENT | SR_CONF_GET,
SR_CONF_CURRENT_LIMIT | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_ENABLED | SR_CONF_GET | SR_CONF_SET,
};
static const struct channel_group_spec chroma_62000_cg[] = {
{ "1", CH_IDX(0), PPS_OVP | PPS_OCP, SR_MQFLAG_DC },
};
static const struct scpi_command chroma_62000_cmd[] = {
{ SCPI_CMD_REMOTE, ":CONF:REM ON" },
{ SCPI_CMD_LOCAL, ":CONF:REM OFF" },
{ SCPI_CMD_BEEPER, ":CONF:BEEP?" },
{ SCPI_CMD_BEEPER_ENABLE, ":CONF:BEEP ON" },
{ SCPI_CMD_BEEPER_DISABLE, ":CONF:BEEP OFF" },
{ SCPI_CMD_GET_MEAS_VOLTAGE, ":MEAS:VOLT?" },
{ SCPI_CMD_GET_MEAS_CURRENT, ":MEAS:CURR?" },
{ SCPI_CMD_GET_MEAS_POWER, ":MEAS:POW?" },
{ SCPI_CMD_GET_VOLTAGE_TARGET, ":SOUR:VOLT?" },
{ SCPI_CMD_SET_VOLTAGE_TARGET, ":SOUR:VOLT %.2f" },
{ SCPI_CMD_GET_CURRENT_LIMIT, ":SOUR:CURR?" },
{ SCPI_CMD_SET_CURRENT_LIMIT, ":SOUR:CURR %.6f" },
{ SCPI_CMD_GET_OUTPUT_ENABLED, ":CONF:OUTP?" },
{ SCPI_CMD_SET_OUTPUT_ENABLE, ":CONF:OUTP ON" },
{ SCPI_CMD_SET_OUTPUT_DISABLE, ":CONF:OUTP OFF" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":SOUR:VOLT:PROT:HIGH?" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":SOUR:VOLT:PROT:HIGH %.6f" },
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_THRESHOLD, ":SOUR:CURR:PROT:HIGH?" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_THRESHOLD, ":SOUR:CURR:PROT:HIGH %.6f" },
ALL_ZERO
};
static int chroma_62000p_probe_channels(struct sr_dev_inst *sdi,
struct sr_scpi_hw_info *hw_info,
struct channel_spec **channels, unsigned int *num_channels,
struct channel_group_spec **channel_groups,
unsigned int *num_channel_groups)
{
unsigned int volts, amps, watts;
struct channel_spec *channel;
(void)sdi;
sscanf(hw_info->model, "620%uP-%u-%u", &watts, &volts, &amps);
watts *= 100;
sr_dbg("Found device rated for %d V, %d A and %d W", volts, amps, watts);
if (volts > 600) {
sr_err("Probed max voltage of %u V is out of spec.", volts);
return SR_ERR_BUG;
}
if (amps > 120) {
sr_err("Probed max current of %u A is out of spec.", amps);
return SR_ERR_BUG;
}
if (watts > 5000) {
sr_err("Probed max power of %u W is out of spec.", watts);
return SR_ERR_BUG;
}
channel = g_malloc0(sizeof(struct channel_spec));
channel->name = "1";
channel->voltage[0] = channel->current[0] = channel->power[0] = 0.0;
channel->voltage[1] = volts;
channel->current[1] = amps;
channel->power[1] = watts;
channel->voltage[2] = channel->current[2] = 0.01;
channel->voltage[3] = channel->voltage[4] = 3;
channel->current[3] = channel->current[4] = 4;
*channels = channel;
*num_channels = 1;
*channel_groups = g_malloc(sizeof(struct channel_group_spec));
**channel_groups = chroma_62000_cg[0];
*num_channel_groups = 1;
return SR_OK;
}
/* Rigol DP700 series */
static const uint32_t rigol_dp700_devopts[] = {
SR_CONF_CONTINUOUS,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
};
static const uint32_t rigol_dp700_devopts_cg[] = {
SR_CONF_REGULATION | SR_CONF_GET,
SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED | SR_CONF_GET | SR_CONF_SET,
SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE | SR_CONF_GET,
SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_OVER_CURRENT_PROTECTION_ENABLED | SR_CONF_GET | SR_CONF_SET,
SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE | SR_CONF_GET,
SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_VOLTAGE | SR_CONF_GET,
SR_CONF_VOLTAGE_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_CURRENT | SR_CONF_GET,
SR_CONF_CURRENT_LIMIT | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_ENABLED | SR_CONF_GET | SR_CONF_SET,
};
static const struct channel_spec rigol_dp711_ch[] = {
{ "1", { 0, 30, 0.01, 3, 3 }, { 0, 5, 0.01, 3, 3 }, { 0, 150, 0, 3, 3 }, FREQ_DC_ONLY, { 0.01, 33, 0.01}, { 0.01, 5.5, 0.01 } },
};
static const struct channel_spec rigol_dp712_ch[] = {
{ "1", { 0, 50, 0.01, 3, 3 }, { 0, 3, 0.01, 3, 3 }, { 0, 150, 0, 3, 3 }, FREQ_DC_ONLY, { 0.01, 55, 0.01}, { 0.01, 3.3, 0.01 } },
};
static const struct channel_group_spec rigol_dp700_cg[] = {
{ "1", CH_IDX(0), PPS_OVP | PPS_OCP, SR_MQFLAG_DC },
};
/* Same as the DP800 series, except for the missing :SYST:OTP* commands. */
static const struct scpi_command rigol_dp700_cmd[] = {
{ SCPI_CMD_REMOTE, "SYST:REMOTE" },
{ SCPI_CMD_LOCAL, "SYST:LOCAL" },
{ SCPI_CMD_BEEPER, "SYST:BEEP:STAT?" },
{ SCPI_CMD_BEEPER_ENABLE, "SYST:BEEP:STAT ON" },
{ SCPI_CMD_BEEPER_DISABLE, "SYST:BEEP:STAT OFF" },
{ SCPI_CMD_SELECT_CHANNEL, ":INST:NSEL %s" },
{ SCPI_CMD_GET_MEAS_VOLTAGE, ":MEAS:VOLT?" },
{ SCPI_CMD_GET_MEAS_CURRENT, ":MEAS:CURR?" },
{ SCPI_CMD_GET_MEAS_POWER, ":MEAS:POWE?" },
{ SCPI_CMD_GET_VOLTAGE_TARGET, ":SOUR:VOLT?" },
{ SCPI_CMD_SET_VOLTAGE_TARGET, ":SOUR:VOLT %.6f" },
{ SCPI_CMD_GET_CURRENT_LIMIT, ":SOUR:CURR?" },
{ SCPI_CMD_SET_CURRENT_LIMIT, ":SOUR:CURR %.6f" },
{ SCPI_CMD_GET_OUTPUT_ENABLED, ":OUTP?" },
{ SCPI_CMD_SET_OUTPUT_ENABLE, ":OUTP ON" },
{ SCPI_CMD_SET_OUTPUT_DISABLE, ":OUTP OFF" },
{ SCPI_CMD_GET_OUTPUT_REGULATION, ":OUTP:MODE?" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ENABLED, ":OUTP:OVP?" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_ENABLE, ":OUTP:OVP ON" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_DISABLE, ":OUTP:OVP OFF" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ACTIVE, ":OUTP:OVP:QUES?" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":OUTP:OVP:VAL?" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":OUTP:OVP:VAL %.6f" },
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ENABLED, ":OUTP:OCP?" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_ENABLE, ":OUTP:OCP:STAT ON" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_DISABLE, ":OUTP:OCP:STAT OFF" },
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ACTIVE, ":OUTP:OCP:QUES?" },
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_THRESHOLD, ":OUTP:OCP:VAL?" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_THRESHOLD, ":OUTP:OCP:VAL %.6f" },
ALL_ZERO
};
/* Rigol DP800 series */
static const uint32_t rigol_dp800_devopts[] = {
SR_CONF_CONTINUOUS,
SR_CONF_OVER_TEMPERATURE_PROTECTION | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
};
static const uint32_t rigol_dp800_devopts_cg[] = {
SR_CONF_REGULATION | SR_CONF_GET,
SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED | SR_CONF_GET | SR_CONF_SET,
SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE | SR_CONF_GET,
SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET,
SR_CONF_OVER_CURRENT_PROTECTION_ENABLED | SR_CONF_GET | SR_CONF_SET,
SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE | SR_CONF_GET,
SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET,
SR_CONF_VOLTAGE | SR_CONF_GET,
SR_CONF_VOLTAGE_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_CURRENT | SR_CONF_GET,
SR_CONF_CURRENT_LIMIT | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_ENABLED | SR_CONF_GET | SR_CONF_SET,
};
static const struct channel_spec rigol_dp821a_ch[] = {
{ "1", { 0, 60, 0.001, 3, 3 }, { 0, 1, 0.0001, 4, 4 }, { 0, 60, 0, 3, 4 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
{ "2", { 0, 8, 0.001, 3, 3 }, { 0, 10, 0.001, 3, 3 }, { 0, 80, 0, 3, 3 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
};
static const struct channel_spec rigol_dp831_ch[] = {
{ "1", { 0, 8, 0.001, 3, 4 }, { 0, 5, 0.0003, 3, 4 }, { 0, 40, 0, 3, 4 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
{ "2", { 0, 30, 0.001, 3, 4 }, { 0, 2, 0.0001, 3, 4 }, { 0, 60, 0, 3, 4 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
{ "3", { 0, -30, 0.001, 3, 4 }, { 0, 2, 0.0001, 3, 4 }, { 0, 60, 0, 3, 4 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
};
static const struct channel_spec rigol_dp832_ch[] = {
{ "1", { 0, 30, 0.001, 3, 4 }, { 0, 3, 0.001, 3, 4 }, { 0, 90, 0, 3, 4 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
{ "2", { 0, 30, 0.001, 3, 4 }, { 0, 3, 0.001, 3, 4 }, { 0, 90, 0, 3, 4 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
{ "3", { 0, 5, 0.001, 3, 4 }, { 0, 3, 0.001, 3, 4 }, { 0, 90, 0, 3, 4 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
};
static const struct channel_group_spec rigol_dp820_cg[] = {
{ "1", CH_IDX(0), PPS_OVP | PPS_OCP, SR_MQFLAG_DC },
{ "2", CH_IDX(1), PPS_OVP | PPS_OCP, SR_MQFLAG_DC },
};
static const struct channel_group_spec rigol_dp830_cg[] = {
{ "1", CH_IDX(0), PPS_OVP | PPS_OCP, SR_MQFLAG_DC },
{ "2", CH_IDX(1), PPS_OVP | PPS_OCP, SR_MQFLAG_DC },
{ "3", CH_IDX(2), PPS_OVP | PPS_OCP, SR_MQFLAG_DC },
};
static const struct scpi_command rigol_dp800_cmd[] = {
{ SCPI_CMD_REMOTE, "SYST:REMOTE" },
{ SCPI_CMD_LOCAL, "SYST:LOCAL" },
{ SCPI_CMD_BEEPER, "SYST:BEEP:STAT?" },
{ SCPI_CMD_BEEPER_ENABLE, "SYST:BEEP:STAT ON" },
{ SCPI_CMD_BEEPER_DISABLE, "SYST:BEEP:STAT OFF" },
{ SCPI_CMD_SELECT_CHANNEL, ":INST:NSEL %s" },
{ SCPI_CMD_GET_MEAS_VOLTAGE, ":MEAS:VOLT?" },
{ SCPI_CMD_GET_MEAS_CURRENT, ":MEAS:CURR?" },
{ SCPI_CMD_GET_MEAS_POWER, ":MEAS:POWE?" },
{ SCPI_CMD_GET_VOLTAGE_TARGET, ":SOUR:VOLT?" },
{ SCPI_CMD_SET_VOLTAGE_TARGET, ":SOUR:VOLT %.6f" },
{ SCPI_CMD_GET_CURRENT_LIMIT, ":SOUR:CURR?" },
{ SCPI_CMD_SET_CURRENT_LIMIT, ":SOUR:CURR %.6f" },
{ SCPI_CMD_GET_OUTPUT_ENABLED, ":OUTP?" },
{ SCPI_CMD_SET_OUTPUT_ENABLE, ":OUTP ON" },
{ SCPI_CMD_SET_OUTPUT_DISABLE, ":OUTP OFF" },
{ SCPI_CMD_GET_OUTPUT_REGULATION, ":OUTP:MODE?" },
{ SCPI_CMD_GET_OVER_TEMPERATURE_PROTECTION, ":SYST:OTP?" },
{ SCPI_CMD_SET_OVER_TEMPERATURE_PROTECTION_ENABLE, ":SYST:OTP ON" },
{ SCPI_CMD_SET_OVER_TEMPERATURE_PROTECTION_DISABLE, ":SYST:OTP OFF" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ENABLED, ":OUTP:OVP?" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_ENABLE, ":OUTP:OVP ON" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_DISABLE, ":OUTP:OVP OFF" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ACTIVE, ":OUTP:OVP:QUES?" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":OUTP:OVP:VAL?" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":OUTP:OVP:VAL %.6f" },
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ENABLED, ":OUTP:OCP?" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_ENABLE, ":OUTP:OCP:STAT ON" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_DISABLE, ":OUTP:OCP:STAT OFF" },
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ACTIVE, ":OUTP:OCP:QUES?" },
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_THRESHOLD, ":OUTP:OCP:VAL?" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_THRESHOLD, ":OUTP:OCP:VAL %.6f" },
ALL_ZERO
};
/* HP 663xA series */
static const uint32_t hp_6630a_devopts[] = {
SR_CONF_CONTINUOUS,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
};
static const uint32_t hp_6630a_devopts_cg[] = {
SR_CONF_ENABLED | SR_CONF_SET,
SR_CONF_VOLTAGE | SR_CONF_GET,
SR_CONF_CURRENT | SR_CONF_GET,
SR_CONF_VOLTAGE_TARGET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_CURRENT_LIMIT | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE | SR_CONF_GET,
SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_OVER_CURRENT_PROTECTION_ENABLED | SR_CONF_SET,
SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE | SR_CONF_GET,
SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE | SR_CONF_GET,
SR_CONF_REGULATION | SR_CONF_GET,
};
static const struct channel_spec hp_6632a_ch[] = {
{ "1", { 0, 20.475, 0.005, 3, 4 }, { 0, 5.1188, 0.00125, 4, 5 }, { 0, 104.80743 }, FREQ_DC_ONLY, { 0, 22, 0.1 }, NO_OCP_LIMITS },
};
static const struct channel_spec hp_6633a_ch[] = {
{ "1", { 0, 51.188, 0.0125, 3, 4 }, { 0, 2.0475, 0.0005, 4, 5 }, { 0, 104.80743 }, FREQ_DC_ONLY, { 0, 55, 0.25 }, NO_OCP_LIMITS },
};
static const struct channel_spec hp_6634a_ch[] = {
{ "1", { 0, 102.38, 0.025, 3, 4 }, { 0, 1.0238, 0.00025, 4, 5 }, { 0, 104.81664 }, FREQ_DC_ONLY, { 0, 110, 0.5 }, NO_OCP_LIMITS },
};
static const struct channel_group_spec hp_6630a_cg[] = {
{ "1", CH_IDX(0), PPS_OVP | PPS_OCP, SR_MQFLAG_DC },
};
static const struct scpi_command hp_6630a_cmd[] = {
{ SCPI_CMD_SET_OUTPUT_ENABLE, "OUT 1" },
{ SCPI_CMD_SET_OUTPUT_DISABLE, "OUT 0" },
{ SCPI_CMD_GET_MEAS_VOLTAGE, "VOUT?" },
{ SCPI_CMD_GET_MEAS_CURRENT, "IOUT?" },
{ SCPI_CMD_SET_VOLTAGE_TARGET, "VSET %.4f" },
{ SCPI_CMD_SET_CURRENT_LIMIT, "ISET %.4f" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ACTIVE, "STS?" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, "OVSET %.4f" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_ENABLE, "OCP 1" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_DISABLE, "OCP 0" },
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ACTIVE, "STS?" },
{ SCPI_CMD_GET_OVER_TEMPERATURE_PROTECTION_ACTIVE, "STS?" },
{ SCPI_CMD_GET_OUTPUT_REGULATION, "STS?" },
ALL_ZERO
};
static int hp_6630a_init_aquisition(const struct sr_dev_inst *sdi)
{
struct sr_scpi_dev_inst *scpi;
int ret;
scpi = sdi->conn;
/*
* Monitor CV (1), CC+ (2), UR (4), OVP (8), OTP (16), OCP (64) and
* CC- (256) bits of the Status Register for the FAULT? query.
*/
ret = sr_scpi_send(scpi, "UNMASK 607");
if (ret != SR_OK)
return ret;
return SR_OK;
}
static int hp_6630a_update_status(const struct sr_dev_inst *sdi)
{
struct sr_scpi_dev_inst *scpi;
int ret;
int fault;
gboolean cv, cc_pos, unreg, cc_neg;
gboolean regulation_changed;
char *regulation;
scpi = sdi->conn;
/*
* Use the FAULT register (only 0->1 transitions), this way multiple set
* regulation bits in the STS/ASTS registers are ignored. In rare cases
* we will miss some changes (1->0 transitions, e.g. no regulation at all),
* but SPS/ASPS doesn't work either, unless all states are stored and
* compared to the states in STS/ASTS.
* TODO: Use SPoll or SRQ when SCPI over GPIB is used.
*/
ret = sr_scpi_get_int(scpi, "FAULT?", &fault);
if (ret != SR_OK)
return ret;
/* OVP */
if (fault & (1 << 3))
sr_session_send_meta(sdi, SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE,
g_variant_new_boolean(fault & (1 << 3)));
/* OCP */
if (fault & (1 << 6))
sr_session_send_meta(sdi, SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE,
g_variant_new_boolean(fault & (1 << 6)));
/* OTP */
if (fault & (1 << 4))
sr_session_send_meta(sdi, SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE,
g_variant_new_boolean(fault & (1 << 4)));
/* CV */
cv = (fault & (1 << 0));
regulation_changed = (fault & (1 << 0));
/* CC+ */
cc_pos = (fault & (1 << 1));
regulation_changed = (fault & (1 << 1)) | regulation_changed;
/* UNREG */
unreg = (fault & (1 << 2));
regulation_changed = (fault & (1 << 2)) | regulation_changed;
/* CC- */
cc_neg = (fault & (1 << 9));
regulation_changed = (fault & (1 << 9)) | regulation_changed;
if (regulation_changed) {
if (cv && !cc_pos && !cc_neg &&!unreg)
regulation = "CV";
else if (cc_pos && !cv && !cc_neg && !unreg)
regulation = "CC";
else if (cc_neg && !cv && !cc_pos && !unreg)
regulation = "CC-";
else if (unreg && !cv && !cc_pos && !cc_neg)
regulation = "UR";
else if (!cv && !cc_pos && !cc_neg &&!unreg)
regulation = "";
else {
sr_dbg("Undefined regulation for HP 66xxA "
"(CV=%i, CC+=%i, CC-=%i, UR=%i).",
cv, cc_pos, cc_neg, unreg);
return FALSE;
}
sr_session_send_meta(sdi, SR_CONF_REGULATION,
g_variant_new_string(regulation));
}
return SR_OK;
}
/* HP 663xB series */
static const uint32_t hp_6630b_devopts[] = {
SR_CONF_CONTINUOUS,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
};
static const uint32_t hp_6630b_devopts_cg[] = {
SR_CONF_ENABLED | SR_CONF_GET | SR_CONF_SET,
SR_CONF_VOLTAGE | SR_CONF_GET,
SR_CONF_CURRENT | SR_CONF_GET,
SR_CONF_VOLTAGE_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_CURRENT_LIMIT | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE | SR_CONF_GET,
SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_OVER_CURRENT_PROTECTION_ENABLED | SR_CONF_GET | SR_CONF_SET,
SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE | SR_CONF_GET,
SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE | SR_CONF_GET,
SR_CONF_REGULATION | SR_CONF_GET,
};
static const struct channel_spec hp_6611c_ch[] = {
{ "1", { 0, 8.19, 0.002, 3, 4 }, { 0, 5.1188, 0.00125, 4, 5 }, { 0, 41.92297 }, FREQ_DC_ONLY, { 0, 12, 0.06 }, NO_OCP_LIMITS },
};
static const struct channel_spec hp_6612c_ch[] = {
{ "1", { 0, 20.475, 0.005, 3, 4 }, { 0, 2.0475, 0.0005, 4, 5 }, { 0, 41.92256 }, FREQ_DC_ONLY, { 0, 22, 0.1 }, NO_OCP_LIMITS },
};
static const struct channel_spec hp_6613c_ch[] = {
{ "1", { 0, 51.188, 0.0125, 3, 4 }, { 0, 1.0238, 0.00025, 4, 5 }, { 0, 52.40627 }, FREQ_DC_ONLY, { 0, 55, 0.25 }, NO_OCP_LIMITS },
};
static const struct channel_spec hp_6614c_ch[] = {
{ "1", { 0, 102.38, 0.025, 3, 4 }, { 0, 0.5118, 0.000125, 4, 5 }, { 0, 52.39808 }, FREQ_DC_ONLY, { 0, 110, 0.5 }, NO_OCP_LIMITS },
};
static const struct channel_spec hp_6631b_ch[] = {
{ "1", { 0, 8.19, 0.002, 3, 4 }, { 0, 10.237, 0.00263, 4, 5 }, { 0, 83.84103 }, FREQ_DC_ONLY, { 0, 12, 0.06 }, NO_OCP_LIMITS },
};
static const struct channel_spec hp_6632b_ch[] = {
{ "1", { 0, 20.475, 0.005, 3, 4 }, { 0, 5.1188, 0.00132, 4, 5 }, { 0, 104.80743 }, FREQ_DC_ONLY, { 0, 22, 0.1 }, NO_OCP_LIMITS },
};
static const struct channel_spec hp_66332a_ch[] = {
{ "1", { 0, 20.475, 0.005, 3, 4 }, { 0, 5.1188, 0.00132, 4, 5 }, { 0, 104.80743 }, FREQ_DC_ONLY, { 0, 22, 0.1 }, NO_OCP_LIMITS },
};
static const struct channel_spec hp_6633b_ch[] = {
{ "1", { 0, 51.188, 0.0125, 3, 4 }, { 0, 2.0475, 0.000526, 4, 5 }, { 0, 104.80743 }, FREQ_DC_ONLY, { 0, 55, 0.25 }, NO_OCP_LIMITS },
};
static const struct channel_spec hp_6634b_ch[] = {
{ "1", { 0, 102.38, 0.025, 3, 4 }, { 0, 1.0238, 0.000263, 4, 5 }, { 0, 104.81664 }, FREQ_DC_ONLY, { 0, 110, 0.5 }, NO_OCP_LIMITS },
};
static const struct channel_group_spec hp_6630b_cg[] = {
{ "1", CH_IDX(0), PPS_OVP | PPS_OCP, SR_MQFLAG_DC },
};
static const struct scpi_command hp_6630b_cmd[] = {
{ SCPI_CMD_REMOTE, "SYST:REM" },
{ SCPI_CMD_LOCAL, "SYST:LOC" },
{ SCPI_CMD_GET_OUTPUT_ENABLED, "OUTP:STAT?" },
{ SCPI_CMD_SET_OUTPUT_ENABLE, "OUTP:STAT ON" },
{ SCPI_CMD_SET_OUTPUT_DISABLE, "OUTP:STAT OFF" },
{ SCPI_CMD_GET_MEAS_VOLTAGE, ":MEAS:VOLT?" },
{ SCPI_CMD_GET_MEAS_CURRENT, ":MEAS:CURR?" },
{ SCPI_CMD_GET_VOLTAGE_TARGET, ":SOUR:VOLT?" },
{ SCPI_CMD_SET_VOLTAGE_TARGET, ":SOUR:VOLT %.6f" },
{ SCPI_CMD_GET_CURRENT_LIMIT, ":SOUR:CURR?" },
{ SCPI_CMD_SET_CURRENT_LIMIT, ":SOUR:CURR %.6f" },
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ENABLED, ":CURR:PROT:STAT?" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_ENABLE, ":CURR:PROT:STAT 1" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_DISABLE, ":CURR:PROT:STAT 0" },
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ACTIVE, "STAT:QUES:COND?" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ACTIVE, "STAT:QUES:COND?" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":VOLT:PROT?" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":VOLT:PROT %.6f" },
{ SCPI_CMD_GET_OVER_TEMPERATURE_PROTECTION_ACTIVE, "STAT:QUES:COND?" },
{ SCPI_CMD_GET_OUTPUT_REGULATION, "STAT:OPER:COND?" },
ALL_ZERO
};
static int hp_6630b_init_aquisition(const struct sr_dev_inst *sdi)
{
struct sr_scpi_dev_inst *scpi;
int ret;
scpi = sdi->conn;
/*
* Monitor CV (256), CC+ (1024) and CC- (2048) bits of the
* Operational Status Register.
* Use both positive and negative transitions of the status bits.
*/
ret = sr_scpi_send(scpi, "STAT:OPER:PTR 3328;NTR 3328;ENAB 3328");
if (ret != SR_OK)
return ret;
/*
* Monitor OVP (1), OCP (2), OTP (16) and Unreg (1024) bits of the
* Questionable Status Register.
* Use both positive and negative transitions of the status bits.
*/
ret = sr_scpi_send(scpi, "STAT:QUES:PTR 1043;NTR 1043;ENAB 1043");
if (ret != SR_OK)
return ret;
/*
* Service Request Enable Register set for Operational Status Register
* bits (128) and Questionable Status Register bits (8).
* This masks the Status Register generating a SRQ/RQS. Not implemented yet!
*/
/*
ret = sr_scpi_send(scpi, "*SRE 136");
if (ret != SR_OK)
return ret;
*/
return SR_OK;
}
static int hp_6630b_update_status(const struct sr_dev_inst *sdi)
{
struct sr_scpi_dev_inst *scpi;
int ret;
int stb;
int ques_even, ques_cond;
int oper_even, oper_cond;
gboolean output_enabled;
gboolean unreg, cv, cc_pos, cc_neg;
gboolean regulation_changed;
char *regulation;
scpi = sdi->conn;
unreg = FALSE;
cv = FALSE;
cc_pos = FALSE;
cc_neg = FALSE;
regulation_changed = FALSE;
/*
* Use SPoll when SCPI uses GPIB as transport layer.
* SPoll is approx. twice as fast as a normal GPIB write + read would be!
*/
#ifdef HAVE_LIBGPIB
char spoll_buf;
if (scpi->transport == SCPI_TRANSPORT_LIBGPIB) {
ret = sr_scpi_gpib_spoll(scpi, &spoll_buf);
if (ret != SR_OK)
return ret;
stb = (uint8_t)spoll_buf;
}
else {
#endif
ret = sr_scpi_get_int(scpi, "*STB?", &stb);
if (ret != SR_OK)
return ret;
#ifdef HAVE_LIBGPIB
}
#endif
/* Questionable status summary bit */
if (stb & (1 << 3)) {
/* Read the event register to clear it! */
ret = sr_scpi_get_int(scpi, "STAT:QUES:EVEN?", &ques_even);
if (ret != SR_OK)
return ret;
/* Now get the values. */
ret = sr_scpi_get_int(scpi, "STAT:QUES:COND?", &ques_cond);
if (ret != SR_OK)
return ret;
/* OVP */
if (ques_even & (1 << 0))
sr_session_send_meta(sdi, SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE,
g_variant_new_boolean(ques_cond & (1 << 0)));
/* OCP */
if (ques_even & (1 << 1))
sr_session_send_meta(sdi, SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE,
g_variant_new_boolean(ques_cond & (1 << 1)));
/* OTP */
if (ques_even & (1 << 4))
sr_session_send_meta(sdi, SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE,
g_variant_new_boolean(ques_cond & (1 << 4)));
/* UNREG */
unreg = (ques_cond & (1 << 10));
regulation_changed = (ques_even & (1 << 10)) | regulation_changed;
/*
* Check if output state has changed, due to one of the
* questionable states changed.
* NOTE: The output state is send even if it hasn't changed, but that
* only happends rarely.
*/
ret = sr_scpi_get_bool(scpi, "OUTP:STAT?", &output_enabled);
if (ret != SR_OK)
return ret;
sr_session_send_meta(sdi, SR_CONF_ENABLED,
g_variant_new_boolean(output_enabled));
}
/* Operation status summary bit */
if (stb & (1 << 7)) {
/* Read the event register to clear it! */
ret = sr_scpi_get_int(scpi, "STAT:OPER:EVEN?", &oper_even);
if (ret != SR_OK)
return ret;
/* Now get the values. */
ret = sr_scpi_get_int(scpi, "STAT:OPER:COND?", &oper_cond);
if (ret != SR_OK)
return ret;
/* CV */
cv = (oper_cond & (1 << 8));
regulation_changed = (oper_even & (1 << 8)) | regulation_changed;
/* CC+ */
cc_pos = (oper_cond & (1 << 10));
regulation_changed = (oper_even & (1 << 10)) | regulation_changed;
/* CC- */
cc_neg = (oper_cond & (1 << 11));
regulation_changed = (oper_even & (1 << 11)) | regulation_changed;
}
if (regulation_changed) {
if (cv && !cc_pos && !cc_neg &&!unreg)
regulation = "CV";
else if (cc_pos && !cv && !cc_neg && !unreg)
regulation = "CC";
else if (cc_neg && !cv && !cc_pos && !unreg)
regulation = "CC-";
else if (unreg && !cv && !cc_pos && !cc_neg)
regulation = "UR";
else if (!cv && !cc_pos && !cc_neg &&!unreg)
/* This happends in case of OCP active */
regulation = "";
else {
/* This happends from time to time (CV and CC+ active). */
sr_dbg("Undefined regulation for HP 66xxB "
"(CV=%i, CC+=%i, CC-=%i, UR=%i).",
cv, cc_pos, cc_neg, unreg);
return FALSE;
}
sr_session_send_meta(sdi, SR_CONF_REGULATION,
g_variant_new_string(regulation));
}
return SR_OK;
}
/* Philips/Fluke PM2800 series */
static const uint32_t philips_pm2800_devopts[] = {
SR_CONF_CONTINUOUS,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
};
static const uint32_t philips_pm2800_devopts_cg[] = {
SR_CONF_ENABLED | SR_CONF_GET | SR_CONF_SET,
SR_CONF_VOLTAGE | SR_CONF_GET,
SR_CONF_VOLTAGE_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_CURRENT | SR_CONF_GET,
SR_CONF_CURRENT_LIMIT | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE | SR_CONF_GET,
SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET,
SR_CONF_OVER_CURRENT_PROTECTION_ENABLED | SR_CONF_GET | SR_CONF_SET,
SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE | SR_CONF_GET,
SR_CONF_REGULATION | SR_CONF_GET,
};
enum philips_pm2800_modules {
PM2800_MOD_30V_10A = 1,
PM2800_MOD_60V_5A,
PM2800_MOD_60V_10A,
PM2800_MOD_8V_15A,
PM2800_MOD_60V_2A,
PM2800_MOD_120V_1A,
};
static const struct philips_pm2800_module_spec {
/* Min, max, programming resolution. */
double voltage[5];
double current[5];
double power[5];
} philips_pm2800_module_specs[] = {
/* Autoranging modules. */
[PM2800_MOD_30V_10A] = { { 0, 30, 0.0075, 2, 4 }, { 0, 10, 0.0025, 2, 4 }, { 0, 60 } },
[PM2800_MOD_60V_5A] = { { 0, 60, 0.015, 2, 3 }, { 0, 5, 0.00125, 2, 5 }, { 0, 60 } },
[PM2800_MOD_60V_10A] = { { 0, 60, 0.015, 2, 3 }, { 0, 10, 0.0025, 2, 5 }, { 0, 120 } },
/* Linear modules. */
[PM2800_MOD_8V_15A] = { { 0, 8, 0.002, 3, 3 }, { -15, 15, 0.00375, 3, 5 }, { 0, 120 } },
[PM2800_MOD_60V_2A] = { { 0, 60, 0.015, 2, 3 }, { -2, 2, 0.0005, 3, 4 }, { 0, 120 } },
[PM2800_MOD_120V_1A] = { { 0, 120, 0.030, 2, 2 }, { -1, 1, 0.00025, 3, 5 }, { 0, 120 } },
};
static const struct philips_pm2800_model {
unsigned int chassis;
unsigned int num_modules;
unsigned int set;
unsigned int modules[3];
} philips_pm2800_matrix[] = {
/* Autoranging chassis. */
{ 1, 1, 0, { PM2800_MOD_30V_10A, 0, 0 } },
{ 1, 1, 1, { PM2800_MOD_60V_5A, 0, 0 } },
{ 1, 2, 0, { PM2800_MOD_30V_10A, PM2800_MOD_30V_10A, 0 } },
{ 1, 2, 1, { PM2800_MOD_60V_5A, PM2800_MOD_60V_5A, 0 } },
{ 1, 2, 2, { PM2800_MOD_30V_10A, PM2800_MOD_60V_5A, 0 } },
{ 1, 2, 3, { PM2800_MOD_30V_10A, PM2800_MOD_60V_10A, 0 } },
{ 1, 2, 4, { PM2800_MOD_60V_5A, PM2800_MOD_60V_10A, 0 } },
{ 1, 3, 0, { PM2800_MOD_30V_10A, PM2800_MOD_30V_10A, PM2800_MOD_30V_10A } },
{ 1, 3, 1, { PM2800_MOD_60V_5A, PM2800_MOD_60V_5A, PM2800_MOD_60V_5A } },
{ 1, 3, 2, { PM2800_MOD_30V_10A, PM2800_MOD_30V_10A, PM2800_MOD_60V_5A } },
{ 1, 3, 3, { PM2800_MOD_30V_10A, PM2800_MOD_60V_5A, PM2800_MOD_60V_5A } },
/* Linear chassis. */
{ 3, 1, 0, { PM2800_MOD_60V_2A, 0, 0 } },
{ 3, 1, 1, { PM2800_MOD_120V_1A, 0, 0 } },
{ 3, 1, 2, { PM2800_MOD_8V_15A, 0, 0 } },
{ 3, 2, 0, { PM2800_MOD_60V_2A, 0, 0 } },
{ 3, 2, 1, { PM2800_MOD_120V_1A, 0, 0 } },
{ 3, 2, 2, { PM2800_MOD_60V_2A, PM2800_MOD_120V_1A, 0 } },
{ 3, 2, 3, { PM2800_MOD_8V_15A, PM2800_MOD_8V_15A, 0 } },
};
static const char *philips_pm2800_names[] = { "1", "2", "3" };
static int philips_pm2800_probe_channels(struct sr_dev_inst *sdi,
struct sr_scpi_hw_info *hw_info,
struct channel_spec **channels, unsigned int *num_channels,
struct channel_group_spec **channel_groups, unsigned int *num_channel_groups)
{
const struct philips_pm2800_model *model;
const struct philips_pm2800_module_spec *spec;
unsigned int chassis, num_modules, set, module, m, i;
(void)sdi;
/*
* The model number as reported by *IDN? looks like e.g. PM2813/11,
* Where "PM28" is fixed, followed by the chassis code (1 = autoranging,
* 3 = linear series) and the number of modules: 1-3 for autoranging,
* 1-2 for linear.
* After the slash, the first digit denotes the module set. The
* digit after that denotes front (5) or rear (1) binding posts.
*/
chassis = hw_info->model[4] - 0x30;
num_modules = hw_info->model[5] - 0x30;
set = hw_info->model[7] - 0x30;
for (m = 0; m < ARRAY_SIZE(philips_pm2800_matrix); m++) {
model = &philips_pm2800_matrix[m];
if (model->chassis == chassis && model->num_modules == num_modules
&& model->set == set)
break;
}
if (m == ARRAY_SIZE(philips_pm2800_matrix)) {
sr_dbg("Model %s not found in matrix.", hw_info->model);
return SR_ERR;
}
sr_dbg("Found %d output channel%s:", num_modules, num_modules > 1 ? "s" : "");
*channels = g_malloc0(sizeof(struct channel_spec) * num_modules);
*channel_groups = g_malloc0(sizeof(struct channel_group_spec) * num_modules);
for (i = 0; i < num_modules; i++) {
module = model->modules[i];
spec = &philips_pm2800_module_specs[module];
sr_dbg("output %d: %.0f - %.0fV, %.0f - %.0fA, %.0f - %.0fW", i + 1,
spec->voltage[0], spec->voltage[1],
spec->current[0], spec->current[1],
spec->power[0], spec->power[1]);
(*channels)[i].name = (char *)philips_pm2800_names[i];
memcpy(&((*channels)[i].voltage), spec, sizeof(double) * 15);
(*channel_groups)[i].name = (char *)philips_pm2800_names[i];
(*channel_groups)[i].channel_index_mask = 1 << i;
(*channel_groups)[i].features = PPS_OTP | PPS_OVP | PPS_OCP;
(*channel_groups)[i].mqflags = SR_MQFLAG_DC;
}
*num_channels = *num_channel_groups = num_modules;
return SR_OK;
}
static const struct scpi_command philips_pm2800_cmd[] = {
{ SCPI_CMD_SELECT_CHANNEL, ":INST:NSEL %s" },
{ SCPI_CMD_GET_MEAS_VOLTAGE, ":MEAS:VOLT?" },
{ SCPI_CMD_GET_MEAS_CURRENT, ":MEAS:CURR?" },
{ SCPI_CMD_GET_VOLTAGE_TARGET, ":SOUR:VOLT?" },
{ SCPI_CMD_SET_VOLTAGE_TARGET, ":SOUR:VOLT %.6f" },
{ SCPI_CMD_GET_CURRENT_LIMIT, ":SOUR:CURR?" },
{ SCPI_CMD_SET_CURRENT_LIMIT, ":SOUR:CURR %.6f" },
{ SCPI_CMD_GET_OUTPUT_ENABLED, ":OUTP?" },
{ SCPI_CMD_SET_OUTPUT_ENABLE, ":OUTP ON" },
{ SCPI_CMD_SET_OUTPUT_DISABLE, ":OUTP OFF" },
{ SCPI_CMD_GET_OUTPUT_REGULATION, ":SOUR:FUNC:MODE?" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ACTIVE, ":SOUR:VOLT:PROT:TRIP?" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":SOUR:VOLT:PROT:LEV?" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":SOUR:VOLT:PROT:LEV %.6f" },
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ENABLED, ":SOUR:CURR:PROT:STAT?" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_ENABLE, ":SOUR:CURR:PROT:STAT ON" },
{ SCPI_CMD_SET_OVER_CURRENT_PROTECTION_DISABLE, ":SOUR:CURR:PROT:STAT OFF" },
{ SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ACTIVE, ":SOUR:CURR:PROT:TRIP?" },
ALL_ZERO
};
static const uint32_t rs_hmc8043_devopts[] = {
SR_CONF_CONTINUOUS,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
};
static const uint32_t rs_hmc8043_devopts_cg[] = {
SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED | SR_CONF_GET | SR_CONF_SET,
SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE | SR_CONF_GET,
SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET,
SR_CONF_VOLTAGE | SR_CONF_GET,
SR_CONF_VOLTAGE_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_CURRENT | SR_CONF_GET,
SR_CONF_CURRENT_LIMIT | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_ENABLED | SR_CONF_GET | SR_CONF_SET,
};
static const struct channel_spec rs_hmc8043_ch[] = {
{ "1", { 0, 32.050, 0.001, 3, 4 }, { 0.001, 3, 0.001, 3, 4 }, { 0, 0, 0, 0, 4 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
{ "2", { 0, 32.050, 0.001, 3, 4 }, { 0.001, 3, 0.001, 3, 4 }, { 0, 0, 0, 0, 4 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
{ "3", { 0, 32.050, 0.001, 3, 4 }, { 0.001, 3, 0.001, 3, 4 }, { 0, 0, 0, 0, 4 }, FREQ_DC_ONLY, NO_OVP_LIMITS, NO_OCP_LIMITS },
};
static const struct channel_group_spec rs_hmc8043_cg[] = {
{ "1", CH_IDX(0), PPS_OVP, SR_MQFLAG_DC },
{ "2", CH_IDX(1), PPS_OVP, SR_MQFLAG_DC },
{ "3", CH_IDX(2), PPS_OVP, SR_MQFLAG_DC },
};
static const struct scpi_command rs_hmc8043_cmd[] = {
{ SCPI_CMD_SELECT_CHANNEL, "INST:NSEL %s" },
{ SCPI_CMD_GET_MEAS_VOLTAGE, "MEAS:VOLT?" },
{ SCPI_CMD_GET_MEAS_CURRENT, "MEAS:CURR?" },
{ SCPI_CMD_GET_VOLTAGE_TARGET, "VOLT?" },
{ SCPI_CMD_SET_VOLTAGE_TARGET, "VOLT %.6f" },
{ SCPI_CMD_GET_CURRENT_LIMIT, "CURR?" },
{ SCPI_CMD_SET_CURRENT_LIMIT, "CURR %.6f" },
{ SCPI_CMD_GET_OUTPUT_ENABLED, "OUTP?" },
{ SCPI_CMD_SET_OUTPUT_ENABLE, "OUTP ON" },
{ SCPI_CMD_SET_OUTPUT_DISABLE, "OUTP OFF" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ACTIVE, "VOLT:PROT:TRIP?" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_THRESHOLD, "VOLT:PROT:LEV?" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, "VOLT:PROT:LEV %.6f" },
{ SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ENABLED, "VOLT:PROT:STAT?" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_ENABLE, "VOLT:PROT:STAT ON" },
{ SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_DISABLE, "VOLT:PROT:STAT OFF" },
ALL_ZERO
};
SR_PRIV const struct scpi_pps pps_profiles[] = {
/* Agilent N5763A */
{ "Agilent", "N5763A", SCPI_DIALECT_UNKNOWN, 0,
ARRAY_AND_SIZE(agilent_n5700a_devopts),
ARRAY_AND_SIZE(agilent_n5700a_devopts_cg),
ARRAY_AND_SIZE(agilent_n5763a_ch),
ARRAY_AND_SIZE(agilent_n5700a_cg),
agilent_n5700a_cmd,
.probe_channels = NULL,
.init_aquisition = NULL,
.update_status = NULL,
},
/* Agilent N5767A */
{ "Agilent", "N5767A", SCPI_DIALECT_UNKNOWN, 0,
ARRAY_AND_SIZE(agilent_n5700a_devopts),
ARRAY_AND_SIZE(agilent_n5700a_devopts_cg),
ARRAY_AND_SIZE(agilent_n5767a_ch),
ARRAY_AND_SIZE(agilent_n5700a_cg),
agilent_n5700a_cmd,
.probe_channels = NULL,
.init_aquisition = NULL,
.update_status = NULL,
},
/* BK Precision 9310 */
{ "BK", "^9130$", SCPI_DIALECT_UNKNOWN, 0,
ARRAY_AND_SIZE(bk_9130_devopts),
ARRAY_AND_SIZE(bk_9130_devopts_cg),
ARRAY_AND_SIZE(bk_9130_ch),
ARRAY_AND_SIZE(bk_9130_cg),
bk_9130_cmd,
.probe_channels = NULL,
.init_aquisition = NULL,
.update_status = NULL,
},
/* Chroma 61604 */
{ "Chroma", "61604", SCPI_DIALECT_UNKNOWN, 0,
ARRAY_AND_SIZE(chroma_61604_devopts),
ARRAY_AND_SIZE(chroma_61604_devopts_cg),
ARRAY_AND_SIZE(chroma_61604_ch),
ARRAY_AND_SIZE(chroma_61604_cg),
chroma_61604_cmd,
.probe_channels = NULL,
.init_aquisition = NULL,
.update_status = NULL,
},
/* Chroma 62000 series */
{ "Chroma", "620[0-9]{2}P-[0-9]{2,3}-[0-9]{1,3}", SCPI_DIALECT_UNKNOWN, 0,
ARRAY_AND_SIZE(chroma_62000_devopts),
ARRAY_AND_SIZE(chroma_62000_devopts_cg),
NULL, 0,
NULL, 0,
chroma_62000_cmd,
.probe_channels = chroma_62000p_probe_channels,
.init_aquisition = NULL,
.update_status = NULL,
},
/*
* This entry is for testing the HP COMP language with a HP 6632B power
* supply switched to the COMP language ("SYST:LANG COMP"). When used,
* disable the entry for the HP 6632B below!
*/
/*
{ "HP", "6632B", SCPI_DIALECT_HP_COMP, 0,
ARRAY_AND_SIZE(hp_6630a_devopts),
ARRAY_AND_SIZE(hp_6630a_devopts_cg),
ARRAY_AND_SIZE(hp_6632a_ch),
ARRAY_AND_SIZE(hp_6630a_cg),
hp_6630a_cmd,
.probe_channels = NULL,
hp_6630a_init_aquisition,
hp_6630a_update_status,
},
*/
/* HP 6632A */
{ "HP", "6632A", SCPI_DIALECT_HP_COMP, 0,
ARRAY_AND_SIZE(hp_6630a_devopts),
ARRAY_AND_SIZE(hp_6630a_devopts_cg),
ARRAY_AND_SIZE(hp_6632a_ch),
ARRAY_AND_SIZE(hp_6630a_cg),
hp_6630a_cmd,
.probe_channels = NULL,
hp_6630a_init_aquisition,
hp_6630a_update_status,
},
/* HP 6633A */
{ "HP", "6633A", SCPI_DIALECT_HP_COMP, 0,
ARRAY_AND_SIZE(hp_6630a_devopts),
ARRAY_AND_SIZE(hp_6630a_devopts_cg),
ARRAY_AND_SIZE(hp_6633a_ch),
ARRAY_AND_SIZE(hp_6630a_cg),
hp_6630a_cmd,
.probe_channels = NULL,
hp_6630a_init_aquisition,
hp_6630a_update_status,
},
/* HP 6634A */
{ "HP", "6634A", SCPI_DIALECT_HP_COMP, 0,
ARRAY_AND_SIZE(hp_6630a_devopts),
ARRAY_AND_SIZE(hp_6630a_devopts_cg),
ARRAY_AND_SIZE(hp_6634a_ch),
ARRAY_AND_SIZE(hp_6630a_cg),
hp_6630a_cmd,
.probe_channels = NULL,
hp_6630a_init_aquisition,
hp_6630a_update_status,
},
/* HP 6611C */
{ "HP", "6611C", SCPI_DIALECT_HP_66XXB, PPS_OTP,
ARRAY_AND_SIZE(hp_6630b_devopts),
ARRAY_AND_SIZE(hp_6630b_devopts_cg),
ARRAY_AND_SIZE(hp_6611c_ch),
ARRAY_AND_SIZE(hp_6630b_cg),
hp_6630b_cmd,
.probe_channels = NULL,
hp_6630b_init_aquisition,
hp_6630b_update_status,
},
/* HP 6612C */
{ "HP", "6612C", SCPI_DIALECT_HP_66XXB, PPS_OTP,
ARRAY_AND_SIZE(hp_6630b_devopts),
ARRAY_AND_SIZE(hp_6630b_devopts_cg),
ARRAY_AND_SIZE(hp_6612c_ch),
ARRAY_AND_SIZE(hp_6630b_cg),
hp_6630b_cmd,
.probe_channels = NULL,
hp_6630b_init_aquisition,
hp_6630b_update_status,
},
/* HP 6613C */
{ "HP", "6613C", SCPI_DIALECT_HP_66XXB, PPS_OTP,
ARRAY_AND_SIZE(hp_6630b_devopts),
ARRAY_AND_SIZE(hp_6630b_devopts_cg),
ARRAY_AND_SIZE(hp_6613c_ch),
ARRAY_AND_SIZE(hp_6630b_cg),
hp_6630b_cmd,
.probe_channels = NULL,
hp_6630b_init_aquisition,
hp_6630b_update_status,
},
/* HP 6614C */
{ "HP", "6614C", SCPI_DIALECT_HP_66XXB, PPS_OTP,
ARRAY_AND_SIZE(hp_6630b_devopts),
ARRAY_AND_SIZE(hp_6630b_devopts_cg),
ARRAY_AND_SIZE(hp_6614c_ch),
ARRAY_AND_SIZE(hp_6630b_cg),
hp_6630b_cmd,
.probe_channels = NULL,
hp_6630b_init_aquisition,
hp_6630b_update_status,
},
/* HP 6631B */
{ "HP", "6631B", SCPI_DIALECT_HP_66XXB, PPS_OTP,
ARRAY_AND_SIZE(hp_6630b_devopts),
ARRAY_AND_SIZE(hp_6630b_devopts_cg),
ARRAY_AND_SIZE(hp_6631b_ch),
ARRAY_AND_SIZE(hp_6630b_cg),
hp_6630b_cmd,
.probe_channels = NULL,
hp_6630b_init_aquisition,
hp_6630b_update_status,
},
/* HP 6632B */
{ "HP", "6632B", SCPI_DIALECT_HP_66XXB, PPS_OTP,
ARRAY_AND_SIZE(hp_6630b_devopts),
ARRAY_AND_SIZE(hp_6630b_devopts_cg),
ARRAY_AND_SIZE(hp_6632b_ch),
ARRAY_AND_SIZE(hp_6630b_cg),
hp_6630b_cmd,
.probe_channels = NULL,
hp_6630b_init_aquisition,
hp_6630b_update_status,
},
/* HP 66332A */
{ "HP", "66332A", SCPI_DIALECT_HP_66XXB, PPS_OTP,
ARRAY_AND_SIZE(hp_6630b_devopts),
ARRAY_AND_SIZE(hp_6630b_devopts_cg),
ARRAY_AND_SIZE(hp_66332a_ch),
ARRAY_AND_SIZE(hp_6630b_cg),
hp_6630b_cmd,
.probe_channels = NULL,
hp_6630b_init_aquisition,
hp_6630b_update_status,
},
/* HP 6633B */
{ "HP", "6633B", SCPI_DIALECT_HP_66XXB, PPS_OTP,
ARRAY_AND_SIZE(hp_6630b_devopts),
ARRAY_AND_SIZE(hp_6630b_devopts_cg),
ARRAY_AND_SIZE(hp_6633b_ch),
ARRAY_AND_SIZE(hp_6630b_cg),
hp_6630b_cmd,
.probe_channels = NULL,
hp_6630b_init_aquisition,
hp_6630b_update_status,
},
/* HP 6634B */
{ "HP", "6634B", SCPI_DIALECT_HP_66XXB, PPS_OTP,
ARRAY_AND_SIZE(hp_6630b_devopts),
ARRAY_AND_SIZE(hp_6630b_devopts_cg),
ARRAY_AND_SIZE(hp_6634b_ch),
ARRAY_AND_SIZE(hp_6630b_cg),
hp_6630b_cmd,
.probe_channels = NULL,
hp_6630b_init_aquisition,
hp_6630b_update_status,
},
/* Rigol DP700 series */
{ "Rigol", "^DP711$", SCPI_DIALECT_UNKNOWN, 0,
ARRAY_AND_SIZE(rigol_dp700_devopts),
ARRAY_AND_SIZE(rigol_dp700_devopts_cg),
ARRAY_AND_SIZE(rigol_dp711_ch),
ARRAY_AND_SIZE(rigol_dp700_cg),
rigol_dp700_cmd,
.probe_channels = NULL,
.init_aquisition = NULL,
.update_status = NULL,
},
{ "Rigol", "^DP712$", SCPI_DIALECT_UNKNOWN, 0,
ARRAY_AND_SIZE(rigol_dp700_devopts),
ARRAY_AND_SIZE(rigol_dp700_devopts_cg),
ARRAY_AND_SIZE(rigol_dp712_ch),
ARRAY_AND_SIZE(rigol_dp700_cg),
rigol_dp700_cmd,
.probe_channels = NULL,
.init_aquisition = NULL,
.update_status = NULL,
},
/* Rigol DP800 series */
{ "Rigol", "^DP821A$", SCPI_DIALECT_UNKNOWN, PPS_OTP,
ARRAY_AND_SIZE(rigol_dp800_devopts),
ARRAY_AND_SIZE(rigol_dp800_devopts_cg),
ARRAY_AND_SIZE(rigol_dp821a_ch),
ARRAY_AND_SIZE(rigol_dp820_cg),
rigol_dp800_cmd,
.probe_channels = NULL,
.init_aquisition = NULL,
.update_status = NULL,
},
{ "Rigol", "^DP831A$", SCPI_DIALECT_UNKNOWN, PPS_OTP,
ARRAY_AND_SIZE(rigol_dp800_devopts),
ARRAY_AND_SIZE(rigol_dp800_devopts_cg),
ARRAY_AND_SIZE(rigol_dp831_ch),
ARRAY_AND_SIZE(rigol_dp830_cg),
rigol_dp800_cmd,
.probe_channels = NULL,
.init_aquisition = NULL,
.update_status = NULL,
},
{ "Rigol", "^(DP832|DP832A)$", SCPI_DIALECT_UNKNOWN, PPS_OTP,
ARRAY_AND_SIZE(rigol_dp800_devopts),
ARRAY_AND_SIZE(rigol_dp800_devopts_cg),
ARRAY_AND_SIZE(rigol_dp832_ch),
ARRAY_AND_SIZE(rigol_dp830_cg),
rigol_dp800_cmd,
.probe_channels = NULL,
.init_aquisition = NULL,
.update_status = NULL,
},
/* Philips/Fluke PM2800 series */
{ "Philips", "^PM28[13][123]/[01234]{1,2}$", SCPI_DIALECT_PHILIPS, 0,
ARRAY_AND_SIZE(philips_pm2800_devopts),
ARRAY_AND_SIZE(philips_pm2800_devopts_cg),
NULL, 0,
NULL, 0,
philips_pm2800_cmd,
philips_pm2800_probe_channels,
.init_aquisition = NULL,
.update_status = NULL,
},
/* Rohde & Schwarz HMC8043 */
{ "Rohde&Schwarz", "HMC8043", SCPI_DIALECT_UNKNOWN, 0,
ARRAY_AND_SIZE(rs_hmc8043_devopts),
ARRAY_AND_SIZE(rs_hmc8043_devopts_cg),
ARRAY_AND_SIZE(rs_hmc8043_ch),
ARRAY_AND_SIZE(rs_hmc8043_cg),
rs_hmc8043_cmd,
.probe_channels = NULL,
.init_aquisition = NULL,
.update_status = NULL,
},
};
SR_PRIV unsigned int num_pps_profiles = ARRAY_SIZE(pps_profiles);