libsigrok/src/hardware/chronovu-la/api.c

620 lines
16 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2011-2015 Uwe Hermann <uwe@hermann-uwe.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <config.h>
#include "protocol.h"
SR_PRIV struct sr_dev_driver chronovu_la_driver_info;
static struct sr_dev_driver *di = &chronovu_la_driver_info;
static const uint32_t drvopts[] = {
SR_CONF_LOGIC_ANALYZER,
};
static const uint32_t scanopts[] = {
SR_CONF_CONN,
};
static const uint32_t devopts[] = {
SR_CONF_LIMIT_MSEC | SR_CONF_SET,
SR_CONF_LIMIT_SAMPLES | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_CONN | SR_CONF_GET,
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
};
static const int32_t trigger_matches[] = {
SR_TRIGGER_ZERO,
SR_TRIGGER_ONE,
SR_TRIGGER_RISING,
SR_TRIGGER_FALLING,
};
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
static void clear_helper(void *priv)
{
struct dev_context *devc;
devc = priv;
ftdi_free(devc->ftdic);
g_free(devc->final_buf);
}
static int dev_clear(const struct sr_dev_driver *di)
{
return std_dev_clear(di, clear_helper);
}
static int init(struct sr_dev_driver *di, struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
static int add_device(int model, struct libusb_device_descriptor *des,
const char *serial_num, const char *connection_id,
libusb_device *usbdev, GSList **devices)
{
int ret;
unsigned int i;
struct sr_dev_inst *sdi;
struct drv_context *drvc;
struct dev_context *devc;
ret = SR_OK;
drvc = di->context;
/* Allocate memory for our private device context. */
devc = g_malloc0(sizeof(struct dev_context));
/* Set some sane defaults. */
devc->prof = &cv_profiles[model];
devc->ftdic = NULL; /* Will be set in the open() API call. */
devc->cur_samplerate = 0; /* Set later (different for LA8/LA16). */
devc->limit_msec = 0;
devc->limit_samples = 0;
devc->cb_data = NULL;
memset(devc->mangled_buf, 0, BS);
devc->final_buf = NULL;
devc->trigger_pattern = 0x0000; /* Irrelevant, see trigger_mask. */
devc->trigger_mask = 0x0000; /* All channels: "don't care". */
devc->trigger_edgemask = 0x0000; /* All channels: "state triggered". */
devc->trigger_found = 0;
devc->done = 0;
devc->block_counter = 0;
devc->divcount = 0;
devc->usb_vid = des->idVendor;
devc->usb_pid = des->idProduct;
memset(devc->samplerates, 0, sizeof(uint64_t) * 255);
/* Allocate memory where we'll store the de-mangled data. */
if (!(devc->final_buf = g_try_malloc(SDRAM_SIZE))) {
sr_err("Failed to allocate memory for sample buffer.");
ret = SR_ERR_MALLOC;
goto err_free_devc;
}
/* We now know the device, set its max. samplerate as default. */
devc->cur_samplerate = devc->prof->max_samplerate;
/* Register the device with libsigrok. */
sdi = g_malloc0(sizeof(struct sr_dev_inst));
sdi->status = SR_ST_INITIALIZING;
sdi->vendor = g_strdup("ChronoVu");
sdi->model = g_strdup(devc->prof->modelname);
sdi->serial_num = g_strdup(serial_num);
sdi->connection_id = g_strdup(connection_id);
sdi->conn = sr_usb_dev_inst_new(libusb_get_bus_number(usbdev),
libusb_get_device_address(usbdev), NULL);
sdi->driver = di;
sdi->priv = devc;
for (i = 0; i < devc->prof->num_channels; i++)
sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE,
cv_channel_names[i]);
*devices = g_slist_append(*devices, sdi);
drvc->instances = g_slist_append(drvc->instances, sdi);
if (ret == SR_OK)
return SR_OK;
err_free_devc:
g_free(devc);
return ret;
}
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
int i, ret, model;
struct drv_context *drvc;
GSList *devices, *conn_devices, *l;
struct sr_usb_dev_inst *usb;
struct sr_config *src;
struct libusb_device_descriptor des;
libusb_device **devlist;
struct libusb_device_handle *hdl;
const char *conn;
char product[64], serial_num[64], connection_id[64];
drvc = di->context;
drvc->instances = NULL;
conn = NULL;
for (l = options; l; l = l->next) {
src = l->data;
switch (src->key) {
case SR_CONF_CONN:
conn = g_variant_get_string(src->data, NULL);
break;
}
}
if (conn)
conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
else
conn_devices = NULL;
devices = NULL;
libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
for (i = 0; devlist[i]; i++) {
if (conn) {
for (l = conn_devices; l; l = l->next) {
usb = l->data;
if (usb->bus == libusb_get_bus_number(devlist[i])
&& usb->address == libusb_get_device_address(devlist[i]))
break;
}
if (!l)
/* This device matched none of the ones that
* matched the conn specification. */
continue;
}
libusb_get_device_descriptor(devlist[i], &des);
if ((ret = libusb_open(devlist[i], &hdl)) < 0)
continue;
if (des.iProduct == 0) {
product[0] = '\0';
} else if ((ret = libusb_get_string_descriptor_ascii(hdl,
des.iProduct, (unsigned char *)product,
sizeof(product))) < 0) {
sr_warn("Failed to get product string descriptor: %s.",
libusb_error_name(ret));
continue;
}
if (des.iSerialNumber == 0) {
serial_num[0] = '\0';
} else if ((ret = libusb_get_string_descriptor_ascii(hdl,
des.iSerialNumber, (unsigned char *)serial_num,
sizeof(serial_num))) < 0) {
sr_warn("Failed to get serial number string descriptor: %s.",
libusb_error_name(ret));
continue;
}
usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
libusb_close(hdl);
if (!strcmp(product, "ChronoVu LA8")) {
model = 0;
} else if (!strcmp(product, "ChronoVu LA16")) {
model = 1;
} else {
sr_spew("Unknown iProduct string '%s'.", product);
continue;
}
sr_dbg("Found %s (%04x:%04x, %d.%d, %s).",
product, des.idVendor, des.idProduct,
libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), connection_id);
if ((ret = add_device(model, &des, serial_num, connection_id,
devlist[i], &devices)) < 0) {
sr_dbg("Failed to add device: %d.", ret);
}
}
libusb_free_device_list(devlist, 1);
g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free);
return devices;
}
static GSList *dev_list(const struct sr_dev_driver *di)
{
return ((struct drv_context *)(di->context))->instances;
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int ret;
if (!(devc = sdi->priv))
return SR_ERR_BUG;
/* Allocate memory for the FTDI context and initialize it. */
if (!(devc->ftdic = ftdi_new())) {
sr_err("Failed to initialize libftdi.");
return SR_ERR;
}
sr_dbg("Opening %s device (%04x:%04x).", devc->prof->modelname,
devc->usb_vid, devc->usb_pid);
/* Open the device. */
if ((ret = ftdi_usb_open_desc(devc->ftdic, devc->usb_vid,
devc->usb_pid, devc->prof->iproduct, NULL)) < 0) {
sr_err("Failed to open FTDI device (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_ftdi_free;
}
sr_dbg("Device opened successfully.");
/* Purge RX/TX buffers in the FTDI chip. */
if ((ret = ftdi_usb_purge_buffers(devc->ftdic)) < 0) {
sr_err("Failed to purge FTDI buffers (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_ftdi_free;
}
sr_dbg("FTDI buffers purged successfully.");
/* Enable flow control in the FTDI chip. */
if ((ret = ftdi_setflowctrl(devc->ftdic, SIO_RTS_CTS_HS)) < 0) {
sr_err("Failed to enable FTDI flow control (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_ftdi_free;
}
sr_dbg("FTDI flow control enabled successfully.");
/* Wait 100ms. */
g_usleep(100 * 1000);
sdi->status = SR_ST_ACTIVE;
if (ret == SR_OK)
return SR_OK;
err_ftdi_free:
ftdi_free(devc->ftdic); /* Close device (if open), free FTDI context. */
devc->ftdic = NULL;
return ret;
}
static int dev_close(struct sr_dev_inst *sdi)
{
int ret;
struct dev_context *devc;
if (sdi->status != SR_ST_ACTIVE)
return SR_OK;
devc = sdi->priv;
if (devc->ftdic && (ret = ftdi_usb_close(devc->ftdic)) < 0)
sr_err("Failed to close FTDI device (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int cleanup(const struct sr_dev_driver *di)
{
return dev_clear(di);
}
static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
char str[128];
(void)cg;
switch (key) {
case SR_CONF_CONN:
if (!sdi || !(usb = sdi->conn))
return SR_ERR_ARG;
snprintf(str, 128, "%d.%d", usb->bus, usb->address);
*data = g_variant_new_string(str);
break;
case SR_CONF_SAMPLERATE:
if (!sdi || !(devc = sdi->priv))
return SR_ERR_BUG;
*data = g_variant_new_uint64(devc->cur_samplerate);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
(void)cg;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
if (!(devc = sdi->priv))
return SR_ERR_BUG;
switch (key) {
case SR_CONF_SAMPLERATE:
if (cv_set_samplerate(sdi, g_variant_get_uint64(data)) < 0)
return SR_ERR;
break;
case SR_CONF_LIMIT_MSEC:
if (g_variant_get_uint64(data) == 0)
return SR_ERR_ARG;
devc->limit_msec = g_variant_get_uint64(data);
break;
case SR_CONF_LIMIT_SAMPLES:
if (g_variant_get_uint64(data) == 0)
return SR_ERR_ARG;
devc->limit_samples = g_variant_get_uint64(data);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
GVariant *gvar, *grange[2];
GVariantBuilder gvb;
struct dev_context *devc;
(void)cg;
switch (key) {
case SR_CONF_SCAN_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
break;
case SR_CONF_DEVICE_OPTIONS:
if (!sdi)
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
else
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
break;
case SR_CONF_SAMPLERATE:
if (!sdi || !sdi->priv || !(devc = sdi->priv))
return SR_ERR_BUG;
cv_fill_samplerates_if_needed(sdi);
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
devc->samplerates,
ARRAY_SIZE(devc->samplerates),
sizeof(uint64_t));
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_LIMIT_SAMPLES:
if (!sdi || !sdi->priv || !(devc = sdi->priv) || !devc->prof)
return SR_ERR_BUG;
grange[0] = g_variant_new_uint64(0);
if (devc->prof->model == CHRONOVU_LA8)
grange[1] = g_variant_new_uint64(MAX_NUM_SAMPLES);
else
grange[1] = g_variant_new_uint64(MAX_NUM_SAMPLES / 2);
*data = g_variant_new_tuple(grange, 2);
break;
case SR_CONF_TRIGGER_MATCH:
if (!sdi || !sdi->priv || !(devc = sdi->priv) || !devc->prof)
return SR_ERR_BUG;
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
trigger_matches, devc->prof->num_trigger_matches,
sizeof(int32_t));
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int receive_data(int fd, int revents, void *cb_data)
{
int i, ret;
struct sr_dev_inst *sdi;
struct dev_context *devc;
(void)fd;
(void)revents;
if (!(sdi = cb_data)) {
sr_err("cb_data was NULL.");
return FALSE;
}
if (!(devc = sdi->priv)) {
sr_err("sdi->priv was NULL.");
return FALSE;
}
if (!devc->ftdic) {
sr_err("devc->ftdic was NULL.");
return FALSE;
}
/* Get one block of data. */
if ((ret = cv_read_block(devc)) < 0) {
sr_err("Failed to read data block: %d.", ret);
dev_acquisition_stop(sdi, sdi);
return FALSE;
}
/* We need to get exactly NUM_BLOCKS blocks (i.e. 8MB) of data. */
if (devc->block_counter != (NUM_BLOCKS - 1)) {
devc->block_counter++;
return TRUE;
}
sr_dbg("Sampling finished, sending data to session bus now.");
/*
* All data was received and demangled, send it to the session bus.
*
* Note: Due to the method how data is spread across the 8MByte of
* SDRAM, we can _not_ send it to the session bus in a streaming
* manner while we receive it. We have to receive and de-mangle the
* full 8MByte first, only then the whole buffer contains valid data.
*/
for (i = 0; i < NUM_BLOCKS; i++)
cv_send_block_to_session_bus(devc, i);
dev_acquisition_stop(sdi, sdi);
return TRUE;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
uint8_t buf[8];
int bytes_to_write, bytes_written;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
if (!(devc = sdi->priv)) {
sr_err("sdi->priv was NULL.");
return SR_ERR_BUG;
}
if (!devc->ftdic) {
sr_err("devc->ftdic was NULL.");
return SR_ERR_BUG;
}
devc->divcount = cv_samplerate_to_divcount(sdi, devc->cur_samplerate);
if (devc->divcount == 0xff) {
sr_err("Invalid divcount/samplerate.");
return SR_ERR;
}
if (cv_convert_trigger(sdi) != SR_OK) {
sr_err("Failed to configure trigger.");
return SR_ERR;
}
/* Fill acquisition parameters into buf[]. */
if (devc->prof->model == CHRONOVU_LA8) {
buf[0] = devc->divcount;
buf[1] = 0xff; /* This byte must always be 0xff. */
buf[2] = devc->trigger_pattern & 0xff;
buf[3] = devc->trigger_mask & 0xff;
bytes_to_write = 4;
} else {
buf[0] = devc->divcount;
buf[1] = 0xff; /* This byte must always be 0xff. */
buf[2] = (devc->trigger_pattern & 0xff00) >> 8; /* LSB */
buf[3] = (devc->trigger_pattern & 0x00ff) >> 0; /* MSB */
buf[4] = (devc->trigger_mask & 0xff00) >> 8; /* LSB */
buf[5] = (devc->trigger_mask & 0x00ff) >> 0; /* MSB */
buf[6] = (devc->trigger_edgemask & 0xff00) >> 8; /* LSB */
buf[7] = (devc->trigger_edgemask & 0x00ff) >> 0; /* MSB */
bytes_to_write = 8;
}
/* Start acquisition. */
bytes_written = cv_write(devc, buf, bytes_to_write);
if (bytes_written < 0 || bytes_written != bytes_to_write) {
sr_err("Acquisition failed to start.");
return SR_ERR;
}
sr_dbg("Hardware acquisition started successfully.");
devc->cb_data = cb_data;
/* Send header packet to the session bus. */
std_session_send_df_header(sdi, LOG_PREFIX);
/* Time when we should be done (for detecting trigger timeouts). */
devc->done = (devc->divcount + 1) * devc->prof->trigger_constant +
g_get_monotonic_time() + (10 * G_TIME_SPAN_SECOND);
devc->block_counter = 0;
devc->trigger_found = 0;
/* Hook up a dummy handler to receive data from the device. */
sr_session_source_add(sdi->session, -1, 0, 0, receive_data, (void *)sdi);
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct sr_datafeed_packet packet;
(void)cb_data;
sr_dbg("Stopping acquisition.");
sr_session_source_remove(sdi->session, -1);
/* Send end packet to the session bus. */
sr_dbg("Sending SR_DF_END.");
packet.type = SR_DF_END;
sr_session_send(sdi, &packet);
return SR_OK;
}
SR_PRIV struct sr_dev_driver chronovu_la_driver_info = {
.name = "chronovu-la",
.longname = "ChronoVu LA8/LA16",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.context = NULL,
};