libsigrok/hardware/fluke-dmm/fluke.c

537 lines
14 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <errno.h>
#include <glib.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "fluke-dmm.h"
static struct sr_datafeed_analog *handle_qm_18x(const struct sr_dev_inst *sdi,
char **tokens)
{
struct sr_datafeed_analog *analog;
float fvalue;
char *e, *u;
gboolean is_oor;
(void)sdi;
if (strcmp(tokens[0], "QM") || !tokens[1])
return NULL;
if ((e = strstr(tokens[1], "Out of range"))) {
is_oor = TRUE;
fvalue = -1;
} else {
is_oor = FALSE;
fvalue = strtof(tokens[1], &e);
if (fvalue == 0.0 && e == tokens[1]) {
/* Happens all the time, when switching modes. */
sr_dbg("Invalid float.");
return NULL;
}
}
while(*e && *e == ' ')
e++;
if (!(analog = g_try_malloc0(sizeof(struct sr_datafeed_analog))))
return NULL;
if (!(analog->data = g_try_malloc(sizeof(float))))
return NULL;
analog->probes = sdi->probes;
analog->num_samples = 1;
if (is_oor)
*analog->data = NAN;
else
*analog->data = fvalue;
analog->mq = -1;
if ((u = strstr(e, "V DC")) || (u = strstr(e, "V AC"))) {
analog->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT;
if (!is_oor && e[0] == 'm')
*analog->data /= 1000;
/* This catches "V AC", "V DC" and "V AC+DC". */
if (strstr(u, "AC"))
analog->mqflags |= SR_MQFLAG_AC | SR_MQFLAG_RMS;
if (strstr(u, "DC"))
analog->mqflags |= SR_MQFLAG_DC;
} else if ((u = strstr(e, "dBV")) || (u = strstr(e, "dBm"))) {
analog->mq = SR_MQ_VOLTAGE;
if (u[2] == 'm')
analog->unit = SR_UNIT_DECIBEL_MW;
else
analog->unit = SR_UNIT_DECIBEL_VOLT;
analog->mqflags |= SR_MQFLAG_AC | SR_MQFLAG_RMS;
} else if ((u = strstr(e, "Ohms"))) {
analog->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM;
if (is_oor)
*analog->data = INFINITY;
else if (e[0] == 'k')
*analog->data *= 1000;
else if (e[0] == 'M')
*analog->data *= 1000000;
} else if (!strcmp(e, "nS")) {
analog->mq = SR_MQ_CONDUCTANCE;
analog->unit = SR_UNIT_SIEMENS;
*analog->data /= 1e+9;
} else if ((u = strstr(e, "Farads"))) {
analog->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD;
if (!is_oor) {
if (e[0] == 'm')
*analog->data /= 1e+3;
else if (e[0] == 'u')
*analog->data /= 1e+6;
else if (e[0] == 'n')
*analog->data /= 1e+9;
}
} else if ((u = strstr(e, "Deg C")) || (u = strstr(e, "Deg F"))) {
analog->mq = SR_MQ_TEMPERATURE;
if (u[4] == 'C')
analog->unit = SR_UNIT_CELSIUS;
else
analog->unit = SR_UNIT_FAHRENHEIT;
} else if ((u = strstr(e, "A AC")) || (u = strstr(e, "A DC"))) {
analog->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE;
/* This catches "A AC", "A DC" and "A AC+DC". */
if (strstr(u, "AC"))
analog->mqflags |= SR_MQFLAG_AC | SR_MQFLAG_RMS;
if (strstr(u, "DC"))
analog->mqflags |= SR_MQFLAG_DC;
if (!is_oor) {
if (e[0] == 'm')
*analog->data /= 1e+3;
else if (e[0] == 'u')
*analog->data /= 1e+6;
}
} else if ((u = strstr(e, "Hz"))) {
analog->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ;
if (e[0] == 'k')
*analog->data *= 1e+3;
} else if (!strcmp(e, "%")) {
analog->mq = SR_MQ_DUTY_CYCLE;
analog->unit = SR_UNIT_PERCENTAGE;
} else if ((u = strstr(e, "ms"))) {
analog->mq = SR_MQ_PULSE_WIDTH;
analog->unit = SR_UNIT_SECOND;
*analog->data /= 1e+3;
}
if (analog->mq == -1) {
/* Not a valid measurement. */
g_free(analog->data);
g_free(analog);
analog = NULL;
}
return analog;
}
static struct sr_datafeed_analog *handle_qm_28x(const struct sr_dev_inst *sdi,
char **tokens)
{
struct sr_datafeed_analog *analog;
float fvalue;
char *eptr;
(void)sdi;
if (!tokens[1])
return NULL;
fvalue = strtof(tokens[0], &eptr);
if (fvalue == 0.0 && eptr == tokens[0]) {
sr_err("Invalid float.");
return NULL;
}
if (!(analog = g_try_malloc0(sizeof(struct sr_datafeed_analog))))
return NULL;
if (!(analog->data = g_try_malloc(sizeof(float))))
return NULL;
analog->probes = sdi->probes;
analog->num_samples = 1;
*analog->data = fvalue;
analog->mq = -1;
if (!strcmp(tokens[1], "VAC") || !strcmp(tokens[1], "VDC")) {
analog->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT;
if (!strcmp(tokens[2], "NORMAL")) {
if (tokens[1][1] == 'A') {
analog->mqflags |= SR_MQFLAG_AC;
analog->mqflags |= SR_MQFLAG_RMS;
} else
analog->mqflags |= SR_MQFLAG_DC;
} else if (!strcmp(tokens[2], "OL") || !strcmp(tokens[2], "OL_MINUS")) {
*analog->data = NAN;
} else
analog->mq = -1;
} else if (!strcmp(tokens[1], "dBV") || !strcmp(tokens[1], "dBm")) {
analog->mq = SR_MQ_VOLTAGE;
if (tokens[1][2] == 'm')
analog->unit = SR_UNIT_DECIBEL_MW;
else
analog->unit = SR_UNIT_DECIBEL_VOLT;
analog->mqflags |= SR_MQFLAG_AC | SR_MQFLAG_RMS;
} else if (!strcmp(tokens[1], "CEL") || !strcmp(tokens[1], "FAR")) {
if (!strcmp(tokens[2], "NORMAL")) {
analog->mq = SR_MQ_TEMPERATURE;
if (tokens[1][0] == 'C')
analog->unit = SR_UNIT_CELSIUS;
else
analog->unit = SR_UNIT_FAHRENHEIT;
}
} else if (!strcmp(tokens[1], "OHM")) {
if (!strcmp(tokens[3], "NONE")) {
analog->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM;
if (!strcmp(tokens[2], "OL") || !strcmp(tokens[2], "OL_MINUS")) {
*analog->data = INFINITY;
} else if (strcmp(tokens[2], "NORMAL"))
analog->mq = -1;
} else if (!strcmp(tokens[3], "OPEN_CIRCUIT")) {
analog->mq = SR_MQ_CONTINUITY;
analog->unit = SR_UNIT_BOOLEAN;
*analog->data = 0.0;
} else if (!strcmp(tokens[3], "SHORT_CIRCUIT")) {
analog->mq = SR_MQ_CONTINUITY;
analog->unit = SR_UNIT_BOOLEAN;
*analog->data = 1.0;
}
} else if (!strcmp(tokens[1], "F")
&& !strcmp(tokens[2], "NORMAL")
&& !strcmp(tokens[3], "NONE")) {
analog->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD;
} else if (!strcmp(tokens[1], "AAC") || !strcmp(tokens[1], "ADC")) {
analog->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE;
if (!strcmp(tokens[2], "NORMAL")) {
if (tokens[1][1] == 'A') {
analog->mqflags |= SR_MQFLAG_AC;
analog->mqflags |= SR_MQFLAG_RMS;
} else
analog->mqflags |= SR_MQFLAG_DC;
} else if (!strcmp(tokens[2], "OL") || !strcmp(tokens[2], "OL_MINUS")) {
*analog->data = NAN;
} else
analog->mq = -1;
} if (!strcmp(tokens[1], "Hz") && !strcmp(tokens[2], "NORMAL")) {
analog->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ;
} else if (!strcmp(tokens[1], "PCT") && !strcmp(tokens[2], "NORMAL")) {
analog->mq = SR_MQ_DUTY_CYCLE;
analog->unit = SR_UNIT_PERCENTAGE;
} else if (!strcmp(tokens[1], "S") && !strcmp(tokens[2], "NORMAL")) {
analog->mq = SR_MQ_PULSE_WIDTH;
analog->unit = SR_UNIT_SECOND;
} else if (!strcmp(tokens[1], "SIE") && !strcmp(tokens[2], "NORMAL")) {
analog->mq = SR_MQ_CONDUCTANCE;
analog->unit = SR_UNIT_SIEMENS;
}
if (analog->mq == -1) {
/* Not a valid measurement. */
g_free(analog->data);
g_free(analog);
analog = NULL;
}
return analog;
}
static void handle_qm_19x_meta(const struct sr_dev_inst *sdi, char **tokens)
{
struct dev_context *devc;
int meas_type, meas_unit, meas_char, i;
/* Make sure we have 7 valid tokens. */
for (i = 0; tokens[i] && i < 7; i++);
if (i != 7)
return;
if (strcmp(tokens[1], "1"))
/* Invalid measurement. */
return;
if (strcmp(tokens[2], "3"))
/* Only interested in input from the meter mode source. */
return;
devc = sdi->priv;
/* Measurement type 11 == absolute, 19 = relative */
meas_type = strtol(tokens[0], NULL, 10);
if (meas_type != 11 && meas_type != 19)
/* Device is in some mode we don't support. */
return;
/* We might get metadata for absolute and relative mode (if the device
* is in relative mode). In that case, relative takes precedence. */
if (meas_type == 11 && devc->meas_type == 19)
return;
meas_unit = strtol(tokens[3], NULL, 10);
if (meas_unit == 0)
/* Device is turned off. Really. */
return;
meas_char = strtol(tokens[4], NULL, 10);
devc->mq = devc->unit = -1;
devc->mqflags = 0;
switch (meas_unit) {
case 1:
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_VOLT;
if (meas_char == 1)
devc->mqflags |= SR_MQFLAG_DC;
else if (meas_char == 2)
devc->mqflags |= SR_MQFLAG_AC;
else if (meas_char == 3)
devc->mqflags |= SR_MQFLAG_DC | SR_MQFLAG_AC;
else if (meas_char == 15)
devc->mqflags |= SR_MQFLAG_DIODE;
break;
case 2:
devc->mq = SR_MQ_CURRENT;
devc->unit = SR_UNIT_AMPERE;
if (meas_char == 1)
devc->mqflags |= SR_MQFLAG_DC;
else if (meas_char == 2)
devc->mqflags |= SR_MQFLAG_AC;
else if (meas_char == 3)
devc->mqflags |= SR_MQFLAG_DC | SR_MQFLAG_AC;
break;
case 3:
if (meas_char == 1) {
devc->mq = SR_MQ_RESISTANCE;
devc->unit = SR_UNIT_OHM;
} else if (meas_char == 16) {
devc->mq = SR_MQ_CONTINUITY;
devc->unit = SR_UNIT_BOOLEAN;
}
break;
case 12:
devc->mq = SR_MQ_TEMPERATURE;
devc->unit = SR_UNIT_CELSIUS;
break;
case 13:
devc->mq = SR_MQ_TEMPERATURE;
devc->unit = SR_UNIT_FAHRENHEIT;
break;
default:
sr_dbg("unknown unit: %d", meas_unit);
}
if (devc->mq == -1 && devc->unit == -1)
return;
/* If we got here, we know how to interpret the measurement. */
devc->meas_type = meas_type;
if (meas_type == 11)
/* Absolute meter reading. */
devc->is_relative = FALSE;
else if (!strcmp(tokens[0], "19"))
/* Relative meter reading. */
devc->is_relative = TRUE;
}
static void handle_qm_19x_data(const struct sr_dev_inst *sdi, char **tokens)
{
struct dev_context *devc;
struct sr_datafeed_packet packet;
struct sr_datafeed_analog analog;
float fvalue;
char *eptr;
if (!strcmp(tokens[0], "9.9E+37")) {
/* An invalid measurement shows up on the display as "OL", but
* comes through like this. Since comparing 38-digit floats
* is rather problematic, we'll cut through this here. */
fvalue = NAN;
} else {
fvalue = strtof(tokens[0], &eptr);
if (fvalue == 0.0 && eptr == tokens[0]) {
sr_err("Invalid float '%s'.", tokens[0]);
return;
}
}
devc = sdi->priv;
if (devc->mq == -1 || devc->unit == -1)
/* Don't have valid metadata yet. */
return;
if (devc->mq == SR_MQ_RESISTANCE && isnan(fvalue))
fvalue = INFINITY;
else if (devc->mq == SR_MQ_CONTINUITY) {
if (isnan(fvalue))
fvalue = 0.0;
else
fvalue = 1.0;
}
analog.probes = sdi->probes;
analog.num_samples = 1;
analog.data = &fvalue;
analog.mq = devc->mq;
analog.unit = devc->unit;
analog.mqflags = 0;
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
sr_session_send(devc->cb_data, &packet);
devc->num_samples++;
}
static void handle_line(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_datafeed_packet packet;
struct sr_datafeed_analog *analog;
int num_tokens, n, i;
char cmd[16], **tokens;
devc = sdi->priv;
sr_spew("Received line '%s' (%d).", devc->buf, devc->buflen);
if (devc->buflen == 1) {
if (devc->buf[0] != '0') {
/* Not just a CMD_ACK from the query command. */
sr_dbg("Got CMD_ACK '%c'.", devc->buf[0]);
devc->expect_response = FALSE;
}
devc->buflen = 0;
return;
}
analog = NULL;
tokens = g_strsplit(devc->buf, ",", 0);
if (tokens[0]) {
if (devc->profile->model == FLUKE_187) {
devc->expect_response = FALSE;
analog = handle_qm_18x(sdi, tokens);
} else if (devc->profile->model == FLUKE_287) {
devc->expect_response = FALSE;
analog = handle_qm_28x(sdi, tokens);
} else if (devc->profile->model == FLUKE_190) {
devc->expect_response = FALSE;
for (num_tokens = 0; tokens[num_tokens]; num_tokens++);
if (num_tokens >= 7) {
/* Response to QM: this is a comma-separated list of
* fields with metadata about the measurement. This
* format can return multiple sets of metadata,
* split into sets of 7 tokens each. */
devc->meas_type = 0;
for (i = 0; i < num_tokens; i += 7)
handle_qm_19x_meta(sdi, tokens + i);
if (devc->meas_type) {
/* Slip the request in now, before the main
* timer loop asks for metadata again. */
n = sprintf(cmd, "QM %d\r", devc->meas_type);
if (serial_write(devc->serial, cmd, n) == -1)
sr_err("Unable to send QM (measurement): %s.",
strerror(errno));
}
} else {
/* Response to QM <n> measurement request. */
handle_qm_19x_data(sdi, tokens);
}
}
}
g_strfreev(tokens);
devc->buflen = 0;
if (analog) {
/* Got a measurement. */
packet.type = SR_DF_ANALOG;
packet.payload = analog;
sr_session_send(devc->cb_data, &packet);
devc->num_samples++;
g_free(analog->data);
g_free(analog);
}
}
SR_PRIV int fluke_receive_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
int len;
int64_t now, elapsed;
(void)fd;
if (!(sdi = cb_data))
return TRUE;
if (!(devc = sdi->priv))
return TRUE;
if (revents == G_IO_IN) {
/* Serial data arrived. */
while(FLUKEDMM_BUFSIZE - devc->buflen - 1 > 0) {
len = serial_read(devc->serial, devc->buf + devc->buflen, 1);
if (len < 1)
break;
devc->buflen++;
*(devc->buf + devc->buflen) = '\0';
if (*(devc->buf + devc->buflen - 1) == '\r') {
*(devc->buf + --devc->buflen) = '\0';
handle_line(sdi);
break;
}
}
}
if (devc->limit_samples && devc->num_samples >= devc->limit_samples) {
sdi->driver->dev_acquisition_stop(sdi, cb_data);
return TRUE;
}
now = g_get_monotonic_time() / 1000;
elapsed = now - devc->cmd_sent_at;
/* Send query command at poll_period interval, or after 1 second
* has elapsed. This will make it easier to recover from any
* out-of-sync or temporary disconnect issues. */
if ((devc->expect_response == FALSE && elapsed > devc->profile->poll_period)
|| elapsed > devc->profile->timeout) {
if (serial_write(devc->serial, "QM\r", 3) == -1)
sr_err("Unable to send QM: %s.", strerror(errno));
devc->cmd_sent_at = now;
devc->expect_response = TRUE;
}
return TRUE;
}