libsigrok/src/hardware/sysclk-lwla/lwla1016.c

416 lines
11 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2015 Daniel Elstner <daniel.kitta@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include "lwla.h"
#include "protocol.h"
/* Number of logic channels.
*/
#define NUM_CHANNELS 16
/* Unit size for the sigrok logic datafeed.
*/
#define UNIT_SIZE ((NUM_CHANNELS + 7) / 8)
/* Size of the acquisition buffer in device memory units.
*/
#define MEMORY_DEPTH (256 * 1024) /* 256k x 32 bit */
/* Capture memory read start address.
*/
#define READ_START_ADDR 2
/* Number of device memory units (32 bit) to read at a time.
*/
#define READ_CHUNK_LEN32 250
/** LWLA1016 register addresses.
*/
enum reg_addr {
REG_CHAN_MASK = 0x1000, /* bit mask of enabled channels */
REG_DURATION = 0x1010, /* capture duration in ms */
REG_MEM_WR_PTR = 0x1070,
REG_MEM_RD_PTR = 0x1074,
REG_MEM_DATA = 0x1078,
REG_MEM_CTRL = 0x107C,
REG_CAP_COUNT = 0x10B0,
REG_TEST_ID = 0x10B4, /* read */
REG_TRG_SEL = 0x10B4, /* write */
REG_CAP_CTRL = 0x10B8,
REG_CAP_TOTAL = 0x10BC, /* read */
REG_DIV_COUNT = 0x10BC, /* write */
};
/** Flag bits for REG_MEM_CTRL.
*/
enum mem_ctrl_flag {
MEM_CTRL_RESET = 1 << 0,
MEM_CTRL_WRITE = 1 << 1,
};
/** Flag bits for REG_CAP_CTRL.
*/
enum cap_ctrl_flag {
CAP_CTRL_FIFO32_FULL = 1 << 0, /* "fifo32_ful" bit */
CAP_CTRL_FIFO64_FULL = 1 << 1, /* "fifo64_ful" bit */
CAP_CTRL_TRG_EN = 1 << 2, /* "trg_en" bit */
CAP_CTRL_CLR_TIMEBASE = 1 << 3, /* "do_clr_timebase" bit */
CAP_CTRL_FIFO_EMPTY = 1 << 4, /* "fifo_empty" bit */
CAP_CTRL_SAMPLE_EN = 1 << 5, /* "sample_en" bit */
CAP_CTRL_CNTR_NOT_ENDR = 1 << 6, /* "cntr_not_endr" bit */
};
/* Available FPGA configurations.
*/
enum fpga_config {
FPGA_100 = 0, /* 100 MS/s, no compression */
FPGA_100_TS, /* 100 MS/s, timing-state mode */
};
/* FPGA bitstream resource filenames.
*/
static const char bitstream_map[][32] = {
[FPGA_100] = "sysclk-lwla1016-100.rbf",
[FPGA_100_TS] = "sysclk-lwla1016-100-ts.rbf",
};
/* Demangle incoming sample data from the transfer buffer.
*/
static void read_response(struct acquisition_state *acq)
{
uint32_t *in_p, *out_p;
unsigned int words_left, num_words;
unsigned int max_samples, run_samples;
unsigned int i;
words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
- acq->mem_addr_done;
/* Calculate number of samples to write into packet. */
max_samples = MIN(acq->samples_max - acq->samples_done,
PACKET_SIZE / UNIT_SIZE - acq->out_index);
run_samples = MIN(max_samples, 2 * words_left);
/* Round up in case the samples limit is an odd number. */
num_words = (run_samples + 1) / 2;
/*
* Without RLE the output index will always be a multiple of two
* samples (at least before reaching the samples limit), thus 32-bit
* alignment is guaranteed.
*/
out_p = (uint32_t *)&acq->out_packet[acq->out_index * UNIT_SIZE];
in_p = &acq->xfer_buf_in[acq->in_index];
/*
* Transfer two samples at a time, taking care to swap the 16-bit
* halves of each input word but keeping the samples themselves in
* the original Little Endian order.
*/
for (i = 0; i < num_words; i++)
out_p[i] = LROTATE(in_p[i], 16);
acq->in_index += num_words;
acq->mem_addr_done += num_words;
acq->out_index += run_samples;
acq->samples_done += run_samples;
}
/* Demangle and decompress incoming sample data from the transfer buffer.
*/
static void read_response_rle(struct acquisition_state *acq)
{
uint32_t *in_p;
uint16_t *out_p;
unsigned int words_left;
unsigned int max_samples, run_samples;
unsigned int wi, ri;
uint32_t word;
uint16_t sample;
words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
- acq->mem_addr_done;
in_p = &acq->xfer_buf_in[acq->in_index];
for (wi = 0;; wi++) {
/* Calculate number of samples to write into packet. */
max_samples = MIN(acq->samples_max - acq->samples_done,
PACKET_SIZE / UNIT_SIZE - acq->out_index);
run_samples = MIN(max_samples, acq->run_len);
/* Expand run-length samples into session packet. */
sample = GUINT16_TO_LE(acq->sample);
out_p = &((uint16_t *)acq->out_packet)[acq->out_index];
for (ri = 0; ri < run_samples; ri++)
out_p[ri] = sample;
acq->run_len -= run_samples;
acq->out_index += run_samples;
acq->samples_done += run_samples;
if (run_samples == max_samples)
break; /* packet full or sample limit reached */
if (wi >= words_left)
break; /* done with current transfer */
word = GUINT32_FROM_LE(in_p[wi]);
acq->sample = word >> 16;
acq->run_len = (word & 0xFFFF) + 1;
}
acq->in_index += wi;
acq->mem_addr_done += wi;
}
/* Select and transfer FPGA bitstream for the current configuration.
*/
static int apply_fpga_config(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct drv_context *drvc;
int config;
int ret;
devc = sdi->priv;
drvc = sdi->driver->context;
if (sdi->status == SR_ST_INACTIVE)
return SR_OK; /* the LWLA1016 has no off state */
config = (devc->cfg_rle) ? FPGA_100_TS : FPGA_100;
if (config == devc->active_fpga_config)
return SR_OK; /* no change */
ret = lwla_send_bitstream(drvc->sr_ctx, sdi->conn,
bitstream_map[config]);
devc->active_fpga_config = (ret == SR_OK) ? config : FPGA_NOCONF;
return ret;
}
/* Perform initialization self test.
*/
static int device_init_check(const struct sr_dev_inst *sdi)
{
uint32_t value;
int ret;
ret = lwla_read_reg(sdi->conn, REG_TEST_ID, &value);
if (ret != SR_OK)
return ret;
/* Ignore the value returned by the first read. */
ret = lwla_read_reg(sdi->conn, REG_TEST_ID, &value);
if (ret != SR_OK)
return ret;
if (value != 0x12345678) {
sr_err("Received invalid test word 0x%08X.", value);
return SR_ERR;
}
return SR_OK;
}
static int setup_acquisition(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
struct acquisition_state *acq;
uint32_t divider_count;
int ret;
devc = sdi->priv;
usb = sdi->conn;
acq = devc->acquisition;
acq->reg_seq_pos = 0;
acq->reg_seq_len = 0;
lwla_queue_regval(acq, REG_CHAN_MASK, devc->channel_mask);
if (devc->samplerate > 0 && devc->samplerate < SR_MHZ(100))
divider_count = SR_MHZ(100) / devc->samplerate - 1;
else
divider_count = 0;
lwla_queue_regval(acq, REG_DIV_COUNT, divider_count);
lwla_queue_regval(acq, REG_CAP_CTRL, 0);
lwla_queue_regval(acq, REG_DURATION, 0);
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_RESET);
lwla_queue_regval(acq, REG_MEM_CTRL, 0);
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_WRITE);
lwla_queue_regval(acq, REG_CAP_CTRL,
CAP_CTRL_FIFO32_FULL | CAP_CTRL_FIFO64_FULL);
lwla_queue_regval(acq, REG_CAP_CTRL, CAP_CTRL_FIFO_EMPTY);
lwla_queue_regval(acq, REG_CAP_CTRL, 0);
lwla_queue_regval(acq, REG_CAP_COUNT, MEMORY_DEPTH - 5);
lwla_queue_regval(acq, REG_TRG_SEL,
((devc->trigger_edge_mask & 0xFFFF) << 16)
| (devc->trigger_values & 0xFFFF));
ret = lwla_write_regs(usb, acq->reg_sequence, acq->reg_seq_len);
acq->reg_seq_len = 0;
return ret;
}
static int prepare_request(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct acquisition_state *acq;
unsigned int count;
devc = sdi->priv;
acq = devc->acquisition;
acq->xfer_out->length = 0;
acq->reg_seq_pos = 0;
acq->reg_seq_len = 0;
switch (devc->state) {
case STATE_START_CAPTURE:
lwla_queue_regval(acq, REG_CAP_CTRL, CAP_CTRL_TRG_EN
| ((devc->trigger_mask & 0xFFFF) << 16));
break;
case STATE_STOP_CAPTURE:
lwla_queue_regval(acq, REG_CAP_CTRL, 0);
lwla_queue_regval(acq, REG_DIV_COUNT, 0);
break;
case STATE_READ_PREPARE:
lwla_queue_regval(acq, REG_MEM_CTRL, 0);
break;
case STATE_READ_FINISH:
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_RESET);
lwla_queue_regval(acq, REG_MEM_CTRL, 0);
break;
case STATE_STATUS_REQUEST:
lwla_queue_regval(acq, REG_CAP_CTRL, 0);
lwla_queue_regval(acq, REG_MEM_WR_PTR, 0);
lwla_queue_regval(acq, REG_DURATION, 0);
break;
case STATE_LENGTH_REQUEST:
lwla_queue_regval(acq, REG_CAP_COUNT, 0);
break;
case STATE_READ_REQUEST:
/* Always read a multiple of 8 device words. */
count = MIN(READ_CHUNK_LEN32,
acq->mem_addr_stop - acq->mem_addr_next);
acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM32);
acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
acq->xfer_buf_out[3] = LWLA_WORD_0(count);
acq->xfer_buf_out[4] = LWLA_WORD_1(count);
acq->xfer_out->length = 5 * sizeof(acq->xfer_buf_out[0]);
acq->mem_addr_next += count;
break;
default:
sr_err("BUG: unhandled request state %d.", devc->state);
return SR_ERR_BUG;
}
return SR_OK;
}
static int handle_response(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct acquisition_state *acq;
int expect_len;
devc = sdi->priv;
acq = devc->acquisition;
switch (devc->state) {
case STATE_STATUS_REQUEST:
acq->status = acq->reg_sequence[0].val & 0x7F;
acq->mem_addr_fill = acq->reg_sequence[1].val;
acq->duration_now = acq->reg_sequence[2].val;
break;
case STATE_LENGTH_REQUEST:
acq->mem_addr_next = READ_START_ADDR;
acq->mem_addr_stop = acq->reg_sequence[0].val + READ_START_ADDR - 1;
break;
case STATE_READ_REQUEST:
expect_len = (acq->mem_addr_next - acq->mem_addr_done
+ acq->in_index) * sizeof(acq->xfer_buf_in[0]);
if (acq->xfer_in->actual_length != expect_len) {
sr_err("Received size %d does not match expected size %d.",
acq->xfer_in->actual_length, expect_len);
devc->transfer_error = TRUE;
return SR_ERR;
}
if (acq->rle_enabled)
read_response_rle(acq);
else
read_response(acq);
break;
default:
sr_err("BUG: unhandled response state %d.", devc->state);
return SR_ERR_BUG;
}
return SR_OK;
}
/* Model descriptor for the LWLA1016.
*/
SR_PRIV const struct model_info lwla1016_info = {
.name = "LWLA1016",
.num_channels = NUM_CHANNELS,
.num_devopts = 5,
.devopts = {
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
SR_CONF_RLE | SR_CONF_GET | SR_CONF_SET,
},
.num_samplerates = 19,
.samplerates = {
SR_MHZ(100),
SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
SR_HZ(500), SR_HZ(200), SR_HZ(100),
},
.apply_fpga_config = &apply_fpga_config,
.device_init_check = &device_init_check,
.setup_acquisition = &setup_acquisition,
.prepare_request = &prepare_request,
.handle_response = &handle_response,
};