libsigrok/hardware/zeroplus-logic-cube/api.c

835 lines
21 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "protocol.h"
#define VENDOR_NAME "ZEROPLUS"
#define USB_INTERFACE 0
#define USB_CONFIGURATION 1
#define NUM_TRIGGER_STAGES 4
#define TRIGGER_TYPE "01"
#define PACKET_SIZE 2048 /* ?? */
//#define ZP_EXPERIMENTAL
struct zp_model {
uint16_t vid;
uint16_t pid;
char *model_name;
unsigned int channels;
unsigned int sample_depth; /* In Ksamples/channel */
unsigned int max_sampling_freq;
};
/*
* Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
* same 128K sample depth.
*/
static const struct zp_model zeroplus_models[] = {
{0x0c12, 0x7002, "LAP-16128U", 16, 128, 200},
{0x0c12, 0x7009, "LAP-C(16064)", 16, 64, 100},
{0x0c12, 0x700a, "LAP-C(16128)", 16, 128, 200},
{0x0c12, 0x700b, "LAP-C(32128)", 32, 128, 200},
{0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
{0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
{0x0c12, 0x700e, "LAP-C(16032)", 16, 32, 100},
{0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
{ 0, 0, 0, 0, 0, 0 }
};
static const int32_t hwcaps[] = {
SR_CONF_LOGIC_ANALYZER,
SR_CONF_SAMPLERATE,
SR_CONF_CAPTURE_RATIO,
SR_CONF_VOLTAGE_THRESHOLD,
SR_CONF_LIMIT_SAMPLES,
};
/*
* ZEROPLUS LAP-C (16032) numbers the 16 probes A0-A7 and B0-B7.
* We currently ignore other untested/unsupported devices here.
*/
static const char *probe_names[] = {
"A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
"B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
"C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
"D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
NULL,
};
SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info;
static struct sr_dev_driver *di = &zeroplus_logic_cube_driver_info;
/*
* The hardware supports more samplerates than these, but these are the
* options hardcoded into the vendor's Windows GUI.
*/
static const uint64_t samplerates_100[] = {
SR_HZ(100),
SR_HZ(500),
SR_KHZ(1),
SR_KHZ(5),
SR_KHZ(25),
SR_KHZ(50),
SR_KHZ(100),
SR_KHZ(200),
SR_KHZ(400),
SR_KHZ(800),
SR_MHZ(1),
SR_MHZ(10),
SR_MHZ(25),
SR_MHZ(50),
SR_MHZ(80),
SR_MHZ(100),
};
const uint64_t samplerates_200[] = {
SR_HZ(100),
SR_HZ(500),
SR_KHZ(1),
SR_KHZ(5),
SR_KHZ(25),
SR_KHZ(50),
SR_KHZ(100),
SR_KHZ(200),
SR_KHZ(400),
SR_KHZ(800),
SR_MHZ(1),
SR_MHZ(10),
SR_MHZ(25),
SR_MHZ(50),
SR_MHZ(80),
SR_MHZ(100),
SR_MHZ(150),
SR_MHZ(200),
};
static int dev_close(struct sr_dev_inst *sdi);
#if 0
static int configure_probes(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
const struct sr_probe *probe;
const GSList *l;
int probe_bit, stage, i;
char *tc;
/* Note: sdi and sdi->priv are non-NULL, the caller checked this. */
devc = sdi->priv;
devc->probe_mask = 0;
for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
devc->trigger_mask[i] = 0;
devc->trigger_value[i] = 0;
}
stage = -1;
for (l = sdi->probes; l; l = l->next) {
probe = (struct sr_probe *)l->data;
if (probe->enabled == FALSE)
continue;
probe_bit = 1 << (probe->index);
devc->probe_mask |= probe_bit;
if (probe->trigger) {
stage = 0;
for (tc = probe->trigger; *tc; tc++) {
devc->trigger_mask[stage] |= probe_bit;
if (*tc == '1')
devc->trigger_value[stage] |= probe_bit;
stage++;
if (stage > NUM_TRIGGER_STAGES)
return SR_ERR;
}
}
}
return SR_OK;
}
#endif
static int configure_probes(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
const GSList *l;
const struct sr_probe *probe;
char *tc;
int type;
/* Note: sdi and sdi->priv are non-NULL, the caller checked this. */
devc = sdi->priv;
for (l = sdi->probes; l; l = l->next) {
probe = (struct sr_probe *)l->data;
if (probe->enabled == FALSE)
continue;
if ((tc = probe->trigger)) {
switch (*tc) {
case '1':
type = TRIGGER_HIGH;
break;
case '0':
type = TRIGGER_LOW;
break;
#if 0
case 'r':
type = TRIGGER_POSEDGE;
break;
case 'f':
type = TRIGGER_NEGEDGE;
break;
case 'c':
type = TRIGGER_ANYEDGE;
break;
#endif
default:
return SR_ERR;
}
analyzer_add_trigger(probe->index, type);
devc->trigger = 1;
}
}
return SR_OK;
}
SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
{
int i;
for (i = 0; ARRAY_SIZE(samplerates_200); i++)
if (samplerate == samplerates_200[i])
break;
if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
return SR_ERR_ARG;
}
sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
if (samplerate >= SR_MHZ(1))
analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
else if (samplerate >= SR_KHZ(1))
analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
else
analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
devc->cur_samplerate = samplerate;
return SR_OK;
}
static int init(struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
static GSList *scan(GSList *options)
{
struct sr_dev_inst *sdi;
struct sr_probe *probe;
struct drv_context *drvc;
struct dev_context *devc;
const struct zp_model *prof;
struct libusb_device_descriptor des;
libusb_device **devlist;
GSList *devices;
int ret, devcnt, i, j;
(void)options;
drvc = di->priv;
devices = NULL;
/* Find all ZEROPLUS analyzers and add them to device list. */
devcnt = 0;
libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
for (i = 0; devlist[i]; i++) {
ret = libusb_get_device_descriptor(devlist[i], &des);
if (ret != 0) {
sr_err("Failed to get device descriptor: %s.",
libusb_error_name(ret));
continue;
}
prof = NULL;
for (j = 0; j < zeroplus_models[j].vid; j++) {
if (des.idVendor == zeroplus_models[j].vid &&
des.idProduct == zeroplus_models[j].pid) {
prof = &zeroplus_models[j];
}
}
/* Skip if the device was not found. */
if (!prof)
continue;
sr_info("Found ZEROPLUS %s.", prof->model_name);
/* Register the device with libsigrok. */
if (!(sdi = sr_dev_inst_new(devcnt, SR_ST_INACTIVE,
VENDOR_NAME, prof->model_name, NULL))) {
sr_err("%s: sr_dev_inst_new failed", __func__);
return NULL;
}
sdi->driver = di;
/* Allocate memory for our private driver context. */
if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) {
sr_err("Device context malloc failed.");
return NULL;
}
sdi->priv = devc;
devc->prof = prof;
devc->num_channels = prof->channels;
#ifdef ZP_EXPERIMENTAL
devc->max_sample_depth = 128 * 1024;
devc->max_samplerate = 200;
#else
devc->max_sample_depth = prof->sample_depth * 1024;
devc->max_samplerate = prof->max_sampling_freq;
#endif
devc->max_samplerate *= SR_MHZ(1);
devc->memory_size = MEMORY_SIZE_8K;
// memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
/* Fill in probelist according to this device's profile. */
for (j = 0; j < devc->num_channels; j++) {
if (!(probe = sr_probe_new(j, SR_PROBE_LOGIC, TRUE,
probe_names[j])))
return NULL;
sdi->probes = g_slist_append(sdi->probes, probe);
}
devices = g_slist_append(devices, sdi);
drvc->instances = g_slist_append(drvc->instances, sdi);
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new(
libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), NULL);
devcnt++;
}
libusb_free_device_list(devlist, 1);
return devices;
}
static GSList *dev_list(void)
{
return ((struct drv_context *)(di->priv))->instances;
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct drv_context *drvc;
struct sr_usb_dev_inst *usb;
libusb_device **devlist, *dev;
struct libusb_device_descriptor des;
int device_count, ret, i;
drvc = di->priv;
usb = sdi->conn;
if (!(devc = sdi->priv)) {
sr_err("%s: sdi->priv was NULL", __func__);
return SR_ERR_ARG;
}
device_count = libusb_get_device_list(drvc->sr_ctx->libusb_ctx,
&devlist);
if (device_count < 0) {
sr_err("Failed to retrieve device list.");
return SR_ERR;
}
dev = NULL;
for (i = 0; i < device_count; i++) {
if ((ret = libusb_get_device_descriptor(devlist[i], &des))) {
sr_err("Failed to get device descriptor: %s.",
libusb_error_name(ret));
continue;
}
if (libusb_get_bus_number(devlist[i]) == usb->bus
&& libusb_get_device_address(devlist[i]) == usb->address) {
dev = devlist[i];
break;
}
}
if (!dev) {
sr_err("Device on bus %d address %d disappeared!",
usb->bus, usb->address);
return SR_ERR;
}
if (!(ret = libusb_open(dev, &(usb->devhdl)))) {
sdi->status = SR_ST_ACTIVE;
sr_info("Opened device %d on %d.%d interface %d.",
sdi->index, usb->bus, usb->address, USB_INTERFACE);
} else {
sr_err("Failed to open device: %s.", libusb_error_name(ret));
return SR_ERR;
}
ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
if (ret < 0) {
sr_err("Unable to set USB configuration %d: %s.",
USB_CONFIGURATION, libusb_error_name(ret));
return SR_ERR;
}
ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
if (ret != 0) {
sr_err("Unable to claim interface: %s.",
libusb_error_name(ret));
return SR_ERR;
}
/* Set default configuration after power on. */
if (analyzer_read_status(usb->devhdl) == 0)
analyzer_configure(usb->devhdl);
analyzer_reset(usb->devhdl);
analyzer_initialize(usb->devhdl);
//analyzer_set_memory_size(MEMORY_SIZE_512K);
// analyzer_set_freq(g_freq, g_freq_scale);
analyzer_set_trigger_count(1);
// analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
// * get_memory_size(g_memory_size)) / 100) >> 2);
#if 0
if (g_double_mode == 1)
analyzer_set_compression(COMPRESSION_DOUBLE);
else if (g_compression == 1)
analyzer_set_compression(COMPRESSION_ENABLE);
else
#endif
analyzer_set_compression(COMPRESSION_NONE);
if (devc->cur_samplerate == 0) {
/* Samplerate hasn't been set. Default to 1MHz. */
analyzer_set_freq(1, FREQ_SCALE_MHZ);
devc->cur_samplerate = SR_MHZ(1);
}
if (devc->cur_threshold == 0)
set_voltage_threshold(devc, 1.5);
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
struct sr_usb_dev_inst *usb;
usb = sdi->conn;
if (!usb->devhdl)
return SR_ERR;
sr_info("Closing device %d on %d.%d interface %d.", sdi->index,
usb->bus, usb->address, USB_INTERFACE);
libusb_release_interface(usb->devhdl, USB_INTERFACE);
libusb_reset_device(usb->devhdl);
libusb_close(usb->devhdl);
usb->devhdl = NULL;
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int cleanup(void)
{
return std_dev_clear(di, NULL);
}
static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
struct dev_context *devc;
(void)probe_group;
switch (id) {
case SR_CONF_SAMPLERATE:
if (sdi) {
devc = sdi->priv;
*data = g_variant_new_uint64(devc->cur_samplerate);
sr_spew("Returning samplerate: %" PRIu64 "Hz.",
devc->cur_samplerate);
} else
return SR_ERR_ARG;
break;
case SR_CONF_CAPTURE_RATIO:
if (sdi) {
devc = sdi->priv;
*data = g_variant_new_uint64(devc->capture_ratio);
} else
return SR_ERR_ARG;
break;
case SR_CONF_VOLTAGE_THRESHOLD:
if (sdi) {
GVariant *range[2];
devc = sdi->priv;
range[0] = g_variant_new_double(devc->cur_threshold);
range[1] = g_variant_new_double(devc->cur_threshold);
*data = g_variant_new_tuple(range, 2);
} else
return SR_ERR_ARG;
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
struct dev_context *devc;
gdouble low, high;
(void)probe_group;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
if (!(devc = sdi->priv)) {
sr_err("%s: sdi->priv was NULL", __func__);
return SR_ERR_ARG;
}
switch (id) {
case SR_CONF_SAMPLERATE:
return zp_set_samplerate(devc, g_variant_get_uint64(data));
case SR_CONF_LIMIT_SAMPLES:
return set_limit_samples(devc, g_variant_get_uint64(data));
case SR_CONF_CAPTURE_RATIO:
return set_capture_ratio(devc, g_variant_get_uint64(data));
case SR_CONF_VOLTAGE_THRESHOLD:
g_variant_get(data, "(dd)", &low, &high);
return set_voltage_threshold(devc, (low + high) / 2.0);
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
struct dev_context *devc;
GVariant *gvar, *grange[2];
GVariantBuilder gvb;
double v;
GVariant *range[2];
(void)probe_group;
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
break;
case SR_CONF_SAMPLERATE:
devc = sdi->priv;
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
if (devc->prof->max_sampling_freq == 100) {
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
samplerates_100, ARRAY_SIZE(samplerates_100),
sizeof(uint64_t));
} else if (devc->prof->max_sampling_freq == 200) {
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
samplerates_200, ARRAY_SIZE(samplerates_200),
sizeof(uint64_t));
} else {
sr_err("Internal error: Unknown max. samplerate: %d.",
devc->prof->max_sampling_freq);
return SR_ERR_ARG;
}
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TRIGGER_TYPE:
*data = g_variant_new_string(TRIGGER_TYPE);
break;
case SR_CONF_VOLTAGE_THRESHOLD:
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
for (v = -6.0; v <= 6.0; v += 0.1) {
range[0] = g_variant_new_double(v);
range[1] = g_variant_new_double(v);
gvar = g_variant_new_tuple(range, 2);
g_variant_builder_add_value(&gvb, gvar);
}
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_LIMIT_SAMPLES:
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
grange[0] = g_variant_new_uint64(0);
grange[1] = g_variant_new_uint64(devc->max_sample_depth);
*data = g_variant_new_tuple(grange, 2);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi,
void *cb_data)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
unsigned int samples_read;
int res;
unsigned int packet_num, n;
unsigned char *buf;
unsigned int status;
unsigned int stop_address;
unsigned int now_address;
unsigned int trigger_address;
unsigned int trigger_offset;
unsigned int triggerbar;
unsigned int ramsize_trigger;
unsigned int memory_size;
unsigned int valid_samples;
unsigned int discard;
int trigger_now;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
if (!(devc = sdi->priv)) {
sr_err("%s: sdi->priv was NULL", __func__);
return SR_ERR_ARG;
}
if (configure_probes(sdi) != SR_OK) {
sr_err("Failed to configure probes.");
return SR_ERR;
}
usb = sdi->conn;
set_triggerbar(devc);
/* Push configured settings to device. */
analyzer_configure(usb->devhdl);
analyzer_start(usb->devhdl);
sr_info("Waiting for data.");
analyzer_wait_data(usb->devhdl);
status = analyzer_read_status(usb->devhdl);
stop_address = analyzer_get_stop_address(usb->devhdl);
now_address = analyzer_get_now_address(usb->devhdl);
trigger_address = analyzer_get_trigger_address(usb->devhdl);
triggerbar = analyzer_get_triggerbar_address();
ramsize_trigger = analyzer_get_ramsize_trigger_address();
n = get_memory_size(devc->memory_size);
memory_size = n / 4;
sr_info("Status = 0x%x.", status);
sr_info("Stop address = 0x%x.", stop_address);
sr_info("Now address = 0x%x.", now_address);
sr_info("Trigger address = 0x%x.", trigger_address);
sr_info("Triggerbar address = 0x%x.", triggerbar);
sr_info("Ramsize trigger = 0x%x.", ramsize_trigger);
sr_info("Memory size = 0x%x.", memory_size);
/* Send header packet to the session bus. */
std_session_send_df_header(cb_data, LOG_PREFIX);
/* Check for empty capture */
if ((status & STATUS_READY) && !stop_address) {
packet.type = SR_DF_END;
sr_session_send(cb_data, &packet);
return SR_OK;
}
if (!(buf = g_try_malloc(PACKET_SIZE))) {
sr_err("Packet buffer malloc failed.");
return SR_ERR_MALLOC;
}
/* Check if the trigger is in the samples we are throwing away */
trigger_now = now_address == trigger_address ||
((now_address + 1) % memory_size) == trigger_address;
/*
* STATUS_READY doesn't clear until now_address advances past
* addr 0, but for our logic, clear it in that case
*/
if (!now_address)
status &= ~STATUS_READY;
analyzer_read_start(usb->devhdl);
/* Calculate how much data to discard */
discard = 0;
if (status & STATUS_READY) {
/*
* We haven't wrapped around, we need to throw away data from
* our current position to the end of the buffer.
* Additionally, the first two samples captured are always
* bogus.
*/
discard += memory_size - now_address + 2;
now_address = 2;
}
/* If we have more samples than we need, discard them */
valid_samples = (stop_address - now_address) % memory_size;
if (valid_samples > ramsize_trigger + triggerbar) {
discard += valid_samples - (ramsize_trigger + triggerbar);
now_address += valid_samples - (ramsize_trigger + triggerbar);
}
sr_info("Need to discard %d samples.", discard);
/* Calculate how far in the trigger is */
if (trigger_now)
trigger_offset = 0;
else
trigger_offset = (trigger_address - now_address) % memory_size;
/* Recalculate the number of samples available */
valid_samples = (stop_address - now_address) % memory_size;
/* Send the incoming transfer to the session bus. */
samples_read = 0;
for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
unsigned int len;
unsigned int buf_offset;
res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
sr_info("Tried to read %d bytes, actually read %d bytes.",
PACKET_SIZE, res);
if (discard >= PACKET_SIZE / 4) {
discard -= PACKET_SIZE / 4;
continue;
}
len = PACKET_SIZE - discard * 4;
buf_offset = discard * 4;
discard = 0;
/* Check if we've read all the samples */
if (samples_read + len / 4 >= valid_samples)
len = (valid_samples - samples_read) * 4;
if (!len)
break;
if (samples_read < trigger_offset &&
samples_read + len / 4 > trigger_offset) {
/* Send out samples remaining before trigger */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = (trigger_offset - samples_read) * 4;
logic.unitsize = 4;
logic.data = buf + buf_offset;
sr_session_send(cb_data, &packet);
len -= logic.length;
samples_read += logic.length / 4;
buf_offset += logic.length;
}
if (samples_read == trigger_offset) {
/* Send out trigger */
packet.type = SR_DF_TRIGGER;
packet.payload = NULL;
sr_session_send(cb_data, &packet);
}
/* Send out data (or data after trigger) */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = len;
logic.unitsize = 4;
logic.data = buf + buf_offset;
sr_session_send(cb_data, &packet);
samples_read += len / 4;
}
analyzer_read_stop(usb->devhdl);
g_free(buf);
packet.type = SR_DF_END;
sr_session_send(cb_data, &packet);
return SR_OK;
}
/* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
struct sr_datafeed_packet packet;
packet.type = SR_DF_END;
sr_session_send(cb_data, &packet);
if (!(devc = sdi->priv)) {
sr_err("%s: sdi->priv was NULL", __func__);
return SR_ERR_BUG;
}
usb = sdi->conn;
analyzer_reset(usb->devhdl);
/* TODO: Need to cancel and free any queued up transfers. */
return SR_OK;
}
SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info = {
.name = "zeroplus-logic-cube",
.longname = "ZEROPLUS Logic Cube LAP-C series",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = NULL,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};