libsigrok/hardware/openbench-logic-sniffer/ols.c

1063 lines
26 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <termios.h>
#endif
#include <string.h>
#include <sys/time.h>
#include <inttypes.h>
#ifdef _WIN32
/* TODO */
#else
#include <arpa/inet.h>
#endif
#include <glib.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "ols.h"
#ifdef _WIN32
#define O_NONBLOCK FIONBIO
#endif
static const int hwcaps[] = {
SR_HWCAP_LOGIC_ANALYZER,
SR_HWCAP_SAMPLERATE,
SR_HWCAP_CAPTURE_RATIO,
SR_HWCAP_LIMIT_SAMPLES,
SR_HWCAP_RLE,
0,
};
/* Probes are numbered 0-31 (on the PCB silkscreen). */
static const char *probe_names[NUM_PROBES + 1] = {
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
NULL,
};
/* default supported samplerates, can be overridden by device metadata */
static const struct sr_samplerates samplerates = {
SR_HZ(10),
SR_MHZ(200),
SR_HZ(1),
NULL,
};
/* List of struct sr_dev_inst. */
static GSList *dev_insts = NULL;
static int send_shortcommand(int fd, uint8_t command)
{
char buf[1];
sr_dbg("ols: sending cmd 0x%.2x", command);
buf[0] = command;
if (serial_write(fd, buf, 1) != 1)
return SR_ERR;
return SR_OK;
}
static int send_longcommand(int fd, uint8_t command, uint32_t data)
{
char buf[5];
sr_dbg("ols: sending cmd 0x%.2x data 0x%.8x", command, data);
buf[0] = command;
buf[1] = (data & 0xff000000) >> 24;
buf[2] = (data & 0xff0000) >> 16;
buf[3] = (data & 0xff00) >> 8;
buf[4] = data & 0xff;
if (serial_write(fd, buf, 5) != 5)
return SR_ERR;
return SR_OK;
}
static int configure_probes(struct context *ctx, const GSList *probes)
{
const struct sr_probe *probe;
const GSList *l;
int probe_bit, stage, i;
char *tc;
ctx->probe_mask = 0;
for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
ctx->trigger_mask[i] = 0;
ctx->trigger_value[i] = 0;
}
ctx->num_stages = 0;
for (l = probes; l; l = l->next) {
probe = (const struct sr_probe *)l->data;
if (!probe->enabled)
continue;
/*
* Set up the probe mask for later configuration into the
* flag register.
*/
probe_bit = 1 << (probe->index - 1);
ctx->probe_mask |= probe_bit;
if (!probe->trigger)
continue;
/* Configure trigger mask and value. */
stage = 0;
for (tc = probe->trigger; tc && *tc; tc++) {
ctx->trigger_mask[stage] |= probe_bit;
if (*tc == '1')
ctx->trigger_value[stage] |= probe_bit;
stage++;
if (stage > 3)
/*
* TODO: Only supporting parallel mode, with
* up to 4 stages.
*/
return SR_ERR;
}
if (stage > ctx->num_stages)
ctx->num_stages = stage;
}
return SR_OK;
}
static uint32_t reverse16(uint32_t in)
{
uint32_t out;
out = (in & 0xff) << 8;
out |= (in & 0xff00) >> 8;
out |= (in & 0xff0000) << 8;
out |= (in & 0xff000000) >> 8;
return out;
}
static uint32_t reverse32(uint32_t in)
{
uint32_t out;
out = (in & 0xff) << 24;
out |= (in & 0xff00) << 8;
out |= (in & 0xff0000) >> 8;
out |= (in & 0xff000000) >> 24;
return out;
}
static struct context *ols_dev_new(void)
{
struct context *ctx;
/* TODO: Is 'ctx' ever g_free()'d? */
if (!(ctx = g_try_malloc0(sizeof(struct context)))) {
sr_err("ols: %s: ctx malloc failed", __func__);
return NULL;
}
ctx->trigger_at = -1;
ctx->probe_mask = 0xffffffff;
ctx->cur_samplerate = SR_KHZ(200);
ctx->serial = NULL;
return ctx;
}
static struct sr_dev_inst *get_metadata(int fd)
{
struct sr_dev_inst *sdi;
struct context *ctx;
uint32_t tmp_int;
uint8_t key, type, token;
GString *tmp_str, *devname, *version;
gchar tmp_c;
sdi = sr_dev_inst_new(0, SR_ST_INACTIVE, NULL, NULL, NULL);
ctx = ols_dev_new();
sdi->priv = ctx;
devname = g_string_new("");
version = g_string_new("");
key = 0xff;
while (key) {
if (serial_read(fd, &key, 1) != 1 || key == 0x00)
break;
type = key >> 5;
token = key & 0x1f;
switch (type) {
case 0:
/* NULL-terminated string */
tmp_str = g_string_new("");
while (serial_read(fd, &tmp_c, 1) == 1 && tmp_c != '\0')
g_string_append_c(tmp_str, tmp_c);
sr_dbg("ols: got metadata key 0x%.2x value '%s'",
key, tmp_str->str);
switch (token) {
case 0x01:
/* Device name */
devname = g_string_append(devname, tmp_str->str);
break;
case 0x02:
/* FPGA firmware version */
if (version->len)
g_string_append(version, ", ");
g_string_append(version, "FPGA version ");
g_string_append(version, tmp_str->str);
break;
case 0x03:
/* Ancillary version */
if (version->len)
g_string_append(version, ", ");
g_string_append(version, "Ancillary version ");
g_string_append(version, tmp_str->str);
break;
default:
sr_info("ols: unknown token 0x%.2x: '%s'",
token, tmp_str->str);
break;
}
g_string_free(tmp_str, TRUE);
break;
case 1:
/* 32-bit unsigned integer */
if (serial_read(fd, &tmp_int, 4) != 4)
break;
tmp_int = reverse32(tmp_int);
sr_dbg("ols: got metadata key 0x%.2x value 0x%.8x",
key, tmp_int);
switch (token) {
case 0x00:
/* Number of usable probes */
ctx->num_probes = tmp_int;
break;
case 0x01:
/* Amount of sample memory available (bytes) */
ctx->max_samples = tmp_int;
break;
case 0x02:
/* Amount of dynamic memory available (bytes) */
/* what is this for? */
break;
case 0x03:
/* Maximum sample rate (hz) */
ctx->max_samplerate = tmp_int;
break;
case 0x04:
/* protocol version */
ctx->protocol_version = tmp_int;
break;
default:
sr_info("ols: unknown token 0x%.2x: 0x%.8x",
token, tmp_int);
break;
}
break;
case 2:
/* 8-bit unsigned integer */
if (serial_read(fd, &tmp_c, 1) != 1)
break;
sr_dbg("ols: got metadata key 0x%.2x value 0x%.2x",
key, tmp_c);
switch (token) {
case 0x00:
/* Number of usable probes */
ctx->num_probes = tmp_c;
break;
case 0x01:
/* protocol version */
ctx->protocol_version = tmp_c;
break;
default:
sr_info("ols: unknown token 0x%.2x: 0x%.2x",
token, tmp_c);
break;
}
break;
default:
/* unknown type */
break;
}
}
sdi->model = devname->str;
sdi->version = version->str;
g_string_free(devname, FALSE);
g_string_free(version, FALSE);
return sdi;
}
static int hw_init(const char *devinfo)
{
struct sr_dev_inst *sdi;
struct context *ctx;
GSList *ports, *l;
GPollFD *fds, probefd;
int devcnt, final_devcnt, num_ports, fd, ret, i;
char buf[8], **dev_names, **serial_params;
final_devcnt = 0;
if (devinfo)
ports = g_slist_append(NULL, g_strdup(devinfo));
else
/* No specific device given, so scan all serial ports. */
ports = list_serial_ports();
num_ports = g_slist_length(ports);
if (!(fds = g_try_malloc0(num_ports * sizeof(GPollFD)))) {
sr_err("ols: %s: fds malloc failed", __func__);
goto hw_init_free_ports; /* TODO: SR_ERR_MALLOC. */
}
if (!(dev_names = g_try_malloc(num_ports * sizeof(char *)))) {
sr_err("ols: %s: dev_names malloc failed", __func__);
goto hw_init_free_fds; /* TODO: SR_ERR_MALLOC. */
}
if (!(serial_params = g_try_malloc(num_ports * sizeof(char *)))) {
sr_err("ols: %s: serial_params malloc failed", __func__);
goto hw_init_free_dev_names; /* TODO: SR_ERR_MALLOC. */
}
devcnt = 0;
for (l = ports; l; l = l->next) {
/* The discovery procedure is like this: first send the Reset
* command (0x00) 5 times, since the device could be anywhere
* in a 5-byte command. Then send the ID command (0x02).
* If the device responds with 4 bytes ("OLS1" or "SLA1"), we
* have a match.
*
* Since it may take the device a while to respond at 115Kb/s,
* we do all the sending first, then wait for all of them to
* respond with g_poll().
*/
sr_info("ols: probing %s...", (char *)l->data);
fd = serial_open(l->data, O_RDWR | O_NONBLOCK);
if (fd != -1) {
serial_params[devcnt] = serial_backup_params(fd);
serial_set_params(fd, 115200, 8, SERIAL_PARITY_NONE, 1, 2);
ret = SR_OK;
for (i = 0; i < 5; i++) {
if ((ret = send_shortcommand(fd,
CMD_RESET)) != SR_OK) {
/* Serial port is not writable. */
break;
}
}
if (ret != SR_OK) {
serial_restore_params(fd,
serial_params[devcnt]);
serial_close(fd);
continue;
}
send_shortcommand(fd, CMD_ID);
fds[devcnt].fd = fd;
fds[devcnt].events = G_IO_IN;
dev_names[devcnt] = g_strdup(l->data);
devcnt++;
}
g_free(l->data);
}
/* 2ms isn't enough for reliable transfer with pl2303, let's try 10 */
usleep(10000);
g_poll(fds, devcnt, 1);
for (i = 0; i < devcnt; i++) {
if (fds[i].revents != G_IO_IN)
continue;
if (serial_read(fds[i].fd, buf, 4) != 4)
continue;
if (strncmp(buf, "1SLO", 4) && strncmp(buf, "1ALS", 4))
continue;
/* definitely using the OLS protocol, check if it supports
* the metadata command
*/
send_shortcommand(fds[i].fd, CMD_METADATA);
probefd.fd = fds[i].fd;
probefd.events = G_IO_IN;
if (g_poll(&probefd, 1, 10) > 0) {
/* got metadata */
sdi = get_metadata(fds[i].fd);
sdi->index = final_devcnt;
ctx = sdi->priv;
} else {
/* not an OLS -- some other board that uses the sump protocol */
sdi = sr_dev_inst_new(final_devcnt, SR_ST_INACTIVE,
"Sump", "Logic Analyzer", "v1.0");
ctx = ols_dev_new();
ctx->num_probes = 32;
sdi->priv = ctx;
}
ctx->serial = sr_serial_dev_inst_new(dev_names[i], -1);
dev_insts = g_slist_append(dev_insts, sdi);
final_devcnt++;
serial_close(fds[i].fd);
fds[i].fd = 0;
}
/* clean up after all the probing */
for (i = 0; i < devcnt; i++) {
if (fds[i].fd != 0) {
serial_restore_params(fds[i].fd, serial_params[i]);
serial_close(fds[i].fd);
}
g_free(serial_params[i]);
g_free(dev_names[i]);
}
g_free(serial_params);
hw_init_free_dev_names:
g_free(dev_names);
hw_init_free_fds:
g_free(fds);
hw_init_free_ports:
g_slist_free(ports);
return final_devcnt;
}
static int hw_dev_open(int dev_index)
{
struct sr_dev_inst *sdi;
struct context *ctx;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
return SR_ERR;
ctx = sdi->priv;
ctx->serial->fd = serial_open(ctx->serial->port, O_RDWR);
if (ctx->serial->fd == -1)
return SR_ERR;
sdi->status = SR_ST_ACTIVE;
return SR_OK;
}
static int hw_dev_close(int dev_index)
{
struct sr_dev_inst *sdi;
struct context *ctx;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) {
sr_err("ols: %s: sdi was NULL", __func__);
return SR_ERR_BUG;
}
ctx = sdi->priv;
/* TODO */
if (ctx->serial->fd != -1) {
serial_close(ctx->serial->fd);
ctx->serial->fd = -1;
sdi->status = SR_ST_INACTIVE;
}
return SR_OK;
}
static int hw_cleanup(void)
{
GSList *l;
struct sr_dev_inst *sdi;
struct context *ctx;
int ret = SR_OK;
/* Properly close and free all devices. */
for (l = dev_insts; l; l = l->next) {
if (!(sdi = l->data)) {
/* Log error, but continue cleaning up the rest. */
sr_err("ols: %s: sdi was NULL, continuing", __func__);
ret = SR_ERR_BUG;
continue;
}
if (!(ctx = sdi->priv)) {
/* Log error, but continue cleaning up the rest. */
sr_err("ols: %s: sdi->priv was NULL, continuing",
__func__);
ret = SR_ERR_BUG;
continue;
}
/* TODO: Check for serial != NULL. */
if (ctx->serial->fd != -1)
serial_close(ctx->serial->fd);
sr_serial_dev_inst_free(ctx->serial);
sr_dev_inst_free(sdi);
}
g_slist_free(dev_insts);
dev_insts = NULL;
return ret;
}
static const void *hw_dev_info_get(int dev_index, int dev_info_id)
{
struct sr_dev_inst *sdi;
struct context *ctx;
const void *info;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
return NULL;
ctx = sdi->priv;
info = NULL;
switch (dev_info_id) {
case SR_DI_INST:
info = sdi;
break;
case SR_DI_NUM_PROBES:
info = GINT_TO_POINTER(NUM_PROBES);
break;
case SR_DI_PROBE_NAMES:
info = probe_names;
break;
case SR_DI_SAMPLERATES:
info = &samplerates;
break;
case SR_DI_TRIGGER_TYPES:
info = (char *)TRIGGER_TYPES;
break;
case SR_DI_CUR_SAMPLERATE:
info = &ctx->cur_samplerate;
break;
}
return info;
}
static int hw_dev_status_get(int dev_index)
{
struct sr_dev_inst *sdi;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
return SR_ST_NOT_FOUND;
return sdi->status;
}
static const int *hw_hwcap_get_all(void)
{
return hwcaps;
}
static int set_samplerate(struct sr_dev_inst *sdi, uint64_t samplerate)
{
struct context *ctx;
ctx = sdi->priv;
if (ctx->max_samplerate) {
if (samplerate > ctx->max_samplerate)
return SR_ERR_SAMPLERATE;
} else if (samplerate < samplerates.low || samplerate > samplerates.high)
return SR_ERR_SAMPLERATE;
if (samplerate > CLOCK_RATE) {
ctx->flag_reg |= FLAG_DEMUX;
ctx->cur_samplerate_divider = (CLOCK_RATE * 2 / samplerate) - 1;
} else {
ctx->flag_reg &= ~FLAG_DEMUX;
ctx->cur_samplerate_divider = (CLOCK_RATE / samplerate) - 1;
}
/* Calculate actual samplerate used and complain if it is different
* from the requested.
*/
ctx->cur_samplerate = CLOCK_RATE / (ctx->cur_samplerate_divider + 1);
if (ctx->flag_reg & FLAG_DEMUX)
ctx->cur_samplerate *= 2;
if (ctx->cur_samplerate != samplerate)
sr_err("ols: can't match samplerate %" PRIu64 ", using %"
PRIu64, samplerate, ctx->cur_samplerate);
return SR_OK;
}
static int hw_dev_config_set(int dev_index, int hwcap, const void *value)
{
struct sr_dev_inst *sdi;
struct context *ctx;
int ret;
const uint64_t *tmp_u64;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
return SR_ERR;
ctx = sdi->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
switch (hwcap) {
case SR_HWCAP_SAMPLERATE:
ret = set_samplerate(sdi, *(const uint64_t *)value);
break;
case SR_HWCAP_PROBECONFIG:
ret = configure_probes(ctx, (const GSList *)value);
break;
case SR_HWCAP_LIMIT_SAMPLES:
tmp_u64 = value;
if (*tmp_u64 < MIN_NUM_SAMPLES)
return SR_ERR;
if (*tmp_u64 > ctx->max_samples)
sr_err("ols: sample limit exceeds hw max");
ctx->limit_samples = *tmp_u64;
sr_info("ols: sample limit %" PRIu64, ctx->limit_samples);
ret = SR_OK;
break;
case SR_HWCAP_CAPTURE_RATIO:
ctx->capture_ratio = *(const uint64_t *)value;
if (ctx->capture_ratio < 0 || ctx->capture_ratio > 100) {
ctx->capture_ratio = 0;
ret = SR_ERR;
} else
ret = SR_OK;
break;
case SR_HWCAP_RLE:
if (GPOINTER_TO_INT(value)) {
sr_info("ols: enabling RLE");
ctx->flag_reg |= FLAG_RLE;
}
ret = SR_OK;
break;
default:
ret = SR_ERR;
}
return ret;
}
static int receive_data(int fd, int revents, void *cb_data)
{
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct sr_dev_inst *sdi;
struct context *ctx;
GSList *l;
int num_channels, offset, i, j;
unsigned char byte;
/* Find this device's ctx struct by its fd. */
ctx = NULL;
for (l = dev_insts; l; l = l->next) {
sdi = l->data;
ctx = sdi->priv;
if (ctx->serial->fd == fd) {
break;
}
ctx = NULL;
}
if (!ctx)
/* Shouldn't happen. */
return TRUE;
if (ctx->num_transfers++ == 0) {
/*
* First time round, means the device started sending data,
* and will not stop until done. If it stops sending for
* longer than it takes to send a byte, that means it's
* finished. We'll double that to 30ms to be sure...
*/
sr_source_remove(fd);
sr_source_add(fd, G_IO_IN, 30, receive_data, cb_data);
ctx->raw_sample_buf = g_try_malloc(ctx->limit_samples * 4);
if (!ctx->raw_sample_buf) {
sr_err("ols: %s: ctx->raw_sample_buf malloc failed",
__func__);
return FALSE;
}
/* fill with 1010... for debugging */
memset(ctx->raw_sample_buf, 0x82, ctx->limit_samples * 4);
}
num_channels = 0;
for (i = 0x20; i > 0x02; i /= 2) {
if ((ctx->flag_reg & i) == 0)
num_channels++;
}
if (revents == G_IO_IN) {
if (serial_read(fd, &byte, 1) != 1)
return FALSE;
/* Ignore it if we've read enough. */
if (ctx->num_samples >= ctx->limit_samples)
return TRUE;
ctx->sample[ctx->num_bytes++] = byte;
sr_dbg("ols: received byte 0x%.2x", byte);
if (ctx->num_bytes == num_channels) {
/* Got a full sample. */
sr_dbg("ols: received sample 0x%.*x",
ctx->num_bytes * 2, *(int *)ctx->sample);
if (ctx->flag_reg & FLAG_RLE) {
/*
* In RLE mode -1 should never come in as a
* sample, because bit 31 is the "count" flag.
*/
if (ctx->sample[ctx->num_bytes - 1] & 0x80) {
ctx->sample[ctx->num_bytes - 1] &= 0x7f;
/*
* FIXME: This will only work on
* little-endian systems.
*/
ctx->rle_count = *(int *)(ctx->sample);
sr_dbg("ols: RLE count = %d", ctx->rle_count);
ctx->num_bytes = 0;
return TRUE;
}
}
ctx->num_samples += ctx->rle_count + 1;
if (ctx->num_samples > ctx->limit_samples) {
/* Save us from overrunning the buffer. */
ctx->rle_count -= ctx->num_samples - ctx->limit_samples;
ctx->num_samples = ctx->limit_samples;
}
if (num_channels < 4) {
/*
* Some channel groups may have been turned
* off, to speed up transfer between the
* hardware and the PC. Expand that here before
* submitting it over the session bus --
* whatever is listening on the bus will be
* expecting a full 32-bit sample, based on
* the number of probes.
*/
j = 0;
memset(ctx->tmp_sample, 0, 4);
for (i = 0; i < 4; i++) {
if (((ctx->flag_reg >> 2) & (1 << i)) == 0) {
/*
* This channel group was
* enabled, copy from received
* sample.
*/
ctx->tmp_sample[i] = ctx->sample[j++];
}
}
memcpy(ctx->sample, ctx->tmp_sample, 4);
sr_dbg("ols: full sample 0x%.8x", *(int *)ctx->sample);
}
/* the OLS sends its sample buffer backwards.
* store it in reverse order here, so we can dump
* this on the session bus later.
*/
offset = (ctx->limit_samples - ctx->num_samples) * 4;
for (i = 0; i <= ctx->rle_count; i++) {
memcpy(ctx->raw_sample_buf + offset + (i * 4),
ctx->sample, 4);
}
memset(ctx->sample, 0, 4);
ctx->num_bytes = 0;
ctx->rle_count = 0;
}
} else {
/*
* This is the main loop telling us a timeout was reached, or
* we've acquired all the samples we asked for -- we're done.
* Send the (properly-ordered) buffer to the frontend.
*/
if (ctx->trigger_at != -1) {
/* a trigger was set up, so we need to tell the frontend
* about it.
*/
if (ctx->trigger_at > 0) {
/* there are pre-trigger samples, send those first */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = ctx->trigger_at * 4;
logic.unitsize = 4;
logic.data = ctx->raw_sample_buf +
(ctx->limit_samples - ctx->num_samples) * 4;
sr_session_send(cb_data, &packet);
}
/* send the trigger */
packet.type = SR_DF_TRIGGER;
sr_session_send(cb_data, &packet);
/* send post-trigger samples */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = (ctx->num_samples * 4) - (ctx->trigger_at * 4);
logic.unitsize = 4;
logic.data = ctx->raw_sample_buf + ctx->trigger_at * 4 +
(ctx->limit_samples - ctx->num_samples) * 4;
sr_session_send(cb_data, &packet);
} else {
/* no trigger was used */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = ctx->num_samples * 4;
logic.unitsize = 4;
logic.data = ctx->raw_sample_buf +
(ctx->limit_samples - ctx->num_samples) * 4;
sr_session_send(cb_data, &packet);
}
g_free(ctx->raw_sample_buf);
serial_flush(fd);
serial_close(fd);
packet.type = SR_DF_END;
sr_session_send(cb_data, &packet);
}
return TRUE;
}
static int hw_dev_acquisition_start(int dev_index, void *cb_data)
{
struct sr_datafeed_packet *packet;
struct sr_datafeed_header *header;
struct sr_datafeed_meta_logic meta;
struct sr_dev_inst *sdi;
struct context *ctx;
uint32_t trigger_config[4];
uint32_t data;
uint16_t readcount, delaycount;
uint8_t changrp_mask;
int num_channels;
int i;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
return SR_ERR;
ctx = sdi->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
/*
* Enable/disable channel groups in the flag register according to the
* probe mask. Calculate this here, because num_channels is needed
* to limit readcount.
*/
changrp_mask = 0;
num_channels = 0;
for (i = 0; i < 4; i++) {
if (ctx->probe_mask & (0xff << (i * 8))) {
changrp_mask |= (1 << i);
num_channels++;
}
}
/*
* Limit readcount to prevent reading past the end of the hardware
* buffer.
*/
readcount = MIN(ctx->max_samples / num_channels, ctx->limit_samples) / 4;
memset(trigger_config, 0, 16);
trigger_config[ctx->num_stages - 1] |= 0x08;
if (ctx->trigger_mask[0]) {
delaycount = readcount * (1 - ctx->capture_ratio / 100.0);
ctx->trigger_at = (readcount - delaycount) * 4 - ctx->num_stages;
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_MASK_0,
reverse32(ctx->trigger_mask[0])) != SR_OK)
return SR_ERR;
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_VALUE_0,
reverse32(ctx->trigger_value[0])) != SR_OK)
return SR_ERR;
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_CONFIG_0,
trigger_config[0]) != SR_OK)
return SR_ERR;
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_MASK_1,
reverse32(ctx->trigger_mask[1])) != SR_OK)
return SR_ERR;
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_VALUE_1,
reverse32(ctx->trigger_value[1])) != SR_OK)
return SR_ERR;
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_CONFIG_1,
trigger_config[1]) != SR_OK)
return SR_ERR;
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_MASK_2,
reverse32(ctx->trigger_mask[2])) != SR_OK)
return SR_ERR;
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_VALUE_2,
reverse32(ctx->trigger_value[2])) != SR_OK)
return SR_ERR;
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_CONFIG_2,
trigger_config[2]) != SR_OK)
return SR_ERR;
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_MASK_3,
reverse32(ctx->trigger_mask[3])) != SR_OK)
return SR_ERR;
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_VALUE_3,
reverse32(ctx->trigger_value[3])) != SR_OK)
return SR_ERR;
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_CONFIG_3,
trigger_config[3]) != SR_OK)
return SR_ERR;
} else {
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_MASK_0,
ctx->trigger_mask[0]) != SR_OK)
return SR_ERR;
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_VALUE_0,
ctx->trigger_value[0]) != SR_OK)
return SR_ERR;
if (send_longcommand(ctx->serial->fd, CMD_SET_TRIGGER_CONFIG_0,
0x00000008) != SR_OK)
return SR_ERR;
delaycount = readcount;
}
sr_info("ols: setting samplerate to %" PRIu64 " Hz (divider %u, "
"demux %s)", ctx->cur_samplerate, ctx->cur_samplerate_divider,
ctx->flag_reg & FLAG_DEMUX ? "on" : "off");
if (send_longcommand(ctx->serial->fd, CMD_SET_DIVIDER,
reverse32(ctx->cur_samplerate_divider)) != SR_OK)
return SR_ERR;
/* Send sample limit and pre/post-trigger capture ratio. */
data = ((readcount - 1) & 0xffff) << 16;
data |= (delaycount - 1) & 0xffff;
if (send_longcommand(ctx->serial->fd, CMD_CAPTURE_SIZE, reverse16(data)) != SR_OK)
return SR_ERR;
/* The flag register wants them here, and 1 means "disable channel". */
ctx->flag_reg |= ~(changrp_mask << 2) & 0x3c;
ctx->flag_reg |= FLAG_FILTER;
ctx->rle_count = 0;
data = (ctx->flag_reg << 24) | ((ctx->flag_reg << 8) & 0xff0000);
if (send_longcommand(ctx->serial->fd, CMD_SET_FLAGS, data) != SR_OK)
return SR_ERR;
/* Start acquisition on the device. */
if (send_shortcommand(ctx->serial->fd, CMD_RUN) != SR_OK)
return SR_ERR;
sr_source_add(ctx->serial->fd, G_IO_IN, -1, receive_data,
cb_data);
if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) {
sr_err("ols: %s: packet malloc failed", __func__);
return SR_ERR_MALLOC;
}
if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) {
sr_err("ols: %s: header malloc failed", __func__);
g_free(packet);
return SR_ERR_MALLOC;
}
/* Send header packet to the session bus. */
packet->type = SR_DF_HEADER;
packet->payload = (unsigned char *)header;
header->feed_version = 1;
gettimeofday(&header->starttime, NULL);
sr_session_send(cb_data, packet);
/* Send metadata about the SR_DF_LOGIC packets to come. */
packet->type = SR_DF_META_LOGIC;
packet->payload = &meta;
meta.samplerate = ctx->cur_samplerate;
meta.num_probes = NUM_PROBES;
sr_session_send(cb_data, packet);
g_free(header);
g_free(packet);
return SR_OK;
}
/* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
static int hw_dev_acquisition_stop(int dev_index, void *cb_data)
{
struct sr_datafeed_packet packet;
/* Avoid compiler warnings. */
(void)dev_index;
packet.type = SR_DF_END;
sr_session_send(cb_data, &packet);
return SR_OK;
}
SR_PRIV struct sr_dev_driver ols_driver_info = {
.name = "ols",
.longname = "Openbench Logic Sniffer",
.api_version = 1,
.init = hw_init,
.cleanup = hw_cleanup,
.dev_open = hw_dev_open,
.dev_close = hw_dev_close,
.dev_info_get = hw_dev_info_get,
.dev_status_get = hw_dev_status_get,
.hwcap_get_all = hw_hwcap_get_all,
.dev_config_set = hw_dev_config_set,
.dev_acquisition_start = hw_dev_acquisition_start,
.dev_acquisition_stop = hw_dev_acquisition_stop,
};