libsigrok/src/hardware/demo/demo.c

917 lines
24 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2010 Uwe Hermann <uwe@hermann-uwe.de>
* Copyright (C) 2011 Olivier Fauchon <olivier@aixmarseille.com>
* Copyright (C) 2012 Alexandru Gagniuc <mr.nuke.me@gmail.com>
* Copyright (C) 2015 Bartosz Golaszewski <bgolaszewski@baylibre.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#ifdef _WIN32
#include <io.h>
#include <fcntl.h>
#define pipe(fds) _pipe(fds, 4096, _O_BINARY)
#endif
#include "libsigrok.h"
#include "libsigrok-internal.h"
#define LOG_PREFIX "demo"
#define DEFAULT_NUM_LOGIC_CHANNELS 8
#define DEFAULT_NUM_ANALOG_CHANNELS 4
/* The size in bytes of chunks to send through the session bus. */
#define LOGIC_BUFSIZE 4096
/* Size of the analog pattern space per channel. */
#define ANALOG_BUFSIZE 4096
#define DEFAULT_ANALOG_AMPLITUDE 25
#define ANALOG_SAMPLES_PER_PERIOD 20
/* Logic patterns we can generate. */
enum {
/**
* Spells "sigrok" across 8 channels using '0's (with '1's as
* "background") when displayed using the 'bits' output format.
* The pattern is repeated every 8 channels, shifted to the right
* in time by one bit.
*/
PATTERN_SIGROK,
/** Pseudo-random values on all channels. */
PATTERN_RANDOM,
/**
* Incrementing number across 8 channels. The pattern is repeated
* every 8 channels, shifted to the right in time by one bit.
*/
PATTERN_INC,
/** All channels have a low logic state. */
PATTERN_ALL_LOW,
/** All channels have a high logic state. */
PATTERN_ALL_HIGH,
};
/* Analog patterns we can generate. */
enum {
/**
* Square wave.
*/
PATTERN_SQUARE,
PATTERN_SINE,
PATTERN_TRIANGLE,
PATTERN_SAWTOOTH,
};
static const char *logic_pattern_str[] = {
"sigrok",
"random",
"incremental",
"all-low",
"all-high",
};
static const char *analog_pattern_str[] = {
"square",
"sine",
"triangle",
"sawtooth",
};
struct analog_gen {
int pattern;
float amplitude;
float pattern_data[ANALOG_BUFSIZE];
unsigned int num_samples;
struct sr_datafeed_analog packet;
float avg_val; /* Average value */
unsigned num_avgs; /* Number of samples averaged */
};
/* Private, per-device-instance driver context. */
struct dev_context {
int pipe_fds[2];
GIOChannel *channel;
uint64_t cur_samplerate;
gboolean continuous;
uint64_t limit_samples;
uint64_t limit_msec;
uint64_t logic_counter;
uint64_t analog_counter;
int64_t starttime;
uint64_t step;
/* Logic */
int32_t num_logic_channels;
unsigned int logic_unitsize;
/* There is only ever one logic channel group, so its pattern goes here. */
uint8_t logic_pattern;
unsigned char logic_data[LOGIC_BUFSIZE];
/* Analog */
int32_t num_analog_channels;
GHashTable *ch_ag;
gboolean avg; /* True if averaging is enabled */
uint64_t avg_samples;
};
static const uint32_t drvopts[] = {
SR_CONF_DEMO_DEV,
SR_CONF_LOGIC_ANALYZER,
SR_CONF_OSCILLOSCOPE,
};
static const uint32_t scanopts[] = {
SR_CONF_NUM_LOGIC_CHANNELS,
SR_CONF_NUM_ANALOG_CHANNELS,
};
static const uint32_t devopts[] = {
SR_CONF_CONTINUOUS | SR_CONF_SET,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_AVERAGING | SR_CONF_GET | SR_CONF_SET,
SR_CONF_AVG_SAMPLES | SR_CONF_GET | SR_CONF_SET,
};
static const uint32_t devopts_cg_logic[] = {
SR_CONF_PATTERN_MODE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
};
static const uint32_t devopts_cg_analog[] = {
SR_CONF_PATTERN_MODE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_AMPLITUDE | SR_CONF_GET | SR_CONF_SET,
};
static const uint64_t samplerates[] = {
SR_HZ(1),
SR_GHZ(1),
SR_HZ(1),
};
static const uint8_t pattern_sigrok[] = {
0x4c, 0x92, 0x92, 0x92, 0x64, 0x00, 0x00, 0x00,
0x82, 0xfe, 0xfe, 0x82, 0x00, 0x00, 0x00, 0x00,
0x7c, 0x82, 0x82, 0x92, 0x74, 0x00, 0x00, 0x00,
0xfe, 0x12, 0x12, 0x32, 0xcc, 0x00, 0x00, 0x00,
0x7c, 0x82, 0x82, 0x82, 0x7c, 0x00, 0x00, 0x00,
0xfe, 0x10, 0x28, 0x44, 0x82, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xbe, 0xbe, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
SR_PRIV struct sr_dev_driver demo_driver_info;
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
static int init(struct sr_dev_driver *di, struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
static void generate_analog_pattern(struct analog_gen *ag, uint64_t sample_rate)
{
double t, frequency;
float value;
unsigned int num_samples, i;
int last_end;
sr_dbg("Generating %s pattern.", analog_pattern_str[ag->pattern]);
num_samples = ANALOG_BUFSIZE / sizeof(float);
switch (ag->pattern) {
case PATTERN_SQUARE:
value = ag->amplitude;
last_end = 0;
for (i = 0; i < num_samples; i++) {
if (i % 5 == 0)
value = -value;
if (i % 10 == 0)
last_end = i;
ag->pattern_data[i] = value;
}
ag->num_samples = last_end;
break;
case PATTERN_SINE:
frequency = (double) sample_rate / ANALOG_SAMPLES_PER_PERIOD;
/* Make sure the number of samples we put out is an integer
* multiple of our period size */
/* FIXME we actually need only one period. A ringbuffer would be
* usefull here.*/
while (num_samples % ANALOG_SAMPLES_PER_PERIOD != 0)
num_samples--;
for (i = 0; i < num_samples; i++) {
t = (double) i / (double) sample_rate;
ag->pattern_data[i] = ag->amplitude *
sin(2 * M_PI * frequency * t);
}
ag->num_samples = num_samples;
break;
case PATTERN_TRIANGLE:
frequency = (double) sample_rate / ANALOG_SAMPLES_PER_PERIOD;
while (num_samples % ANALOG_SAMPLES_PER_PERIOD != 0)
num_samples--;
for (i = 0; i < num_samples; i++) {
t = (double) i / (double) sample_rate;
ag->pattern_data[i] = (2 * ag->amplitude / M_PI) *
asin(sin(2 * M_PI * frequency * t));
}
ag->num_samples = num_samples;
break;
case PATTERN_SAWTOOTH:
frequency = (double) sample_rate / ANALOG_SAMPLES_PER_PERIOD;
while (num_samples % ANALOG_SAMPLES_PER_PERIOD != 0)
num_samples--;
for (i = 0; i < num_samples; i++) {
t = (double) i / (double) sample_rate;
ag->pattern_data[i] = 2 * ag->amplitude *
((t * frequency) - floor(0.5f + t * frequency));
}
ag->num_samples = num_samples;
break;
}
}
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
struct drv_context *drvc;
struct dev_context *devc;
struct sr_dev_inst *sdi;
struct sr_channel *ch;
struct sr_channel_group *cg, *acg;
struct sr_config *src;
struct analog_gen *ag;
GSList *devices, *l;
int num_logic_channels, num_analog_channels, pattern, i;
char channel_name[16];
drvc = di->priv;
num_logic_channels = DEFAULT_NUM_LOGIC_CHANNELS;
num_analog_channels = DEFAULT_NUM_ANALOG_CHANNELS;
for (l = options; l; l = l->next) {
src = l->data;
switch (src->key) {
case SR_CONF_NUM_LOGIC_CHANNELS:
num_logic_channels = g_variant_get_int32(src->data);
break;
case SR_CONF_NUM_ANALOG_CHANNELS:
num_analog_channels = g_variant_get_int32(src->data);
break;
}
}
devices = NULL;
sdi = g_malloc0(sizeof(struct sr_dev_inst));
sdi->status = SR_ST_ACTIVE;
sdi->model = g_strdup("Demo device");
sdi->driver = di;
devc = g_malloc(sizeof(struct dev_context));
devc->cur_samplerate = SR_KHZ(200);
devc->limit_samples = 0;
devc->limit_msec = 0;
devc->step = 0;
devc->continuous = FALSE;
devc->num_logic_channels = num_logic_channels;
devc->logic_unitsize = (devc->num_logic_channels + 7) / 8;
devc->logic_pattern = PATTERN_SIGROK;
devc->num_analog_channels = num_analog_channels;
devc->avg = FALSE;
devc->avg_samples = 0;
/* Logic channels, all in one channel group. */
cg = g_malloc0(sizeof(struct sr_channel_group));
cg->name = g_strdup("Logic");
for (i = 0; i < num_logic_channels; i++) {
sprintf(channel_name, "D%d", i);
ch = sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE, channel_name);
cg->channels = g_slist_append(cg->channels, ch);
}
sdi->channel_groups = g_slist_append(NULL, cg);
/* Analog channels, channel groups and pattern generators. */
pattern = 0;
/* An "Analog" channel group with all analog channels in it. */
acg = g_malloc0(sizeof(struct sr_channel_group));
acg->name = g_strdup("Analog");
sdi->channel_groups = g_slist_append(sdi->channel_groups, acg);
devc->ch_ag = g_hash_table_new(g_direct_hash, g_direct_equal);
for (i = 0; i < num_analog_channels; i++) {
snprintf(channel_name, 16, "A%d", i);
ch = sr_channel_new(sdi, i + num_logic_channels, SR_CHANNEL_ANALOG,
TRUE, channel_name);
acg->channels = g_slist_append(acg->channels, ch);
/* Every analog channel gets its own channel group as well. */
cg = g_malloc0(sizeof(struct sr_channel_group));
cg->name = g_strdup(channel_name);
cg->channels = g_slist_append(NULL, ch);
sdi->channel_groups = g_slist_append(sdi->channel_groups, cg);
/* Every channel gets a generator struct. */
ag = g_malloc(sizeof(struct analog_gen));
ag->amplitude = DEFAULT_ANALOG_AMPLITUDE;
ag->packet.channels = cg->channels;
ag->packet.mq = 0;
ag->packet.mqflags = 0;
ag->packet.unit = SR_UNIT_VOLT;
ag->packet.data = ag->pattern_data;
ag->pattern = pattern;
ag->avg_val = 0.0f;
ag->num_avgs = 0;
g_hash_table_insert(devc->ch_ag, ch, ag);
if (++pattern == ARRAY_SIZE(analog_pattern_str))
pattern = 0;
}
sdi->priv = devc;
devices = g_slist_append(devices, sdi);
drvc->instances = g_slist_append(drvc->instances, sdi);
return devices;
}
static GSList *dev_list(const struct sr_dev_driver *di)
{
return ((struct drv_context *)(di->priv))->instances;
}
static int dev_open(struct sr_dev_inst *sdi)
{
sdi->status = SR_ST_ACTIVE;
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static void clear_helper(void *priv)
{
struct dev_context *devc;
GHashTableIter iter;
void *value;
devc = priv;
/* Analog generators. */
g_hash_table_iter_init(&iter, devc->ch_ag);
while (g_hash_table_iter_next(&iter, NULL, &value))
g_free(value);
g_hash_table_unref(devc->ch_ag);
g_free(devc);
}
static int cleanup(const struct sr_dev_driver *di)
{
return std_dev_clear(di, clear_helper);
}
static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
struct sr_channel *ch;
struct analog_gen *ag;
int pattern;
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
switch (key) {
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->cur_samplerate);
break;
case SR_CONF_LIMIT_SAMPLES:
*data = g_variant_new_uint64(devc->limit_samples);
break;
case SR_CONF_LIMIT_MSEC:
*data = g_variant_new_uint64(devc->limit_msec);
break;
case SR_CONF_AVERAGING:
*data = g_variant_new_boolean(devc->avg);
break;
case SR_CONF_AVG_SAMPLES:
*data = g_variant_new_uint64(devc->avg_samples);
break;
case SR_CONF_PATTERN_MODE:
if (!cg)
return SR_ERR_CHANNEL_GROUP;
/* Any channel in the group will do. */
ch = cg->channels->data;
if (ch->type == SR_CHANNEL_LOGIC) {
pattern = devc->logic_pattern;
*data = g_variant_new_string(logic_pattern_str[pattern]);
} else if (ch->type == SR_CHANNEL_ANALOG) {
ag = g_hash_table_lookup(devc->ch_ag, ch);
pattern = ag->pattern;
*data = g_variant_new_string(analog_pattern_str[pattern]);
} else
return SR_ERR_BUG;
break;
case SR_CONF_AMPLITUDE:
if (!cg)
return SR_ERR_CHANNEL_GROUP;
/* Any channel in the group will do. */
ch = cg->channels->data;
if (ch->type != SR_CHANNEL_ANALOG)
return SR_ERR_ARG;
ag = g_hash_table_lookup(devc->ch_ag, ch);
*data = g_variant_new_double(ag->amplitude);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
struct analog_gen *ag;
struct sr_channel *ch;
GSList *l;
int logic_pattern, analog_pattern, ret;
unsigned int i;
const char *stropt;
devc = sdi->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
ret = SR_OK;
switch (key) {
case SR_CONF_SAMPLERATE:
devc->cur_samplerate = g_variant_get_uint64(data);
break;
case SR_CONF_LIMIT_SAMPLES:
devc->limit_msec = 0;
devc->limit_samples = g_variant_get_uint64(data);
break;
case SR_CONF_LIMIT_MSEC:
devc->limit_msec = g_variant_get_uint64(data);
devc->limit_samples = 0;
break;
case SR_CONF_AVERAGING:
devc->avg = g_variant_get_boolean(data);
sr_dbg("%s averaging", devc->avg ? "Enabling" : "Disabling");
break;
case SR_CONF_AVG_SAMPLES:
devc->avg_samples = g_variant_get_uint64(data);
sr_dbg("Setting averaging rate to %" PRIu64, devc->avg_samples);
break;
case SR_CONF_PATTERN_MODE:
if (!cg)
return SR_ERR_CHANNEL_GROUP;
stropt = g_variant_get_string(data, NULL);
logic_pattern = analog_pattern = -1;
for (i = 0; i < ARRAY_SIZE(logic_pattern_str); i++) {
if (!strcmp(stropt, logic_pattern_str[i])) {
logic_pattern = i;
break;
}
}
for (i = 0; i < ARRAY_SIZE(analog_pattern_str); i++) {
if (!strcmp(stropt, analog_pattern_str[i])) {
analog_pattern = i;
break;
}
}
if (logic_pattern == -1 && analog_pattern == -1)
return SR_ERR_ARG;
for (l = cg->channels; l; l = l->next) {
ch = l->data;
if (ch->type == SR_CHANNEL_LOGIC) {
if (logic_pattern == -1)
return SR_ERR_ARG;
sr_dbg("Setting logic pattern to %s",
logic_pattern_str[logic_pattern]);
devc->logic_pattern = logic_pattern;
/* Might as well do this now, these are static. */
if (logic_pattern == PATTERN_ALL_LOW)
memset(devc->logic_data, 0x00, LOGIC_BUFSIZE);
else if (logic_pattern == PATTERN_ALL_HIGH)
memset(devc->logic_data, 0xff, LOGIC_BUFSIZE);
} else if (ch->type == SR_CHANNEL_ANALOG) {
if (analog_pattern == -1)
return SR_ERR_ARG;
sr_dbg("Setting analog pattern for channel %s to %s",
ch->name, analog_pattern_str[analog_pattern]);
ag = g_hash_table_lookup(devc->ch_ag, ch);
ag->pattern = analog_pattern;
} else
return SR_ERR_BUG;
}
break;
case SR_CONF_AMPLITUDE:
if (!cg)
return SR_ERR_CHANNEL_GROUP;
for (l = cg->channels; l; l = l->next) {
ch = l->data;
if (ch->type != SR_CHANNEL_ANALOG)
return SR_ERR_ARG;
ag = g_hash_table_lookup(devc->ch_ag, ch);
ag->amplitude = g_variant_get_double(data);
}
break;
default:
ret = SR_ERR_NA;
}
return ret;
}
static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct sr_channel *ch;
GVariant *gvar;
GVariantBuilder gvb;
if (key == SR_CONF_SCAN_OPTIONS) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
return SR_OK;
}
if (key == SR_CONF_DEVICE_OPTIONS && !sdi) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
return SR_OK;
}
if (!sdi)
return SR_ERR_ARG;
if (!cg) {
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
ARRAY_SIZE(samplerates), sizeof(uint64_t));
g_variant_builder_add(&gvb, "{sv}", "samplerate-steps", gvar);
*data = g_variant_builder_end(&gvb);
break;
default:
return SR_ERR_NA;
}
} else {
/* Any channel in the group will do. */
ch = cg->channels->data;
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
if (ch->type == SR_CHANNEL_LOGIC)
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
devopts_cg_logic, ARRAY_SIZE(devopts_cg_logic),
sizeof(uint32_t));
else if (ch->type == SR_CHANNEL_ANALOG)
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
devopts_cg_analog, ARRAY_SIZE(devopts_cg_analog),
sizeof(uint32_t));
else
return SR_ERR_BUG;
break;
case SR_CONF_PATTERN_MODE:
if (ch->type == SR_CHANNEL_LOGIC)
*data = g_variant_new_strv(logic_pattern_str,
ARRAY_SIZE(logic_pattern_str));
else if (ch->type == SR_CHANNEL_ANALOG)
*data = g_variant_new_strv(analog_pattern_str,
ARRAY_SIZE(analog_pattern_str));
else
return SR_ERR_BUG;
break;
default:
return SR_ERR_NA;
}
}
return SR_OK;
}
static void logic_generator(struct sr_dev_inst *sdi, uint64_t size)
{
struct dev_context *devc;
uint64_t i, j;
uint8_t pat;
devc = sdi->priv;
switch (devc->logic_pattern) {
case PATTERN_SIGROK:
memset(devc->logic_data, 0x00, size);
for (i = 0; i < size; i += devc->logic_unitsize) {
for (j = 0; j < devc->logic_unitsize; j++) {
pat = pattern_sigrok[(devc->step + j) % sizeof(pattern_sigrok)] >> 1;
devc->logic_data[i + j] = ~pat;
}
devc->step++;
}
break;
case PATTERN_RANDOM:
for (i = 0; i < size; i++)
devc->logic_data[i] = (uint8_t)(rand() & 0xff);
break;
case PATTERN_INC:
for (i = 0; i < size; i++) {
for (j = 0; j < devc->logic_unitsize; j++) {
devc->logic_data[i + j] = devc->step;
}
devc->step++;
}
break;
case PATTERN_ALL_LOW:
case PATTERN_ALL_HIGH:
/* These were set when the pattern mode was selected. */
break;
default:
sr_err("Unknown pattern: %d.", devc->logic_pattern);
break;
}
}
static void send_analog_packet(struct analog_gen *ag,
struct sr_dev_inst *sdi,
uint64_t *analog_sent,
uint64_t analog_todo)
{
struct sr_datafeed_packet packet;
struct dev_context *devc;
uint64_t sending_now, to_avg;
int ag_pattern_pos;
unsigned int i;
devc = sdi->priv;
packet.type = SR_DF_ANALOG;
packet.payload = &ag->packet;
if (!devc->avg) {
ag_pattern_pos = devc->analog_counter % ag->num_samples;
sending_now = MIN(analog_todo, ag->num_samples-ag_pattern_pos);
ag->packet.data = ag->pattern_data + ag_pattern_pos;
ag->packet.num_samples = sending_now;
sr_session_send(sdi, &packet);
/* Whichever channel group gets there first. */
*analog_sent = MAX(*analog_sent, sending_now);
} else {
ag_pattern_pos = devc->analog_counter % ag->num_samples;
to_avg = MIN(analog_todo, ag->num_samples-ag_pattern_pos);
for (i = 0; i < to_avg; i++) {
ag->avg_val = (ag->avg_val +
*(ag->pattern_data +
ag_pattern_pos + i)) / 2;
ag->num_avgs++;
/* Time to send averaged data? */
if (devc->avg_samples > 0 &&
ag->num_avgs >= devc->avg_samples)
goto do_send;
}
if (devc->avg_samples == 0) {
/* We're averaging all the samples, so wait with
* sending until the very end.
*/
*analog_sent = ag->num_avgs;
return;
}
do_send:
ag->packet.data = &ag->avg_val;
ag->packet.num_samples = 1;
sr_session_send(sdi, &packet);
*analog_sent = ag->num_avgs;
ag->num_avgs = 0;
ag->avg_val = 0.0f;
}
}
/* Callback handling data */
static int prepare_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct analog_gen *ag;
GHashTableIter iter;
void *value;
uint64_t logic_todo, analog_todo, expected_samplenum, analog_sent, sending_now;
int64_t time, elapsed;
(void)fd;
(void)revents;
sdi = cb_data;
devc = sdi->priv;
logic_todo = analog_todo = 0;
/* How many samples should we have sent by now? */
time = g_get_monotonic_time();
elapsed = time - devc->starttime;
expected_samplenum = elapsed * devc->cur_samplerate / 1000000;
/* But never more than the limit, if there is one. */
if (!devc->continuous)
expected_samplenum = MIN(expected_samplenum, devc->limit_samples);
/* Of those, how many do we still have to send? */
if (devc->num_logic_channels)
logic_todo = expected_samplenum - devc->logic_counter;
if (devc->num_analog_channels)
analog_todo = expected_samplenum - devc->analog_counter;
while (logic_todo || analog_todo) {
/* Logic */
if (logic_todo > 0) {
sending_now = MIN(logic_todo, LOGIC_BUFSIZE / devc->logic_unitsize);
logic_generator(sdi, sending_now * devc->logic_unitsize);
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = sending_now * devc->logic_unitsize;
logic.unitsize = devc->logic_unitsize;
logic.data = devc->logic_data;
sr_session_send(sdi, &packet);
logic_todo -= sending_now;
devc->logic_counter += sending_now;
}
/* Analog, one channel at a time */
if (analog_todo > 0) {
analog_sent = 0;
g_hash_table_iter_init(&iter, devc->ch_ag);
while (g_hash_table_iter_next(&iter, NULL, &value)) {
send_analog_packet(value, sdi,
&analog_sent, analog_todo);
}
analog_todo -= analog_sent;
devc->analog_counter += analog_sent;
}
}
if (!devc->continuous
&& (!devc->num_logic_channels || devc->logic_counter >= devc->limit_samples)
&& (!devc->num_analog_channels || devc->analog_counter >= devc->limit_samples)) {
/* If we're averaging everything - now is the time to send data */
if (devc->avg_samples == 0) {
g_hash_table_iter_init(&iter, devc->ch_ag);
while (g_hash_table_iter_next(&iter, NULL, &value)) {
ag = value;
packet.type = SR_DF_ANALOG;
packet.payload = &ag->packet;
ag->packet.data = &ag->avg_val;
ag->packet.num_samples = 1;
sr_session_send(sdi, &packet);
}
}
sr_dbg("Requested number of samples reached.");
dev_acquisition_stop(sdi, cb_data);
return TRUE;
}
return TRUE;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
GHashTableIter iter;
void *value;
(void)cb_data;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
devc->continuous = !devc->limit_samples;
devc->logic_counter = devc->analog_counter = 0;
/*
* Setting two channels connected by a pipe is a remnant from when the
* demo driver generated data in a thread, and collected and sent the
* data in the main program loop.
* They are kept here because it provides a convenient way of setting
* up a timeout-based polling mechanism.
*/
if (pipe(devc->pipe_fds)) {
sr_err("%s: pipe() failed", __func__);
return SR_ERR;
}
g_hash_table_iter_init(&iter, devc->ch_ag);
while (g_hash_table_iter_next(&iter, NULL, &value))
generate_analog_pattern(value, devc->cur_samplerate);
devc->channel = g_io_channel_unix_new(devc->pipe_fds[0]);
g_io_channel_set_flags(devc->channel, G_IO_FLAG_NONBLOCK, NULL);
/* Set channel encoding to binary (default is UTF-8). */
g_io_channel_set_encoding(devc->channel, NULL, NULL);
/* Make channels unbuffered. */
g_io_channel_set_buffered(devc->channel, FALSE);
sr_session_source_add_channel(sdi->session, devc->channel,
G_IO_IN | G_IO_ERR, 40, prepare_data, (void *)sdi);
/* Send header packet to the session bus. */
std_session_send_df_header(sdi, LOG_PREFIX);
/* We use this timestamp to decide how many more samples to send. */
devc->starttime = g_get_monotonic_time();
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
struct sr_datafeed_packet packet;
(void)cb_data;
devc = sdi->priv;
sr_dbg("Stopping acquisition.");
sr_session_source_remove_channel(sdi->session, devc->channel);
g_io_channel_shutdown(devc->channel, FALSE, NULL);
g_io_channel_unref(devc->channel);
devc->channel = NULL;
/* Send last packet. */
packet.type = SR_DF_END;
sr_session_send(sdi, &packet);
return SR_OK;
}
SR_PRIV struct sr_dev_driver demo_driver_info = {
.name = "demo",
.longname = "Demo driver and pattern generator",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = NULL,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};