libsigrok/src/output/analog.c

389 lines
9.8 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <glib.h>
#include <libsigrok/libsigrok.h>
#include "libsigrok-internal.h"
#define LOG_PREFIX "output/analog"
struct context {
int num_enabled_channels;
GPtrArray *channellist;
int digits;
};
enum {
DIGITS_ALL,
DIGITS_SPEC,
};
static int init(struct sr_output *o, GHashTable *options)
{
struct context *ctx;
struct sr_channel *ch;
GSList *l;
const char *s;
if (!o || !o->sdi)
return SR_ERR_ARG;
o->priv = ctx = g_malloc0(sizeof(struct context));
s = g_variant_get_string(g_hash_table_lookup(options, "digits"), NULL);
if (!strcmp(s, "all"))
ctx->digits = DIGITS_ALL;
else
ctx->digits = DIGITS_SPEC;
/* Get the number of channels and their names. */
ctx->channellist = g_ptr_array_new();
for (l = o->sdi->channels; l; l = l->next) {
ch = l->data;
if (!ch || !ch->enabled)
continue;
g_ptr_array_add(ctx->channellist, ch->name);
ctx->num_enabled_channels++;
}
return SR_OK;
}
static void si_printf(float value, GString *out, char *unitstr)
{
float v;
if (signbit(value))
v = -(value);
else
v = value;
if (v < 1e-12 || v > 1e+12)
g_string_append_printf(out, "%f %s", value, unitstr);
else if (v > 1e+9)
g_string_append_printf(out, "%f G%s", value / 1e+9, unitstr);
else if (v > 1e+6)
g_string_append_printf(out, "%f M%s", value / 1e+6, unitstr);
else if (v > 1e+3)
g_string_append_printf(out, "%f k%s", value / 1e+3, unitstr);
else if (v < 1e-9)
g_string_append_printf(out, "%f n%s", value * 1e+9, unitstr);
else if (v < 1e-6)
g_string_append_printf(out, "%f u%s", value * 1e+6, unitstr);
else if (v < 1e-3)
g_string_append_printf(out, "%f m%s", value * 1e+3, unitstr);
else
g_string_append_printf(out, "%f %s", value, unitstr);
}
static void fancyprint(int unit, int mqflags, float value, GString *out)
{
switch (unit) {
case SR_UNIT_VOLT:
si_printf(value, out, "V");
break;
case SR_UNIT_AMPERE:
si_printf(value, out, "A");
break;
case SR_UNIT_OHM:
si_printf(value, out, "");
g_string_append_unichar(out, 0x2126);
break;
case SR_UNIT_FARAD:
si_printf(value, out, "F");
break;
case SR_UNIT_HENRY:
si_printf(value, out, "H");
break;
case SR_UNIT_KELVIN:
si_printf(value, out, "K");
break;
case SR_UNIT_CELSIUS:
si_printf(value, out, "");
g_string_append_unichar(out, 0x00b0);
g_string_append_c(out, 'C');
break;
case SR_UNIT_FAHRENHEIT:
si_printf(value, out, "");
g_string_append_unichar(out, 0x00b0);
g_string_append_c(out, 'F');
break;
case SR_UNIT_HERTZ:
si_printf(value, out, "Hz");
break;
case SR_UNIT_PERCENTAGE:
g_string_append_printf(out, "%f %%", value);
break;
case SR_UNIT_BOOLEAN:
if (value > 0)
g_string_append_printf(out, "TRUE");
else
g_string_append_printf(out, "FALSE");
break;
case SR_UNIT_SECOND:
si_printf(value, out, "s");
break;
case SR_UNIT_SIEMENS:
si_printf(value, out, "S");
break;
case SR_UNIT_DECIBEL_MW:
si_printf(value, out, "dBu");
break;
case SR_UNIT_DECIBEL_VOLT:
si_printf(value, out, "dBV");
break;
case SR_UNIT_DECIBEL_SPL:
if (mqflags & SR_MQFLAG_SPL_FREQ_WEIGHT_A)
si_printf(value, out, "dB(A)");
else if (mqflags & SR_MQFLAG_SPL_FREQ_WEIGHT_C)
si_printf(value, out, "dB(C)");
else if (mqflags & SR_MQFLAG_SPL_FREQ_WEIGHT_Z)
si_printf(value, out, "dB(Z)");
else
/* No frequency weighting, or non-standard "flat" */
si_printf(value, out, "dB(SPL)");
if (mqflags & SR_MQFLAG_SPL_TIME_WEIGHT_S)
g_string_append(out, " S");
else if (mqflags & SR_MQFLAG_SPL_TIME_WEIGHT_F)
g_string_append(out, " F");
if (mqflags & SR_MQFLAG_SPL_LAT)
g_string_append(out, " LAT");
else if (mqflags & SR_MQFLAG_SPL_PCT_OVER_ALARM)
/* Not a standard function for SLMs, so this is
* a made-up notation. */
g_string_append(out, " %oA");
break;
case SR_UNIT_CONCENTRATION:
g_string_append_printf(out, "%f ppm", value * (1000 * 1000));
break;
case SR_UNIT_REVOLUTIONS_PER_MINUTE:
si_printf(value, out, "RPM");
break;
case SR_UNIT_VOLT_AMPERE:
si_printf(value, out, "VA");
break;
case SR_UNIT_WATT:
si_printf(value, out, "W");
break;
case SR_UNIT_WATT_HOUR:
si_printf(value, out, "Wh");
break;
case SR_UNIT_METER_SECOND:
si_printf(value, out, "m/s");
break;
case SR_UNIT_HECTOPASCAL:
si_printf(value, out, "hPa");
break;
case SR_UNIT_HUMIDITY_293K:
si_printf(value, out, "%rF");
break;
case SR_UNIT_DEGREE:
si_printf(value, out, "");
g_string_append_unichar(out, 0x00b0);
break;
case SR_UNIT_GRAM:
si_printf(value, out, "g");
break;
case SR_UNIT_CARAT:
si_printf(value, out, "ct");
break;
case SR_UNIT_OUNCE:
si_printf(value, out, "oz");
break;
case SR_UNIT_TROY_OUNCE:
si_printf(value, out, "oz t");
break;
case SR_UNIT_POUND:
si_printf(value, out, "lb");
break;
case SR_UNIT_PENNYWEIGHT:
si_printf(value, out, "dwt");
break;
case SR_UNIT_GRAIN:
si_printf(value, out, "gr");
break;
case SR_UNIT_TAEL:
si_printf(value, out, "tael");
break;
case SR_UNIT_MOMME:
si_printf(value, out, "momme");
break;
case SR_UNIT_TOLA:
si_printf(value, out, "tola");
break;
case SR_UNIT_PIECE:
si_printf(value, out, "pcs");
break;
default:
si_printf(value, out, "");
break;
}
if (mqflags & SR_MQFLAG_AC)
g_string_append_printf(out, " AC");
if (mqflags & SR_MQFLAG_DC)
g_string_append_printf(out, " DC");
if (mqflags & SR_MQFLAG_RMS)
g_string_append_printf(out, " RMS");
if (mqflags & SR_MQFLAG_DIODE)
g_string_append_printf(out, " DIODE");
if (mqflags & SR_MQFLAG_HOLD)
g_string_append_printf(out, " HOLD");
if (mqflags & SR_MQFLAG_MAX)
g_string_append_printf(out, " MAX");
if (mqflags & SR_MQFLAG_MIN)
g_string_append_printf(out, " MIN");
if (mqflags & SR_MQFLAG_AUTORANGE)
g_string_append_printf(out, " AUTO");
if (mqflags & SR_MQFLAG_RELATIVE)
g_string_append_printf(out, " REL");
if (mqflags & SR_MQFLAG_AVG)
g_string_append_printf(out, " AVG");
if (mqflags & SR_MQFLAG_REFERENCE)
g_string_append_printf(out, " REF");
if (mqflags & SR_MQFLAG_UNSTABLE)
g_string_append_printf(out, " UNSTABLE");
g_string_append_c(out, '\n');
}
static int receive(const struct sr_output *o, const struct sr_datafeed_packet *packet,
GString **out)
{
struct context *ctx;
const struct sr_datafeed_analog *analog;
const struct sr_datafeed_analog2 *analog2;
struct sr_channel *ch;
GSList *l;
float *fdata;
unsigned int i;
int num_channels, c, ret, si, digits;
char *number, *suffix;
*out = NULL;
if (!o || !o->sdi)
return SR_ERR_ARG;
ctx = o->priv;
switch (packet->type) {
case SR_DF_FRAME_BEGIN:
*out = g_string_new("FRAME-BEGIN\n");
break;
case SR_DF_FRAME_END:
*out = g_string_new("FRAME-END\n");
break;
case SR_DF_ANALOG:
analog = packet->payload;
fdata = (float *)analog->data;
*out = g_string_sized_new(512);
num_channels = g_slist_length(analog->channels);
for (si = 0; si < analog->num_samples; si++) {
for (l = analog->channels, c = 0; l; l = l->next, c++) {
ch = l->data;
g_string_append_printf(*out, "%s: ", ch->name);
fancyprint(analog->unit, analog->mqflags,
fdata[si * num_channels + c], *out);
}
}
break;
case SR_DF_ANALOG2:
analog2 = packet->payload;
if (!(fdata = g_try_malloc(analog2->num_samples * sizeof(float))))
return SR_ERR_MALLOC;
if ((ret = sr_analog_to_float(analog2, fdata)) != SR_OK)
return ret;
*out = g_string_sized_new(512);
if (analog2->encoding->is_digits_decimal) {
if (ctx->digits == DIGITS_ALL)
digits = analog2->encoding->digits;
else
digits = analog2->spec->spec_digits;
} else {
/* TODO we don't know how to print by number of bits yet. */
digits = 6;
}
sr_analog_unit_to_string(analog2, &suffix);
num_channels = g_slist_length(analog2->meaning->channels);
for (i = 0; i < analog2->num_samples; i++) {
for (l = analog2->meaning->channels, c = 0; l; l = l->next, c++) {
ch = l->data;
g_string_append_printf(*out, "%s: ", ch->name);
sr_analog_float_to_string(fdata[i * num_channels + c],
digits, &number);
g_string_append(*out, number);
g_free(number);
g_string_append(*out, " ");
g_string_append(*out, suffix);
g_string_append(*out, "\n");
}
}
g_free(suffix);
break;
}
return SR_OK;
}
static int cleanup(struct sr_output *o)
{
struct context *ctx;
if (!o || !o->sdi)
return SR_ERR_ARG;
ctx = o->priv;
g_ptr_array_free(ctx->channellist, 1);
g_free(ctx);
o->priv = NULL;
return SR_OK;
}
static struct sr_option options[] = {
{ "digits", "Digits", "Digits to show", NULL, NULL },
ALL_ZERO
};
static const struct sr_option *get_options(void)
{
if (!options[0].def) {
options[0].def = g_variant_ref_sink(g_variant_new_string("all"));
options[0].values = g_slist_append(options[0].values,
g_variant_ref_sink(g_variant_new_string("all")));
options[0].values = g_slist_append(options[0].values,
g_variant_ref_sink(g_variant_new_string("spec")));
}
return options;
}
SR_PRIV struct sr_output_module output_analog = {
.id = "analog",
.name = "Analog",
.desc = "Analog data and types",
.exts = NULL,
.flags = 0,
.options = get_options,
.init = init,
.receive = receive,
.cleanup = cleanup
};