libsigrok/src/hardware/pipistrello-ols/protocol.c

683 lines
20 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include "protocol.h"
extern SR_PRIV struct sr_dev_driver p_ols_driver_info;
SR_PRIV int write_shortcommand(struct dev_context *devc, uint8_t command)
{
uint8_t buf[1];
int bytes_written;
sr_dbg("Sending cmd 0x%.2x.", command);
buf[0] = command;
bytes_written = ftdi_write_data(devc->ftdic, buf, 1);
if (bytes_written < 0) {
sr_err("Failed to write FTDI data (%d): %s.",
bytes_written, ftdi_get_error_string(devc->ftdic));
return SR_ERR;
} else if (bytes_written != 1) {
sr_err("FTDI write error, only %d/%d bytes written: %s.",
bytes_written, 1, ftdi_get_error_string(devc->ftdic));
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int write_longcommand(struct dev_context *devc, uint8_t command, uint8_t *data)
{
uint8_t buf[5];
int bytes_written;
sr_dbg("Sending cmd 0x%.2x data 0x%.2x%.2x%.2x%.2x.", command,
data[0], data[1], data[2], data[3]);
buf[0] = command;
buf[1] = data[0];
buf[2] = data[1];
buf[3] = data[2];
buf[4] = data[3];
bytes_written = ftdi_write_data(devc->ftdic, buf, 5);
if (bytes_written < 0) {
sr_err("Failed to write FTDI data (%d): %s.",
bytes_written, ftdi_get_error_string(devc->ftdic));
return SR_ERR;
} else if (bytes_written != 5) {
sr_err("FTDI write error, only %d/%d bytes written: %s.",
bytes_written, 1, ftdi_get_error_string(devc->ftdic));
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int p_ols_open(struct dev_context *devc)
{
int ret;
/* Note: Caller checks devc and devc->ftdic. */
/* Select interface B, otherwise communication will fail. */
ret = ftdi_set_interface(devc->ftdic, INTERFACE_B);
if (ret < 0) {
sr_err("Failed to set FTDI interface B (%d): %s", ret,
ftdi_get_error_string(devc->ftdic));
return SR_ERR;
}
sr_dbg("FTDI chip interface B set successfully.");
/* Check for the device and temporarily open it. */
ret = ftdi_usb_open_desc(devc->ftdic, USB_VENDOR_ID, USB_DEVICE_ID,
USB_IPRODUCT, NULL);
if (ret < 0) {
/* Log errors, except for -3 ("device not found"). */
if (ret != -3)
sr_err("Failed to open device (%d): %s", ret,
ftdi_get_error_string(devc->ftdic));
return SR_ERR;
}
sr_dbg("FTDI device opened successfully.");
/* Purge RX/TX buffers in the FTDI chip. */
if ((ret = ftdi_usb_purge_buffers(devc->ftdic)) < 0) {
sr_err("Failed to purge FTDI RX/TX buffers (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_open_close_ftdic;
}
sr_dbg("FTDI chip buffers purged successfully.");
/* Reset the FTDI bitmode. */
ret = ftdi_set_bitmode(devc->ftdic, 0xff, BITMODE_RESET);
if (ret < 0) {
sr_err("Failed to reset the FTDI chip bitmode (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_open_close_ftdic;
}
sr_dbg("FTDI chip bitmode reset successfully.");
/* Set the FTDI latency timer to 16. */
ret = ftdi_set_latency_timer(devc->ftdic, 16);
if (ret < 0) {
sr_err("Failed to set FTDI latency timer (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_open_close_ftdic;
}
sr_dbg("FTDI chip latency timer set successfully.");
/* Set the FTDI read data chunk size to 64kB. */
ret = ftdi_read_data_set_chunksize(devc->ftdic, 64 * 1024);
if (ret < 0) {
sr_err("Failed to set FTDI read data chunk size (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_open_close_ftdic;
}
sr_dbg("FTDI chip read data chunk size set successfully.");
return SR_OK;
err_open_close_ftdic:
ftdi_usb_close(devc->ftdic);
return SR_ERR;
}
SR_PRIV int p_ols_close(struct dev_context *devc)
{
int ret;
/* Note: Caller checks devc and devc->ftdic. */
if ((ret = ftdi_usb_close(devc->ftdic)) < 0) {
sr_err("Failed to close FTDI device (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
return SR_ERR;
}
return SR_OK;
}
/* Configures the channel mask based on which channels are enabled. */
SR_PRIV void pols_channel_mask(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_channel *channel;
const GSList *l;
devc = sdi->priv;
devc->channel_mask = 0;
for (l = sdi->channels; l; l = l->next) {
channel = l->data;
if (channel->enabled)
devc->channel_mask |= 1 << channel->index;
}
}
SR_PRIV int pols_convert_trigger(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_trigger *trigger;
struct sr_trigger_stage *stage;
struct sr_trigger_match *match;
const GSList *l, *m;
int i;
devc = sdi->priv;
devc->num_stages = 0;
for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
devc->trigger_mask[i] = 0;
devc->trigger_value[i] = 0;
devc->trigger_edge[i] = 0;
}
if (!(trigger = sr_session_trigger_get(sdi->session)))
return SR_OK;
devc->num_stages = g_slist_length(trigger->stages);
if (devc->num_stages > NUM_TRIGGER_STAGES) {
sr_err("This device only supports %d trigger stages.",
NUM_TRIGGER_STAGES);
return SR_ERR;
}
for (l = trigger->stages; l; l = l->next) {
stage = l->data;
for (m = stage->matches; m; m = m->next) {
match = m->data;
if (!match->channel->enabled)
/* Ignore disabled channels with a trigger. */
continue;
devc->trigger_mask[stage->stage] |= 1 << match->channel->index;
if (match->match == SR_TRIGGER_ONE || match->match == SR_TRIGGER_RISING)
devc->trigger_value[stage->stage] |= 1 << match->channel->index;
if (match->match == SR_TRIGGER_RISING || match->match == SR_TRIGGER_FALLING)
devc->trigger_edge[stage->stage] |= 1 << match->channel->index;
}
}
return SR_OK;
}
SR_PRIV struct sr_dev_inst *p_ols_get_metadata(uint8_t *buf, int bytes_read, struct dev_context *devc)
{
struct sr_dev_inst *sdi;
uint32_t tmp_int, ui;
uint8_t key, type, token;
GString *tmp_str, *devname, *version;
guchar tmp_c;
int index, i;
sdi = g_malloc0(sizeof(struct sr_dev_inst));
sdi->status = SR_ST_INACTIVE;
sdi->driver = &p_ols_driver_info;
sdi->priv = devc;
devname = g_string_new("");
version = g_string_new("");
index = 0;
while (index < bytes_read) {
key = buf[index++];
if (key == 0x00) {
sr_dbg("Got metadata key 0x00, metadata ends.");
break;
}
type = key >> 5;
token = key & 0x1f;
switch (type) {
case 0:
/* NULL-terminated string */
tmp_str = g_string_new("");
while ((index < bytes_read) && ((tmp_c = buf[index++]) != '\0'))
g_string_append_c(tmp_str, tmp_c);
sr_dbg("Got metadata key 0x%.2x value '%s'.",
key, tmp_str->str);
switch (token) {
case 0x01:
/* Device name */
devname = g_string_append(devname, tmp_str->str);
break;
case 0x02:
/* FPGA firmware version */
if (version->len)
g_string_append(version, ", ");
g_string_append(version, "FPGA version ");
g_string_append(version, tmp_str->str);
break;
case 0x03:
/* Ancillary version */
if (version->len)
g_string_append(version, ", ");
g_string_append(version, "Ancillary version ");
g_string_append(version, tmp_str->str);
break;
default:
sr_info("Unknown token 0x%.2x: '%s'",
token, tmp_str->str);
break;
}
g_string_free(tmp_str, TRUE);
break;
case 1:
/* 32-bit unsigned integer */
tmp_int = 0;
for (i = 0; i < 4; i++) {
tmp_int = (tmp_int << 8) | buf[index++];
}
sr_dbg("Got metadata key 0x%.2x value 0x%.8x.",
key, tmp_int);
switch (token) {
case 0x00:
/* Number of usable channels */
for (ui = 0; ui < tmp_int; ui++)
sr_channel_new(sdi, ui, SR_CHANNEL_LOGIC, TRUE,
p_ols_channel_names[ui]);
break;
case 0x01:
/* Amount of sample memory available (bytes) */
devc->max_samplebytes = tmp_int;
break;
case 0x02:
/* Amount of dynamic memory available (bytes) */
/* what is this for? */
break;
case 0x03:
/* Maximum sample rate (Hz) */
devc->max_samplerate = tmp_int;
break;
case 0x04:
/* protocol version */
devc->protocol_version = tmp_int;
break;
default:
sr_info("Unknown token 0x%.2x: 0x%.8x.",
token, tmp_int);
break;
}
break;
case 2:
/* 8-bit unsigned integer */
tmp_c = buf[index++];
sr_dbg("Got metadata key 0x%.2x value 0x%.2x.",
key, tmp_c);
switch (token) {
case 0x00:
/* Number of usable channels */
for (ui = 0; ui < tmp_c; ui++)
sr_channel_new(sdi, ui, SR_CHANNEL_LOGIC, TRUE,
p_ols_channel_names[ui]);
break;
case 0x01:
/* protocol version */
devc->protocol_version = tmp_c;
break;
default:
sr_info("Unknown token 0x%.2x: 0x%.2x.",
token, tmp_c);
break;
}
break;
default:
/* unknown type */
break;
}
}
sdi->model = devname->str;
sdi->version = version->str;
g_string_free(devname, FALSE);
g_string_free(version, FALSE);
return sdi;
}
SR_PRIV int p_ols_set_samplerate(const struct sr_dev_inst *sdi,
const uint64_t samplerate)
{
struct dev_context *devc;
devc = sdi->priv;
if (devc->max_samplerate && samplerate > devc->max_samplerate)
return SR_ERR_SAMPLERATE;
if (samplerate > CLOCK_RATE) {
sr_info("Enabling demux mode.");
devc->flag_reg |= FLAG_DEMUX;
devc->flag_reg &= ~FLAG_FILTER;
devc->max_channels = NUM_CHANNELS / 2;
devc->cur_samplerate_divider = (CLOCK_RATE * 2 / samplerate) - 1;
} else {
sr_info("Disabling demux mode.");
devc->flag_reg &= ~FLAG_DEMUX;
devc->flag_reg |= FLAG_FILTER;
devc->max_channels = NUM_CHANNELS;
devc->cur_samplerate_divider = (CLOCK_RATE / samplerate) - 1;
}
/* Calculate actual samplerate used and complain if it is different
* from the requested.
*/
devc->cur_samplerate = CLOCK_RATE / (devc->cur_samplerate_divider + 1);
if (devc->flag_reg & FLAG_DEMUX)
devc->cur_samplerate *= 2;
if (devc->cur_samplerate != samplerate)
sr_info("Can't match samplerate %" PRIu64 ", using %"
PRIu64 ".", samplerate, devc->cur_samplerate);
return SR_OK;
}
SR_PRIV int p_ols_receive_data(int fd, int revents, void *cb_data)
{
struct dev_context *devc;
struct sr_dev_inst *sdi;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
uint32_t sample;
int num_channels, offset, j;
int bytes_read, index;
unsigned int i;
unsigned char byte;
(void)fd;
(void)revents;
sdi = cb_data;
devc = sdi->priv;
if (devc->num_transfers++ == 0) {
devc->raw_sample_buf = g_try_malloc(devc->limit_samples * 4);
if (!devc->raw_sample_buf) {
sr_err("Sample buffer malloc failed.");
return FALSE;
}
/* fill with 1010... for debugging */
memset(devc->raw_sample_buf, 0x82, devc->limit_samples * 4);
}
if ((devc->num_samples < devc->limit_samples) && (devc->cnt_samples < devc->max_samples)) {
num_channels = 0;
for (i = NUM_CHANNELS; i > 0x02; i /= 2) {
if ((devc->flag_reg & i) == 0) {
num_channels++;
}
}
/* Get a block of data. */
bytes_read = ftdi_read_data(devc->ftdic, devc->ftdi_buf, FTDI_BUF_SIZE);
if (bytes_read < 0) {
sr_err("Failed to read FTDI data (%d): %s.",
bytes_read, ftdi_get_error_string(devc->ftdic));
sdi->driver->dev_acquisition_stop(sdi, sdi);
return FALSE;
}
if (bytes_read == 0) {
sr_spew("Received 0 bytes, nothing to do.");
return TRUE;
}
sr_dbg("Received %d bytes", bytes_read);
index = 0;
while (index < bytes_read) {
byte = devc->ftdi_buf[index++];
devc->cnt_bytes++;
devc->sample[devc->num_bytes++] = byte;
sr_spew("Received byte 0x%.2x.", byte);
if ((devc->flag_reg & FLAG_DEMUX) && (devc->flag_reg & FLAG_RLE)) {
/* RLE in demux mode must be processed differently
* since in this case the RLE encoder is operating on pairs of samples.
*/
if (devc->num_bytes == num_channels * 2) {
devc->cnt_samples += 2;
devc->cnt_samples_rle += 2;
/*
* Got a sample pair. Convert from the OLS's little-endian
* sample to the local format.
*/
sample = devc->sample[0] | (devc->sample[1] << 8) \
| (devc->sample[2] << 16) | (devc->sample[3] << 24);
sr_spew("Received sample pair 0x%.*x.", devc->num_bytes * 2, sample);
/*
* In RLE mode the high bit of the sample pair is the
* "count" flag, meaning this sample pair is the number
* of times the previous sample pair occurred.
*/
if (devc->sample[devc->num_bytes - 1] & 0x80) {
/* Clear the high bit. */
sample &= ~(0x80 << (devc->num_bytes - 1) * 8);
devc->rle_count = sample;
devc->cnt_samples_rle += devc->rle_count * 2;
sr_dbg("RLE count: %u.", devc->rle_count * 2);
devc->num_bytes = 0;
continue;
}
devc->num_samples += (devc->rle_count + 1) * 2;
if (devc->num_samples > devc->limit_samples) {
/* Save us from overrunning the buffer. */
devc->rle_count -= (devc->num_samples - devc->limit_samples) / 2;
devc->num_samples = devc->limit_samples;
index = bytes_read;
}
/*
* Some channel groups may have been turned
* off, to speed up transfer between the
* hardware and the PC. Expand that here before
* submitting it over the session bus --
* whatever is listening on the bus will be
* expecting a full 32-bit sample, based on
* the number of channels.
*/
j = 0;
/* expand first sample */
memset(devc->tmp_sample, 0, 4);
for (i = 0; i < 2; i++) {
if (((devc->flag_reg >> 2) & (1 << i)) == 0) {
/*
* This channel group was
* enabled, copy from received
* sample.
*/
devc->tmp_sample[i] = devc->sample[j++];
}
}
/* Clear out the most significant bit of the sample */
devc->tmp_sample[devc->num_bytes - 1] &= 0x7f;
sr_spew("Expanded sample 1: 0x%.2x%.2x%.2x%.2x.",
devc->tmp_sample[3], devc->tmp_sample[2],
devc->tmp_sample[1], devc->tmp_sample[0]);
/* expand second sample */
memset(devc->tmp_sample2, 0, 4);
for (i = 0; i < 2; i++) {
if (((devc->flag_reg >> 2) & (1 << i)) == 0) {
/*
* This channel group was
* enabled, copy from received
* sample.
*/
devc->tmp_sample2[i] = devc->sample[j++];
}
}
/* Clear out the most significant bit of the sample */
devc->tmp_sample2[devc->num_bytes - 1] &= 0x7f;
sr_spew("Expanded sample 2: 0x%.2x%.2x%.2x%.2x.",
devc->tmp_sample2[3], devc->tmp_sample2[2],
devc->tmp_sample2[1], devc->tmp_sample2[0]);
/*
* OLS sends its sample buffer backwards.
* store it in reverse order here, so we can dump
* this on the session bus later.
*/
offset = (devc->limit_samples - devc->num_samples) * 4;
for (i = 0; i <= devc->rle_count; i++) {
memcpy(devc->raw_sample_buf + offset + (i * 8),
devc->tmp_sample2, 4);
memcpy(devc->raw_sample_buf + offset + (4 + (i * 8)),
devc->tmp_sample, 4);
}
memset(devc->sample, 0, 4);
devc->num_bytes = 0;
devc->rle_count = 0;
}
}
else {
if (devc->num_bytes == num_channels) {
devc->cnt_samples++;
devc->cnt_samples_rle++;
/*
* Got a full sample. Convert from the OLS's little-endian
* sample to the local format.
*/
sample = devc->sample[0] | (devc->sample[1] << 8) \
| (devc->sample[2] << 16) | (devc->sample[3] << 24);
sr_spew("Received sample 0x%.*x.", devc->num_bytes * 2, sample);
if (devc->flag_reg & FLAG_RLE) {
/*
* In RLE mode the high bit of the sample is the
* "count" flag, meaning this sample is the number
* of times the previous sample occurred.
*/
if (devc->sample[devc->num_bytes - 1] & 0x80) {
/* Clear the high bit. */
sample &= ~(0x80 << (devc->num_bytes - 1) * 8);
devc->rle_count = sample;
devc->cnt_samples_rle += devc->rle_count;
sr_dbg("RLE count: %u.", devc->rle_count);
devc->num_bytes = 0;
continue;
}
}
devc->num_samples += devc->rle_count + 1;
if (devc->num_samples > devc->limit_samples) {
/* Save us from overrunning the buffer. */
devc->rle_count -= devc->num_samples - devc->limit_samples;
devc->num_samples = devc->limit_samples;
index = bytes_read;
}
if (num_channels < 4) {
/*
* Some channel groups may have been turned
* off, to speed up transfer between the
* hardware and the PC. Expand that here before
* submitting it over the session bus --
* whatever is listening on the bus will be
* expecting a full 32-bit sample, based on
* the number of channels.
*/
j = 0;
memset(devc->tmp_sample, 0, 4);
for (i = 0; i < 4; i++) {
if (((devc->flag_reg >> 2) & (1 << i)) == 0) {
/*
* This channel group was
* enabled, copy from received
* sample.
*/
devc->tmp_sample[i] = devc->sample[j++];
}
}
memcpy(devc->sample, devc->tmp_sample, 4);
sr_spew("Expanded sample: 0x%.8x.", sample);
}
/*
* Pipistrello OLS sends its sample buffer backwards.
* store it in reverse order here, so we can dump
* this on the session bus later.
*/
offset = (devc->limit_samples - devc->num_samples) * 4;
for (i = 0; i <= devc->rle_count; i++) {
memcpy(devc->raw_sample_buf + offset + (i * 4),
devc->sample, 4);
}
memset(devc->sample, 0, 4);
devc->num_bytes = 0;
devc->rle_count = 0;
}
}
}
return TRUE;
} else {
do {
bytes_read = ftdi_read_data(devc->ftdic, devc->ftdi_buf, FTDI_BUF_SIZE);
} while (bytes_read > 0);
/*
* We've acquired all the samples we asked for -- we're done.
* Send the (properly-ordered) buffer to the frontend.
*/
sr_dbg("Received %d bytes, %d samples, %d decompressed samples.",
devc->cnt_bytes, devc->cnt_samples,
devc->cnt_samples_rle);
if (devc->trigger_at != -1) {
/*
* A trigger was set up, so we need to tell the frontend
* about it.
*/
if (devc->trigger_at > 0) {
/* There are pre-trigger samples, send those first. */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = devc->trigger_at * 4;
logic.unitsize = 4;
logic.data = devc->raw_sample_buf +
(devc->limit_samples - devc->num_samples) * 4;
sr_session_send(cb_data, &packet);
}
/* Send the trigger. */
packet.type = SR_DF_TRIGGER;
sr_session_send(cb_data, &packet);
/* Send post-trigger samples. */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = (devc->num_samples * 4) - (devc->trigger_at * 4);
logic.unitsize = 4;
logic.data = devc->raw_sample_buf + devc->trigger_at * 4 +
(devc->limit_samples - devc->num_samples) * 4;
sr_session_send(cb_data, &packet);
} else {
/* no trigger was used */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = devc->num_samples * 4;
logic.unitsize = 4;
logic.data = devc->raw_sample_buf +
(devc->limit_samples - devc->num_samples) * 4;
sr_session_send(cb_data, &packet);
}
g_free(devc->raw_sample_buf);
sdi->driver->dev_acquisition_stop(sdi, cb_data);
}
return TRUE;
}