libsigrok/src/hardware/asix-sigma/api.c

586 lines
15 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
* Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
* Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
* Copyright (C) 2020 Gerhard Sittig <gerhard.sittig@gmx.net>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include "protocol.h"
/*
* Channel numbers seem to go from 1-16, according to this image:
* http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
* (the cable has two additional GND pins, and a TI and TO pin)
*/
static const char *channel_names[] = {
"1", "2", "3", "4", "5", "6", "7", "8",
"9", "10", "11", "12", "13", "14", "15", "16",
};
static const uint32_t scanopts[] = {
SR_CONF_CONN,
};
static const uint32_t drvopts[] = {
SR_CONF_LOGIC_ANALYZER,
};
static const uint32_t devopts[] = {
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_CONN | SR_CONF_GET,
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
#if ASIX_SIGMA_WITH_TRIGGER
SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
#endif
};
#if ASIX_SIGMA_WITH_TRIGGER
static const int32_t trigger_matches[] = {
SR_TRIGGER_ZERO,
SR_TRIGGER_ONE,
SR_TRIGGER_RISING,
SR_TRIGGER_FALLING,
};
#endif
static void clear_helper(struct dev_context *devc)
{
ftdi_deinit(&devc->ftdic);
}
static int dev_clear(const struct sr_dev_driver *di)
{
return std_dev_clear_with_callback(di,
(std_dev_clear_callback)clear_helper);
}
static gboolean bus_addr_in_devices(int bus, int addr, GSList *devs)
{
struct sr_usb_dev_inst *usb;
for (/* EMPTY */; devs; devs = devs->next) {
usb = devs->data;
if (usb->bus == bus && usb->address == addr)
return TRUE;
}
return FALSE;
}
static gboolean known_vid_pid(const struct libusb_device_descriptor *des)
{
gboolean is_sigma, is_omega;
if (des->idVendor != USB_VENDOR_ASIX)
return FALSE;
is_sigma = des->idProduct == USB_PRODUCT_SIGMA;
is_omega = des->idProduct == USB_PRODUCT_OMEGA;
if (!is_sigma && !is_omega)
return FALSE;
return TRUE;
}
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
struct drv_context *drvc;
libusb_context *usbctx;
const char *conn;
GSList *l, *conn_devices;
struct sr_config *src;
GSList *devices;
libusb_device **devlist, *devitem;
int bus, addr;
struct libusb_device_descriptor des;
struct libusb_device_handle *hdl;
int ret;
char conn_id[20];
char serno_txt[16];
char *end;
long serno_num, serno_pre;
enum asix_device_type dev_type;
const char *dev_text;
struct sr_dev_inst *sdi;
struct dev_context *devc;
size_t devidx, chidx;
drvc = di->context;
usbctx = drvc->sr_ctx->libusb_ctx;
/* Find all devices which match an (optional) conn= spec. */
conn = NULL;
for (l = options; l; l = l->next) {
src = l->data;
switch (src->key) {
case SR_CONF_CONN:
conn = g_variant_get_string(src->data, NULL);
break;
}
}
conn_devices = NULL;
if (conn)
conn_devices = sr_usb_find(usbctx, conn);
if (conn && !conn_devices)
return NULL;
/* Find all ASIX logic analyzers (which match the connection spec). */
devices = NULL;
libusb_get_device_list(usbctx, &devlist);
for (devidx = 0; devlist[devidx]; devidx++) {
devitem = devlist[devidx];
/* Check for connection match if a user spec was given. */
bus = libusb_get_bus_number(devitem);
addr = libusb_get_device_address(devitem);
if (conn && !bus_addr_in_devices(bus, addr, conn_devices))
continue;
snprintf(conn_id, sizeof(conn_id), "%d.%d", bus, addr);
/*
* Check for known VID:PID pairs. Get the serial number,
* to then derive the device type from it.
*/
libusb_get_device_descriptor(devitem, &des);
if (!known_vid_pid(&des))
continue;
if (!des.iSerialNumber) {
sr_warn("Cannot get serial number (index 0).");
continue;
}
ret = libusb_open(devitem, &hdl);
if (ret < 0) {
sr_warn("Cannot open USB device %04x.%04x: %s.",
des.idVendor, des.idProduct,
libusb_error_name(ret));
continue;
}
ret = libusb_get_string_descriptor_ascii(hdl,
des.iSerialNumber,
(unsigned char *)serno_txt, sizeof(serno_txt));
if (ret < 0) {
sr_warn("Cannot get serial number (%s).",
libusb_error_name(ret));
libusb_close(hdl);
continue;
}
libusb_close(hdl);
/*
* All ASIX logic analyzers have a serial number, which
* reads as a hex number, and tells the device type.
*/
ret = sr_atol_base(serno_txt, &serno_num, &end, 16);
if (ret != SR_OK || !end || *end) {
sr_warn("Cannot interpret serial number %s.", serno_txt);
continue;
}
dev_type = ASIX_TYPE_NONE;
dev_text = NULL;
serno_pre = serno_num >> 16;
switch (serno_pre) {
case 0xa601:
dev_type = ASIX_TYPE_SIGMA;
dev_text = "SIGMA";
sr_info("Found SIGMA, serno %s.", serno_txt);
break;
case 0xa602:
dev_type = ASIX_TYPE_SIGMA;
dev_text = "SIGMA2";
sr_info("Found SIGMA2, serno %s.", serno_txt);
break;
case 0xa603:
dev_type = ASIX_TYPE_OMEGA;
dev_text = "OMEGA";
sr_info("Found OMEGA, serno %s.", serno_txt);
if (!ASIX_WITH_OMEGA) {
sr_warn("OMEGA support is not implemented yet.");
continue;
}
break;
default:
sr_warn("Unknown serno %s, skipping.", serno_txt);
continue;
}
/* Create a device instance, add it to the result set. */
sdi = g_malloc0(sizeof(*sdi));
devices = g_slist_append(devices, sdi);
sdi->status = SR_ST_INITIALIZING;
sdi->vendor = g_strdup("ASIX");
sdi->model = g_strdup(dev_text);
sdi->serial_num = g_strdup(serno_txt);
sdi->connection_id = g_strdup(conn_id);
for (chidx = 0; chidx < ARRAY_SIZE(channel_names); chidx++)
sr_channel_new(sdi, chidx, SR_CHANNEL_LOGIC,
TRUE, channel_names[chidx]);
devc = g_malloc0(sizeof(*devc));
sdi->priv = devc;
devc->id.vid = des.idVendor;
devc->id.pid = des.idProduct;
devc->id.serno = serno_num;
devc->id.prefix = serno_pre;
devc->id.type = dev_type;
devc->samplerate = samplerates[0];
sr_sw_limits_init(&devc->cfg_limits);
devc->firmware_idx = SIGMA_FW_NONE;
devc->capture_ratio = 50;
devc->use_triggers = 0;
}
libusb_free_device_list(devlist, 1);
g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free);
return std_scan_complete(di, devices);
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
long vid, pid;
const char *serno;
int ret;
devc = sdi->priv;
if (devc->id.type == ASIX_TYPE_OMEGA && !ASIX_WITH_OMEGA) {
sr_err("OMEGA support is not implemented yet.");
return SR_ERR_NA;
}
vid = devc->id.vid;
pid = devc->id.pid;
serno = sdi->serial_num;
ret = ftdi_init(&devc->ftdic);
if (ret < 0) {
sr_err("Cannot initialize FTDI context (%d): %s.",
ret, ftdi_get_error_string(&devc->ftdic));
return SR_ERR_IO;
}
ret = ftdi_usb_open_desc_index(&devc->ftdic, vid, pid, NULL, serno, 0);
if (ret < 0) {
sr_err("Cannot open device (%d): %s.",
ret, ftdi_get_error_string(&devc->ftdic));
return SR_ERR_IO;
}
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int ret;
devc = sdi->priv;
ret = ftdi_usb_close(&devc->ftdic);
ftdi_deinit(&devc->ftdic);
return (ret == 0) ? SR_OK : SR_ERR;
}
static int config_get(uint32_t key, GVariant **data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
{
struct dev_context *devc;
(void)cg;
if (!sdi)
return SR_ERR;
devc = sdi->priv;
switch (key) {
case SR_CONF_CONN:
*data = g_variant_new_string(sdi->connection_id);
break;
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->samplerate);
break;
case SR_CONF_LIMIT_MSEC:
case SR_CONF_LIMIT_SAMPLES:
return sr_sw_limits_config_get(&devc->cfg_limits, key, data);
#if ASIX_SIGMA_WITH_TRIGGER
case SR_CONF_CAPTURE_RATIO:
*data = g_variant_new_uint64(devc->capture_ratio);
break;
#endif
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(uint32_t key, GVariant *data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
{
struct dev_context *devc;
int ret;
uint64_t want_rate, have_rate;
(void)cg;
devc = sdi->priv;
switch (key) {
case SR_CONF_SAMPLERATE:
want_rate = g_variant_get_uint64(data);
ret = sigma_normalize_samplerate(want_rate, &have_rate);
if (ret != SR_OK)
return ret;
if (have_rate != want_rate) {
char *text_want, *text_have;
text_want = sr_samplerate_string(want_rate);
text_have = sr_samplerate_string(have_rate);
sr_info("Adjusted samplerate %s to %s.",
text_want, text_have);
g_free(text_want);
g_free(text_have);
}
devc->samplerate = have_rate;
break;
case SR_CONF_LIMIT_MSEC:
case SR_CONF_LIMIT_SAMPLES:
return sr_sw_limits_config_set(&devc->cfg_limits, key, data);
#if ASIX_SIGMA_WITH_TRIGGER
case SR_CONF_CAPTURE_RATIO:
devc->capture_ratio = g_variant_get_uint64(data);
break;
#endif
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_list(uint32_t key, GVariant **data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
{
switch (key) {
case SR_CONF_SCAN_OPTIONS:
case SR_CONF_DEVICE_OPTIONS:
if (cg)
return SR_ERR_NA;
return STD_CONFIG_LIST(key, data, sdi, cg,
scanopts, drvopts, devopts);
case SR_CONF_SAMPLERATE:
*data = std_gvar_samplerates(samplerates, samplerates_count);
break;
#if ASIX_SIGMA_WITH_TRIGGER
case SR_CONF_TRIGGER_MATCH:
*data = std_gvar_array_i32(ARRAY_AND_SIZE(trigger_matches));
break;
#endif
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct clockselect_50 clockselect;
int triggerpin, ret;
uint8_t triggerselect;
struct triggerinout triggerinout_conf;
struct triggerlut lut;
uint8_t regval, trgconf_bytes[2], clock_bytes[4], *wrptr;
size_t count;
devc = sdi->priv;
/*
* Setup the device's samplerate from the value which up to now
* just got checked and stored. As a byproduct this can pick and
* send firmware to the device, reduce the number of available
* logic channels, etc.
*
* Determine an acquisition timeout from optionally configured
* sample count or time limits. Which depends on the samplerate.
*/
ret = sigma_set_samplerate(sdi);
if (ret != SR_OK)
return ret;
ret = sigma_set_acquire_timeout(devc);
if (ret != SR_OK)
return ret;
if (sigma_convert_trigger(sdi) != SR_OK) {
sr_err("Failed to configure triggers.");
return SR_ERR;
}
/* Enter trigger programming mode. */
sigma_set_register(devc, WRITE_TRIGGER_SELECT2, 0x20);
triggerselect = 0;
if (devc->samplerate >= SR_MHZ(100)) {
/* 100 and 200 MHz mode. */
sigma_set_register(devc, WRITE_TRIGGER_SELECT2, 0x81);
/* Find which pin to trigger on from mask. */
for (triggerpin = 0; triggerpin < 8; triggerpin++) {
if (devc->trigger.risingmask & (1 << triggerpin))
break;
if (devc->trigger.fallingmask & (1 << triggerpin))
break;
}
/* Set trigger pin and light LED on trigger. */
triggerselect = TRGSEL2_LEDSEL1 | (triggerpin & 0x7);
/* Default rising edge. */
if (devc->trigger.fallingmask)
triggerselect |= 1 << 3;
} else if (devc->samplerate <= SR_MHZ(50)) {
/* All other modes. */
sigma_build_basic_trigger(devc, &lut);
sigma_write_trigger_lut(devc, &lut);
triggerselect = TRGSEL2_LEDSEL1 | TRGSEL2_LEDSEL0;
}
/* Setup trigger in and out pins to default values. */
memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
triggerinout_conf.trgout_bytrigger = 1;
triggerinout_conf.trgout_enable = 1;
/* TODO
* Verify the correctness of this implementation. The previous
* version used to assign to a C language struct with bit fields
* which is highly non-portable and hard to guess the resulting
* raw memory layout or wire transfer content. The C struct's
* field names did not match the vendor documentation's names.
* Which means that I could not verify "on paper" either. Let's
* re-visit this code later during research for trigger support.
*/
wrptr = trgconf_bytes;
regval = 0;
if (triggerinout_conf.trgout_bytrigger)
regval |= TRGOPT_TRGOOUTEN;
write_u8_inc(&wrptr, regval);
regval &= ~TRGOPT_CLEAR_MASK;
if (triggerinout_conf.trgout_enable)
regval |= TRGOPT_TRGOEN;
write_u8_inc(&wrptr, regval);
count = wrptr - trgconf_bytes;
sigma_write_register(devc, WRITE_TRIGGER_OPTION, trgconf_bytes, count);
/* Leave trigger programming mode. */
sigma_set_register(devc, WRITE_TRIGGER_SELECT2, triggerselect);
/* Set clock select register. */
clockselect.async = 0;
clockselect.fraction = 1; /* Divider 1. */
clockselect.disabled_channels = 0x0000; /* All channels enabled. */
if (devc->samplerate == SR_MHZ(200)) {
/* Enable 4 channels. */
clockselect.disabled_channels = 0xfff0;
} else if (devc->samplerate == SR_MHZ(100)) {
/* Enable 8 channels. */
clockselect.disabled_channels = 0xff00;
} else {
/*
* 50 MHz mode, or fraction thereof. The 50MHz reference
* can get divided by any integer in the range 1 to 256.
* Divider minus 1 gets written to the hardware.
* (The driver lists a discrete set of sample rates, but
* all of them fit the above description.)
*/
clockselect.fraction = SR_MHZ(50) / devc->samplerate;
}
wrptr = clock_bytes;
write_u8_inc(&wrptr, clockselect.async);
write_u8_inc(&wrptr, clockselect.fraction - 1);
write_u16be_inc(&wrptr, clockselect.disabled_channels);
count = wrptr - clock_bytes;
sigma_write_register(devc, WRITE_CLOCK_SELECT, clock_bytes, count);
/* Setup maximum post trigger time. */
sigma_set_register(devc, WRITE_POST_TRIGGER,
(devc->capture_ratio * 255) / 100);
/* Start acqusition. */
regval = WMR_TRGRES | WMR_SDRAMWRITEEN;
#if ASIX_SIGMA_WITH_TRIGGER
regval |= WMR_TRGEN;
#endif
sigma_set_register(devc, WRITE_MODE, regval);
std_session_send_df_header(sdi);
/* Add capture source. */
sr_session_source_add(sdi->session, -1, 0, 10,
sigma_receive_data, (void *)sdi);
devc->state.state = SIGMA_CAPTURE;
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
devc = sdi->priv;
/*
* When acquisition is currently running, keep the receive
* routine registered and have it stop the acquisition upon the
* next invocation. Else unregister the receive routine here
* already. The detour is required to have sample data retrieved
* for forced acquisition stops.
*/
if (devc->state.state == SIGMA_CAPTURE) {
devc->state.state = SIGMA_STOPPING;
} else {
devc->state.state = SIGMA_IDLE;
sr_session_source_remove(sdi->session, -1);
}
return SR_OK;
}
static struct sr_dev_driver asix_sigma_driver_info = {
.name = "asix-sigma",
.longname = "ASIX SIGMA/SIGMA2",
.api_version = 1,
.init = std_init,
.cleanup = std_cleanup,
.scan = scan,
.dev_list = std_dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.context = NULL,
};
SR_REGISTER_DEV_DRIVER(asix_sigma_driver_info);