libsigrok/hardware/link-mso19/link-mso19.c

855 lines
19 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2011 Daniel Ribeiro <drwyrm@gmail.com>
* Copyright (C) 2012 Renato Caldas <rmsc@fe.up.pt>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/time.h>
#include <inttypes.h>
#include <glib.h>
#include <libudev.h>
#include <arpa/inet.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "link-mso19.h"
#define USB_VENDOR "3195"
#define USB_PRODUCT "f190"
#define NUM_PROBES 8
static const int hwcaps[] = {
SR_HWCAP_LOGIC_ANALYZER,
// SR_HWCAP_OSCILLOSCOPE,
// SR_HWCAP_PAT_GENERATOR,
SR_HWCAP_SAMPLERATE,
// SR_HWCAP_CAPTURE_RATIO,
SR_HWCAP_LIMIT_SAMPLES,
0,
};
/*
* Probes are numbered 0 to 7.
*
* See also: http://www.linkinstruments.com/images/mso19_1113.gif
*/
static const char *probe_names[NUM_PROBES + 1] = {
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
NULL,
};
static const uint64_t supported_samplerates[] = {
SR_HZ(100),
SR_HZ(200),
SR_HZ(500),
SR_KHZ(1),
SR_KHZ(2),
SR_KHZ(5),
SR_KHZ(10),
SR_KHZ(20),
SR_KHZ(50),
SR_KHZ(100),
SR_KHZ(200),
SR_KHZ(500),
SR_MHZ(1),
SR_MHZ(2),
SR_MHZ(5),
SR_MHZ(10),
SR_MHZ(20),
SR_MHZ(50),
SR_MHZ(100),
SR_MHZ(200),
0,
};
static const struct sr_samplerates samplerates = {
0,
0,
0,
supported_samplerates,
};
static GSList *dev_insts = NULL;
static int mso_send_control_message(struct sr_dev_inst *sdi,
uint16_t payload[], int n)
{
int fd = sdi->serial->fd;
int i, w, ret, s = n * 2 + sizeof(mso_head) + sizeof(mso_foot);
char *p, *buf;
ret = SR_ERR;
if (fd < 0)
goto ret;
if (!(buf = g_try_malloc(s))) {
sr_err("Failed to malloc message buffer.");
ret = SR_ERR_MALLOC;
goto ret;
}
p = buf;
memcpy(p, mso_head, sizeof(mso_head));
p += sizeof(mso_head);
for (i = 0; i < n; i++) {
*(uint16_t *) p = htons(payload[i]);
p += 2;
}
memcpy(p, mso_foot, sizeof(mso_foot));
w = 0;
while (w < s) {
ret = serial_write(fd, buf + w, s - w);
if (ret < 0) {
ret = SR_ERR;
goto free;
}
w += ret;
}
ret = SR_OK;
free:
g_free(buf);
ret:
return ret;
}
static int mso_reset_adc(struct sr_dev_inst *sdi)
{
struct context *ctx = sdi->priv;
uint16_t ops[2];
ops[0] = mso_trans(REG_CTL1, (ctx->ctlbase1 | BIT_CTL1_RESETADC));
ops[1] = mso_trans(REG_CTL1, ctx->ctlbase1);
ctx->ctlbase1 |= BIT_CTL1_ADC_UNKNOWN4;
sr_dbg("Requesting ADC reset.");
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_reset_fsm(struct sr_dev_inst *sdi)
{
struct context *ctx = sdi->priv;
uint16_t ops[1];
ctx->ctlbase1 |= BIT_CTL1_RESETFSM;
ops[0] = mso_trans(REG_CTL1, ctx->ctlbase1);
sr_dbg("Requesting ADC reset.");
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_toggle_led(struct sr_dev_inst *sdi, int state)
{
struct context *ctx = sdi->priv;
uint16_t ops[1];
ctx->ctlbase1 &= ~BIT_CTL1_LED;
if (state)
ctx->ctlbase1 |= BIT_CTL1_LED;
ops[0] = mso_trans(REG_CTL1, ctx->ctlbase1);
sr_dbg("Requesting LED toggle.");
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_check_trigger(struct sr_dev_inst *sdi, uint8_t *info)
{
uint16_t ops[] = { mso_trans(REG_TRIGGER, 0) };
char buf[1];
int ret;
sr_dbg("Requesting trigger state.");
ret = mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
if (info == NULL || ret != SR_OK)
return ret;
buf[0] = 0;
if (serial_read(sdi->serial->fd, buf, 1) != 1) /* FIXME: Need timeout */
ret = SR_ERR;
*info = buf[0];
sr_dbg("Trigger state is: 0x%x.", *info);
return ret;
}
static int mso_read_buffer(struct sr_dev_inst *sdi)
{
uint16_t ops[] = { mso_trans(REG_BUFFER, 0) };
sr_dbg("Requesting buffer dump.");
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_arm(struct sr_dev_inst *sdi)
{
struct context *ctx = sdi->priv;
uint16_t ops[] = {
mso_trans(REG_CTL1, ctx->ctlbase1 | BIT_CTL1_RESETFSM),
mso_trans(REG_CTL1, ctx->ctlbase1 | BIT_CTL1_ARM),
mso_trans(REG_CTL1, ctx->ctlbase1),
};
sr_dbg("Requesting trigger arm.");
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_force_capture(struct sr_dev_inst *sdi)
{
struct context *ctx = sdi->priv;
uint16_t ops[] = {
mso_trans(REG_CTL1, ctx->ctlbase1 | 8),
mso_trans(REG_CTL1, ctx->ctlbase1),
};
sr_dbg("Requesting forced capture.");
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_dac_out(struct sr_dev_inst *sdi, uint16_t val)
{
struct context *ctx = sdi->priv;
uint16_t ops[] = {
mso_trans(REG_DAC1, (val >> 8) & 0xff),
mso_trans(REG_DAC2, val & 0xff),
mso_trans(REG_CTL1, ctx->ctlbase1 | BIT_CTL1_RESETADC),
};
sr_dbg("Setting dac word to 0x%x.", val);
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_clkrate_out(struct sr_dev_inst *sdi, uint16_t val)
{
uint16_t ops[] = {
mso_trans(REG_CLKRATE1, (val >> 8) & 0xff),
mso_trans(REG_CLKRATE2, val & 0xff),
};
sr_dbg("Setting clkrate word to 0x%x.", val);
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_configure_rate(struct sr_dev_inst *sdi, uint32_t rate)
{
struct context *ctx = sdi->priv;
unsigned int i;
int ret = SR_ERR;
for (i = 0; i < ARRAY_SIZE(rate_map); i++) {
if (rate_map[i].rate == rate) {
ctx->ctlbase2 = rate_map[i].slowmode;
ret = mso_clkrate_out(sdi, rate_map[i].val);
if (ret == SR_OK)
ctx->cur_rate = rate;
return ret;
}
}
return ret;
}
static inline uint16_t mso_calc_raw_from_mv(struct context *ctx)
{
return (uint16_t) (0x200 -
((ctx->dso_trigger_voltage / ctx->dso_probe_attn) /
ctx->vbit));
}
static int mso_configure_trigger(struct sr_dev_inst *sdi)
{
struct context *ctx = sdi->priv;
uint16_t ops[16];
uint16_t dso_trigger = mso_calc_raw_from_mv(ctx);
dso_trigger &= 0x3ff;
if ((!ctx->trigger_slope && ctx->trigger_chan == 1) ||
(ctx->trigger_slope &&
(ctx->trigger_chan == 0 ||
ctx->trigger_chan == 2 ||
ctx->trigger_chan == 3)))
dso_trigger |= 0x400;
switch (ctx->trigger_chan) {
case 1:
dso_trigger |= 0xe000;
case 2:
dso_trigger |= 0x4000;
break;
case 3:
dso_trigger |= 0x2000;
break;
case 4:
dso_trigger |= 0xa000;
break;
case 5:
dso_trigger |= 0x8000;
break;
default:
case 0:
break;
}
switch (ctx->trigger_outsrc) {
case 1:
dso_trigger |= 0x800;
break;
case 2:
dso_trigger |= 0x1000;
break;
case 3:
dso_trigger |= 0x1800;
break;
}
ops[0] = mso_trans(5, ctx->la_trigger);
ops[1] = mso_trans(6, ctx->la_trigger_mask);
ops[2] = mso_trans(3, dso_trigger & 0xff);
ops[3] = mso_trans(4, (dso_trigger >> 8) & 0xff);
ops[4] = mso_trans(11,
ctx->dso_trigger_width / SR_HZ_TO_NS(ctx->cur_rate));
/* Select the SPI/I2C trigger config bank */
ops[5] = mso_trans(REG_CTL2, (ctx->ctlbase2 | BITS_CTL2_BANK(2)));
/* Configure the SPI/I2C protocol trigger */
ops[6] = mso_trans(REG_PT_WORD(0), ctx->protocol_trigger.word[0]);
ops[7] = mso_trans(REG_PT_WORD(1), ctx->protocol_trigger.word[1]);
ops[8] = mso_trans(REG_PT_WORD(2), ctx->protocol_trigger.word[2]);
ops[9] = mso_trans(REG_PT_WORD(3), ctx->protocol_trigger.word[3]);
ops[10] = mso_trans(REG_PT_MASK(0), ctx->protocol_trigger.mask[0]);
ops[11] = mso_trans(REG_PT_MASK(1), ctx->protocol_trigger.mask[1]);
ops[12] = mso_trans(REG_PT_MASK(2), ctx->protocol_trigger.mask[2]);
ops[13] = mso_trans(REG_PT_MASK(3), ctx->protocol_trigger.mask[3]);
ops[14] = mso_trans(REG_PT_SPIMODE, ctx->protocol_trigger.spimode);
/* Select the default config bank */
ops[15] = mso_trans(REG_CTL2, ctx->ctlbase2);
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_configure_threshold_level(struct sr_dev_inst *sdi)
{
struct context *ctx = sdi->priv;
return mso_dac_out(sdi, la_threshold_map[ctx->la_threshold]);
}
static int mso_parse_serial(const char *iSerial, const char *iProduct,
struct context *ctx)
{
unsigned int u1, u2, u3, u4, u5, u6;
iProduct = iProduct;
/* FIXME: This code is in the original app, but I think its
* used only for the GUI */
/* if (strstr(iProduct, "REV_02") || strstr(iProduct, "REV_03"))
ctx->num_sample_rates = 0x16;
else
ctx->num_sample_rates = 0x10; */
/* parse iSerial */
if (iSerial[0] != '4' || sscanf(iSerial, "%5u%3u%3u%1u%1u%6u",
&u1, &u2, &u3, &u4, &u5, &u6) != 6)
return SR_ERR;
ctx->hwmodel = u4;
ctx->hwrev = u5;
ctx->serial = u6;
ctx->vbit = u1 / 10000;
if (ctx->vbit == 0)
ctx->vbit = 4.19195;
ctx->dac_offset = u2;
if (ctx->dac_offset == 0)
ctx->dac_offset = 0x1ff;
ctx->offset_range = u3;
if (ctx->offset_range == 0)
ctx->offset_range = 0x17d;
/*
* FIXME: There is more code on the original software to handle
* bigger iSerial strings, but as I can't test on my device
* I will not implement it yet
*/
return SR_OK;
}
static int hw_init(void)
{
/* Nothing to do. */
return SR_OK;
}
static int hw_scan(void)
{
struct sr_dev_inst *sdi;
int devcnt = 0;
struct udev *udev;
struct udev_enumerate *enumerate;
struct udev_list_entry *devs, *dev_list_entry;
struct context *ctx;
/* It's easier to map usb<->serial using udev */
/*
* FIXME: On windows we can get the same information from the
* registry, add an #ifdef here later
*/
udev = udev_new();
if (!udev) {
sr_err("Failed to initialize udev.");
goto ret;
}
enumerate = udev_enumerate_new(udev);
udev_enumerate_add_match_subsystem(enumerate, "usb-serial");
udev_enumerate_scan_devices(enumerate);
devs = udev_enumerate_get_list_entry(enumerate);
udev_list_entry_foreach(dev_list_entry, devs) {
const char *syspath, *sysname, *idVendor, *idProduct,
*iSerial, *iProduct;
char path[32], manufacturer[32], product[32], hwrev[32];
struct udev_device *dev, *parent;
size_t s;
syspath = udev_list_entry_get_name(dev_list_entry);
dev = udev_device_new_from_syspath(udev, syspath);
sysname = udev_device_get_sysname(dev);
parent = udev_device_get_parent_with_subsystem_devtype(
dev, "usb", "usb_device");
if (!parent) {
sr_err("Unable to find parent usb device for %s",
sysname);
continue;
}
idVendor = udev_device_get_sysattr_value(parent, "idVendor");
idProduct = udev_device_get_sysattr_value(parent, "idProduct");
if (strcmp(USB_VENDOR, idVendor)
|| strcmp(USB_PRODUCT, idProduct))
continue;
iSerial = udev_device_get_sysattr_value(parent, "serial");
iProduct = udev_device_get_sysattr_value(parent, "product");
snprintf(path, sizeof(path), "/dev/%s", sysname);
s = strcspn(iProduct, " ");
if (s > sizeof(product) ||
strlen(iProduct) - s > sizeof(manufacturer)) {
sr_err("Could not parse iProduct: %s.", iProduct);
continue;
}
strncpy(product, iProduct, s);
product[s] = 0;
strcpy(manufacturer, iProduct + s);
if (!(ctx = g_try_malloc0(sizeof(struct context)))) {
sr_err("Context malloc failed.");
continue; /* TODO: Errors handled correctly? */
}
if (mso_parse_serial(iSerial, iProduct, ctx) != SR_OK) {
sr_err("Invalid iSerial: %s.", iSerial);
goto err_free_ctx;
}
sprintf(hwrev, "r%d", ctx->hwrev);
/* hardware initial state */
ctx->ctlbase1 = 0;
{
/* Initialize the protocol trigger configuration */
int i;
for (i = 0; i < 4; i++) {
ctx->protocol_trigger.word[i] = 0;
ctx->protocol_trigger.mask[i] = 0xff;
}
ctx->protocol_trigger.spimode = 0;
}
sdi = sr_dev_inst_new(devcnt, SR_ST_INITIALIZING,
manufacturer, product, hwrev);
if (!sdi) {
sr_err("Unable to create device instance for %s",
sysname);
goto err_free_ctx;
}
/* save a pointer to our private instance data */
sdi->priv = ctx;
sdi->serial = sr_serial_dev_inst_new(path, -1);
if (!sdi->serial)
goto err_dev_inst_free;
dev_insts = g_slist_append(dev_insts, sdi);
devcnt++;
continue;
err_dev_inst_free:
sr_dev_inst_free(sdi);
err_free_ctx:
g_free(ctx);
}
udev_enumerate_unref(enumerate);
udev_unref(udev);
ret:
return devcnt;
}
static int hw_cleanup(void)
{
GSList *l;
struct sr_dev_inst *sdi;
int ret;
ret = SR_OK;
/* Properly close all devices. */
for (l = dev_insts; l; l = l->next) {
if (!(sdi = l->data)) {
/* Log error, but continue cleaning up the rest. */
sr_err("%s: sdi was NULL, continuing", __func__);
ret = SR_ERR_BUG;
continue;
}
if (sdi->serial->fd != -1)
serial_close(sdi->serial->fd);
sr_dev_inst_free(sdi);
}
g_slist_free(dev_insts);
dev_insts = NULL;
return ret;
}
static int hw_dev_open(int dev_index)
{
struct sr_dev_inst *sdi;
struct context *ctx;
int ret = SR_ERR;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
return ret;
ctx = sdi->priv;
sdi->serial->fd = serial_open(sdi->serial->port, O_RDWR);
if (sdi->serial->fd == -1)
return ret;
ret = serial_set_params(sdi->serial->fd, 460800, 8, 0, 1, 2);
if (ret != SR_OK)
return ret;
sdi->status = SR_ST_ACTIVE;
/* FIXME: discard serial buffer */
mso_check_trigger(sdi, &ctx->trigger_state);
sr_dbg("Trigger state: 0x%x.", ctx->trigger_state);
ret = mso_reset_adc(sdi);
if (ret != SR_OK)
return ret;
mso_check_trigger(sdi, &ctx->trigger_state);
sr_dbg("Trigger state: 0x%x.", ctx->trigger_state);
// ret = mso_reset_fsm(sdi);
// if (ret != SR_OK)
// return ret;
// return SR_ERR;
return SR_OK;
}
static int hw_dev_close(int dev_index)
{
struct sr_dev_inst *sdi;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) {
sr_err("%s: sdi was NULL", __func__);
return SR_ERR_BUG;
}
/* TODO */
if (sdi->serial->fd != -1) {
serial_close(sdi->serial->fd);
sdi->serial->fd = -1;
sdi->status = SR_ST_INACTIVE;
}
return SR_OK;
}
static const void *hw_dev_info_get(int dev_index, int dev_info_id)
{
struct sr_dev_inst *sdi;
struct context *ctx;
const void *info = NULL;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
return NULL;
ctx = sdi->priv;
switch (dev_info_id) {
case SR_DI_INST:
info = sdi;
break;
case SR_DI_NUM_PROBES: /* FIXME: How to report analog probe? */
info = GINT_TO_POINTER(NUM_PROBES);
break;
case SR_DI_PROBE_NAMES:
info = probe_names;
break;
case SR_DI_SAMPLERATES:
info = &samplerates;
break;
case SR_DI_TRIGGER_TYPES:
info = "01"; /* FIXME */
break;
case SR_DI_CUR_SAMPLERATE:
info = &ctx->cur_rate;
break;
}
return info;
}
static int hw_dev_status_get(int dev_index)
{
struct sr_dev_inst *sdi;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
return SR_ST_NOT_FOUND;
return sdi->status;
}
static const int *hw_hwcap_get_all(void)
{
return hwcaps;
}
static int hw_dev_config_set(int dev_index, int hwcap, const void *value)
{
struct sr_dev_inst *sdi;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
return SR_ERR;
switch (hwcap) {
case SR_HWCAP_SAMPLERATE:
return mso_configure_rate(sdi, *(const uint64_t *) value);
case SR_HWCAP_PROBECONFIG:
case SR_HWCAP_LIMIT_SAMPLES:
default:
return SR_OK; /* FIXME */
}
}
#define MSO_TRIGGER_UNKNOWN '!'
#define MSO_TRIGGER_UNKNOWN1 '1'
#define MSO_TRIGGER_UNKNOWN2 '2'
#define MSO_TRIGGER_UNKNOWN3 '3'
#define MSO_TRIGGER_WAIT '4'
#define MSO_TRIGGER_FIRED '5'
#define MSO_TRIGGER_DATAREADY '6'
/* FIXME: Pass errors? */
static int receive_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi = cb_data;
struct context *ctx = sdi->priv;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
uint8_t in[1024], logic_out[1024];
double analog_out[1024];
size_t i, s;
(void)revents;
s = serial_read(fd, in, sizeof(in));
if (s <= 0)
return FALSE;
/* No samples */
if (ctx->trigger_state != MSO_TRIGGER_DATAREADY) {
ctx->trigger_state = in[0];
if (ctx->trigger_state == MSO_TRIGGER_DATAREADY) {
mso_read_buffer(sdi);
ctx->buffer_n = 0;
} else {
mso_check_trigger(sdi, NULL);
}
return FALSE;
}
/* the hardware always dumps 1024 samples, 24bits each */
if (ctx->buffer_n < 3072) {
memcpy(ctx->buffer + ctx->buffer_n, in, s);
ctx->buffer_n += s;
}
if (ctx->buffer_n < 3072)
return FALSE;
/* do the conversion */
for (i = 0; i < 1024; i++) {
/* FIXME: Need to do conversion to mV */
analog_out[i] = (ctx->buffer[i * 3] & 0x3f) |
((ctx->buffer[i * 3 + 1] & 0xf) << 6);
logic_out[i] = ((ctx->buffer[i * 3 + 1] & 0x30) >> 4) |
((ctx->buffer[i * 3 + 2] & 0x3f) << 2);
}
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = 1024;
logic.unitsize = 1;
logic.data = logic_out;
sr_session_send(ctx->session_dev_id, &packet);
// Dont bother fixing this yet, keep it "old style"
/*
packet.type = SR_DF_ANALOG;
packet.length = 1024;
packet.unitsize = sizeof(double);
packet.payload = analog_out;
sr_session_send(ctx->session_dev_id, &packet);
*/
packet.type = SR_DF_END;
sr_session_send(ctx->session_dev_id, &packet);
return TRUE;
}
static int hw_dev_acquisition_start(int dev_index, void *cb_data)
{
struct sr_dev_inst *sdi;
struct context *ctx;
struct sr_datafeed_packet packet;
struct sr_datafeed_header header;
int ret = SR_ERR;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
return ret;
ctx = sdi->priv;
/* FIXME: No need to do full reconfigure every time */
// ret = mso_reset_fsm(sdi);
// if (ret != SR_OK)
// return ret;
/* FIXME: ACDC Mode */
ctx->ctlbase1 &= 0x7f;
// ctx->ctlbase1 |= ctx->acdcmode;
ret = mso_configure_rate(sdi, ctx->cur_rate);
if (ret != SR_OK)
return ret;
/* set dac offset */
ret = mso_dac_out(sdi, ctx->dac_offset);
if (ret != SR_OK)
return ret;
ret = mso_configure_threshold_level(sdi);
if (ret != SR_OK)
return ret;
ret = mso_configure_trigger(sdi);
if (ret != SR_OK)
return ret;
/* FIXME: trigger_position */
/* END of config hardware part */
/* with trigger */
ret = mso_arm(sdi);
if (ret != SR_OK)
return ret;
/* without trigger */
// ret = mso_force_capture(sdi);
// if (ret != SR_OK)
// return ret;
mso_check_trigger(sdi, &ctx->trigger_state);
ret = mso_check_trigger(sdi, NULL);
if (ret != SR_OK)
return ret;
ctx->session_dev_id = cb_data;
sr_source_add(sdi->serial->fd, G_IO_IN, -1, receive_data, sdi);
packet.type = SR_DF_HEADER;
packet.payload = (unsigned char *) &header;
header.feed_version = 1;
gettimeofday(&header.starttime, NULL);
header.samplerate = ctx->cur_rate;
// header.num_analog_probes = 1;
header.num_logic_probes = 8;
sr_session_send(ctx->session_dev_id, &packet);
return ret;
}
/* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
static int hw_dev_acquisition_stop(int dev_index, void *cb_data)
{
struct sr_datafeed_packet packet;
(void)dev_index;
packet.type = SR_DF_END;
sr_session_send(cb_data, &packet);
return SR_OK;
}
SR_PRIV struct sr_dev_driver link_mso19_driver_info = {
.name = "link-mso19",
.longname = "Link Instruments MSO-19",
.api_version = 1,
.init = hw_init,
.cleanup = hw_cleanup,
.scan = hw_scan,
.dev_open = hw_dev_open,
.dev_close = hw_dev_close,
.dev_info_get = hw_dev_info_get,
.dev_status_get = hw_dev_status_get,
.hwcap_get_all = hw_hwcap_get_all,
.dev_config_set = hw_dev_config_set,
.dev_acquisition_start = hw_dev_acquisition_start,
.dev_acquisition_stop = hw_dev_acquisition_stop,
};