1366 lines
32 KiB
C
1366 lines
32 KiB
C
/*
|
|
* This file is part of the sigrok project.
|
|
*
|
|
* Copyright (C) 2010 Håvard Espeland <gus@ping.uio.no>,
|
|
* Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
|
|
* Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* ASIX Sigma Logic Analyzer Driver
|
|
*/
|
|
|
|
#include <ftdi.h>
|
|
#include <string.h>
|
|
#include <zlib.h>
|
|
#include <sigrok.h>
|
|
#include <config.h>
|
|
#include "asix-sigma.h"
|
|
|
|
#define USB_VENDOR 0xa600
|
|
#define USB_PRODUCT 0xa000
|
|
#define USB_DESCRIPTION "ASIX SIGMA"
|
|
#define USB_VENDOR_NAME "ASIX"
|
|
#define USB_MODEL_NAME "SIGMA"
|
|
#define USB_MODEL_VERSION ""
|
|
#define TRIGGER_TYPES "rf10"
|
|
|
|
static GSList *device_instances = NULL;
|
|
|
|
static uint64_t supported_samplerates[] = {
|
|
KHZ(200),
|
|
KHZ(250),
|
|
KHZ(500),
|
|
MHZ(1),
|
|
MHZ(5),
|
|
MHZ(10),
|
|
MHZ(25),
|
|
MHZ(50),
|
|
MHZ(100),
|
|
MHZ(200),
|
|
0,
|
|
};
|
|
|
|
static struct samplerates samplerates = {
|
|
KHZ(200),
|
|
MHZ(200),
|
|
0,
|
|
supported_samplerates,
|
|
};
|
|
|
|
static int capabilities[] = {
|
|
HWCAP_LOGIC_ANALYZER,
|
|
HWCAP_SAMPLERATE,
|
|
HWCAP_CAPTURE_RATIO,
|
|
HWCAP_PROBECONFIG,
|
|
|
|
HWCAP_LIMIT_MSEC,
|
|
0,
|
|
};
|
|
|
|
/* Force the FPGA to reboot. */
|
|
static uint8_t suicide[] = {
|
|
0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
|
|
};
|
|
|
|
/* Prepare to upload firmware (FPGA specific). */
|
|
static uint8_t init[] = {
|
|
0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
|
|
};
|
|
|
|
/* Initialize the logic analyzer mode. */
|
|
static uint8_t logic_mode_start[] = {
|
|
0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
|
|
0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
|
|
};
|
|
|
|
static const char *firmware_files[] = {
|
|
"asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
|
|
"asix-sigma-100.fw", /* 100 MHz */
|
|
"asix-sigma-200.fw", /* 200 MHz */
|
|
"asix-sigma-50sync.fw", /* Synchronous clock from pin */
|
|
"asix-sigma-phasor.fw", /* Frequency counter */
|
|
};
|
|
|
|
static void hw_stop_acquisition(int device_index, gpointer session_device_id);
|
|
|
|
static int sigma_read(void *buf, size_t size, struct sigma *sigma)
|
|
{
|
|
int ret;
|
|
|
|
ret = ftdi_read_data(&sigma->ftdic, (unsigned char *)buf, size);
|
|
if (ret < 0) {
|
|
g_warning("ftdi_read_data failed: %s",
|
|
ftdi_get_error_string(&sigma->ftdic));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sigma_write(void *buf, size_t size, struct sigma *sigma)
|
|
{
|
|
int ret;
|
|
|
|
ret = ftdi_write_data(&sigma->ftdic, (unsigned char *)buf, size);
|
|
if (ret < 0) {
|
|
g_warning("ftdi_write_data failed: %s",
|
|
ftdi_get_error_string(&sigma->ftdic));
|
|
} else if ((size_t) ret != size) {
|
|
g_warning("ftdi_write_data did not complete write\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
|
|
struct sigma *sigma)
|
|
{
|
|
size_t i;
|
|
uint8_t buf[len + 2];
|
|
int idx = 0;
|
|
|
|
buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
|
|
buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
|
|
buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
|
|
}
|
|
|
|
return sigma_write(buf, idx, sigma);
|
|
}
|
|
|
|
static int sigma_set_register(uint8_t reg, uint8_t value, struct sigma *sigma)
|
|
{
|
|
return sigma_write_register(reg, &value, 1, sigma);
|
|
}
|
|
|
|
static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
|
|
struct sigma *sigma)
|
|
{
|
|
uint8_t buf[3];
|
|
|
|
buf[0] = REG_ADDR_LOW | (reg & 0xf);
|
|
buf[1] = REG_ADDR_HIGH | (reg >> 4);
|
|
buf[2] = REG_READ_ADDR;
|
|
|
|
sigma_write(buf, sizeof(buf), sigma);
|
|
|
|
return sigma_read(data, len, sigma);
|
|
}
|
|
|
|
static uint8_t sigma_get_register(uint8_t reg, struct sigma *sigma)
|
|
{
|
|
uint8_t value;
|
|
|
|
if (1 != sigma_read_register(reg, &value, 1, sigma)) {
|
|
g_warning("Sigma_get_register: 1 byte expected");
|
|
return 0;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
|
|
struct sigma *sigma)
|
|
{
|
|
uint8_t buf[] = {
|
|
REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
|
|
|
|
REG_READ_ADDR | NEXT_REG,
|
|
REG_READ_ADDR | NEXT_REG,
|
|
REG_READ_ADDR | NEXT_REG,
|
|
REG_READ_ADDR | NEXT_REG,
|
|
REG_READ_ADDR | NEXT_REG,
|
|
REG_READ_ADDR | NEXT_REG,
|
|
};
|
|
uint8_t result[6];
|
|
|
|
sigma_write(buf, sizeof(buf), sigma);
|
|
|
|
sigma_read(result, sizeof(result), sigma);
|
|
|
|
*triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
|
|
*stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
|
|
|
|
/* Not really sure why this must be done, but according to spec. */
|
|
if ((--*stoppos & 0x1ff) == 0x1ff)
|
|
stoppos -= 64;
|
|
|
|
if ((*--triggerpos & 0x1ff) == 0x1ff)
|
|
triggerpos -= 64;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
|
|
uint8_t *data, struct sigma *sigma)
|
|
{
|
|
size_t i;
|
|
uint8_t buf[4096];
|
|
int idx = 0;
|
|
|
|
/* Send the startchunk. Index start with 1. */
|
|
buf[0] = startchunk >> 8;
|
|
buf[1] = startchunk & 0xff;
|
|
sigma_write_register(WRITE_MEMROW, buf, 2, sigma);
|
|
|
|
/* Read the DRAM. */
|
|
buf[idx++] = REG_DRAM_BLOCK;
|
|
buf[idx++] = REG_DRAM_WAIT_ACK;
|
|
|
|
for (i = 0; i < numchunks; ++i) {
|
|
/* Alternate bit to copy from DRAM to cache. */
|
|
if (i != (numchunks - 1))
|
|
buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
|
|
|
|
buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
|
|
|
|
if (i != (numchunks - 1))
|
|
buf[idx++] = REG_DRAM_WAIT_ACK;
|
|
}
|
|
|
|
sigma_write(buf, idx, sigma);
|
|
|
|
return sigma_read(data, numchunks * CHUNK_SIZE, sigma);
|
|
}
|
|
|
|
/* Upload trigger look-up tables to Sigma. */
|
|
static int sigma_write_trigger_lut(struct triggerlut *lut, struct sigma *sigma)
|
|
{
|
|
int i;
|
|
uint8_t tmp[2];
|
|
uint16_t bit;
|
|
|
|
/* Transpose the table and send to Sigma. */
|
|
for (i = 0; i < 16; ++i) {
|
|
bit = 1 << i;
|
|
|
|
tmp[0] = tmp[1] = 0;
|
|
|
|
if (lut->m2d[0] & bit)
|
|
tmp[0] |= 0x01;
|
|
if (lut->m2d[1] & bit)
|
|
tmp[0] |= 0x02;
|
|
if (lut->m2d[2] & bit)
|
|
tmp[0] |= 0x04;
|
|
if (lut->m2d[3] & bit)
|
|
tmp[0] |= 0x08;
|
|
|
|
if (lut->m3 & bit)
|
|
tmp[0] |= 0x10;
|
|
if (lut->m3s & bit)
|
|
tmp[0] |= 0x20;
|
|
if (lut->m4 & bit)
|
|
tmp[0] |= 0x40;
|
|
|
|
if (lut->m0d[0] & bit)
|
|
tmp[1] |= 0x01;
|
|
if (lut->m0d[1] & bit)
|
|
tmp[1] |= 0x02;
|
|
if (lut->m0d[2] & bit)
|
|
tmp[1] |= 0x04;
|
|
if (lut->m0d[3] & bit)
|
|
tmp[1] |= 0x08;
|
|
|
|
if (lut->m1d[0] & bit)
|
|
tmp[1] |= 0x10;
|
|
if (lut->m1d[1] & bit)
|
|
tmp[1] |= 0x20;
|
|
if (lut->m1d[2] & bit)
|
|
tmp[1] |= 0x40;
|
|
if (lut->m1d[3] & bit)
|
|
tmp[1] |= 0x80;
|
|
|
|
sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
|
|
sigma);
|
|
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, sigma);
|
|
}
|
|
|
|
/* Send the parameters */
|
|
sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
|
|
sizeof(lut->params), sigma);
|
|
|
|
return SIGROK_OK;
|
|
}
|
|
|
|
/* Generate the bitbang stream for programming the FPGA. */
|
|
static int bin2bitbang(const char *filename,
|
|
unsigned char **buf, size_t *buf_size)
|
|
{
|
|
FILE *f;
|
|
long file_size;
|
|
unsigned long offset = 0;
|
|
unsigned char *p;
|
|
uint8_t *compressed_buf, *firmware;
|
|
uLongf csize, fwsize;
|
|
const int buffer_size = 65536;
|
|
size_t i;
|
|
int c, ret, bit, v;
|
|
uint32_t imm = 0x3f6df2ab;
|
|
|
|
f = fopen(filename, "r");
|
|
if (!f) {
|
|
g_warning("fopen(\"%s\", \"r\")", filename);
|
|
return -1;
|
|
}
|
|
|
|
if (-1 == fseek(f, 0, SEEK_END)) {
|
|
g_warning("fseek on %s failed", filename);
|
|
fclose(f);
|
|
return -1;
|
|
}
|
|
|
|
file_size = ftell(f);
|
|
|
|
fseek(f, 0, SEEK_SET);
|
|
|
|
compressed_buf = g_malloc(file_size);
|
|
firmware = g_malloc(buffer_size);
|
|
|
|
if (!compressed_buf || !firmware) {
|
|
g_warning("Error allocating buffers");
|
|
return -1;
|
|
}
|
|
|
|
csize = 0;
|
|
while ((c = getc(f)) != EOF) {
|
|
imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
|
|
compressed_buf[csize++] = c ^ imm;
|
|
}
|
|
fclose(f);
|
|
|
|
fwsize = buffer_size;
|
|
ret = uncompress(firmware, &fwsize, compressed_buf, csize);
|
|
if (ret < 0) {
|
|
g_free(compressed_buf);
|
|
g_free(firmware);
|
|
g_warning("Could not unpack Sigma firmware. (Error %d)\n", ret);
|
|
return -1;
|
|
}
|
|
|
|
g_free(compressed_buf);
|
|
|
|
*buf_size = fwsize * 2 * 8;
|
|
|
|
*buf = p = (unsigned char *)g_malloc(*buf_size);
|
|
|
|
if (!p) {
|
|
g_warning("Error allocating buffers");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < fwsize; ++i) {
|
|
for (bit = 7; bit >= 0; --bit) {
|
|
v = firmware[i] & 1 << bit ? 0x40 : 0x00;
|
|
p[offset++] = v | 0x01;
|
|
p[offset++] = v;
|
|
}
|
|
}
|
|
|
|
g_free(firmware);
|
|
|
|
if (offset != *buf_size) {
|
|
g_free(*buf);
|
|
g_warning("Error reading firmware %s "
|
|
"offset=%ld, file_size=%ld, buf_size=%zd\n",
|
|
filename, offset, file_size, *buf_size);
|
|
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hw_init(char *deviceinfo)
|
|
{
|
|
struct sigrok_device_instance *sdi;
|
|
struct sigma *sigma = g_malloc(sizeof(struct sigma));
|
|
|
|
deviceinfo = deviceinfo;
|
|
|
|
if (!sigma)
|
|
return 0;
|
|
|
|
ftdi_init(&sigma->ftdic);
|
|
|
|
/* Look for SIGMAs. */
|
|
if (ftdi_usb_open_desc(&sigma->ftdic, USB_VENDOR, USB_PRODUCT,
|
|
USB_DESCRIPTION, NULL) < 0)
|
|
goto free;
|
|
|
|
sigma->cur_samplerate = 0;
|
|
sigma->limit_msec = 0;
|
|
sigma->cur_firmware = -1;
|
|
sigma->num_probes = 0;
|
|
sigma->samples_per_event = 0;
|
|
sigma->capture_ratio = 50;
|
|
sigma->use_triggers = 0;
|
|
|
|
/* Register SIGMA device. */
|
|
sdi = sigrok_device_instance_new(0, ST_INITIALIZING,
|
|
USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION);
|
|
if (!sdi)
|
|
goto free;
|
|
|
|
sdi->priv = sigma;
|
|
|
|
device_instances = g_slist_append(device_instances, sdi);
|
|
|
|
/* We will open the device again when we need it. */
|
|
ftdi_usb_close(&sigma->ftdic);
|
|
|
|
return 1;
|
|
free:
|
|
free(sigma);
|
|
return 0;
|
|
}
|
|
|
|
static int upload_firmware(int firmware_idx, struct sigma *sigma)
|
|
{
|
|
int ret;
|
|
unsigned char *buf;
|
|
unsigned char pins;
|
|
size_t buf_size;
|
|
unsigned char result[32];
|
|
char firmware_path[128];
|
|
|
|
/* Make sure it's an ASIX SIGMA. */
|
|
if ((ret = ftdi_usb_open_desc(&sigma->ftdic,
|
|
USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
|
|
g_warning("ftdi_usb_open failed: %s",
|
|
ftdi_get_error_string(&sigma->ftdic));
|
|
return 0;
|
|
}
|
|
|
|
if ((ret = ftdi_set_bitmode(&sigma->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
|
|
g_warning("ftdi_set_bitmode failed: %s",
|
|
ftdi_get_error_string(&sigma->ftdic));
|
|
return 0;
|
|
}
|
|
|
|
/* Four times the speed of sigmalogan - Works well. */
|
|
if ((ret = ftdi_set_baudrate(&sigma->ftdic, 750000)) < 0) {
|
|
g_warning("ftdi_set_baudrate failed: %s",
|
|
ftdi_get_error_string(&sigma->ftdic));
|
|
return 0;
|
|
}
|
|
|
|
/* Force the FPGA to reboot. */
|
|
sigma_write(suicide, sizeof(suicide), sigma);
|
|
sigma_write(suicide, sizeof(suicide), sigma);
|
|
sigma_write(suicide, sizeof(suicide), sigma);
|
|
sigma_write(suicide, sizeof(suicide), sigma);
|
|
|
|
/* Prepare to upload firmware (FPGA specific). */
|
|
sigma_write(init, sizeof(init), sigma);
|
|
|
|
ftdi_usb_purge_buffers(&sigma->ftdic);
|
|
|
|
/* Wait until the FPGA asserts INIT_B. */
|
|
while (1) {
|
|
ret = sigma_read(result, 1, sigma);
|
|
if (result[0] & 0x20)
|
|
break;
|
|
}
|
|
|
|
/* Prepare firmware. */
|
|
snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
|
|
firmware_files[firmware_idx]);
|
|
|
|
if (-1 == bin2bitbang(firmware_path, &buf, &buf_size)) {
|
|
g_warning("An error occured while reading the firmware: %s",
|
|
firmware_path);
|
|
return SIGROK_ERR;
|
|
}
|
|
|
|
/* Upload firmare. */
|
|
sigma_write(buf, buf_size, sigma);
|
|
|
|
g_free(buf);
|
|
|
|
if ((ret = ftdi_set_bitmode(&sigma->ftdic, 0x00, BITMODE_RESET)) < 0) {
|
|
g_warning("ftdi_set_bitmode failed: %s",
|
|
ftdi_get_error_string(&sigma->ftdic));
|
|
return SIGROK_ERR;
|
|
}
|
|
|
|
ftdi_usb_purge_buffers(&sigma->ftdic);
|
|
|
|
/* Discard garbage. */
|
|
while (1 == sigma_read(&pins, 1, sigma))
|
|
;
|
|
|
|
/* Initialize the logic analyzer mode. */
|
|
sigma_write(logic_mode_start, sizeof(logic_mode_start), sigma);
|
|
|
|
/* Expect a 3 byte reply. */
|
|
ret = sigma_read(result, 3, sigma);
|
|
if (ret != 3 ||
|
|
result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
|
|
g_warning("Configuration failed. Invalid reply received.");
|
|
return SIGROK_ERR;
|
|
}
|
|
|
|
sigma->cur_firmware = firmware_idx;
|
|
|
|
return SIGROK_OK;
|
|
}
|
|
|
|
static int hw_opendev(int device_index)
|
|
{
|
|
struct sigrok_device_instance *sdi;
|
|
struct sigma *sigma;
|
|
int ret;
|
|
|
|
if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
|
|
return SIGROK_ERR;
|
|
|
|
sigma = sdi->priv;
|
|
|
|
/* Make sure it's an ASIX SIGMA. */
|
|
if ((ret = ftdi_usb_open_desc(&sigma->ftdic,
|
|
USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
|
|
|
|
g_warning("ftdi_usb_open failed: %s",
|
|
ftdi_get_error_string(&sigma->ftdic));
|
|
|
|
return 0;
|
|
}
|
|
|
|
sdi->status = ST_ACTIVE;
|
|
|
|
return SIGROK_OK;
|
|
}
|
|
|
|
static int set_samplerate(struct sigrok_device_instance *sdi,
|
|
uint64_t samplerate)
|
|
{
|
|
int i, ret;
|
|
struct sigma *sigma = sdi->priv;
|
|
|
|
for (i = 0; supported_samplerates[i]; i++) {
|
|
if (supported_samplerates[i] == samplerate)
|
|
break;
|
|
}
|
|
if (supported_samplerates[i] == 0)
|
|
return SIGROK_ERR_SAMPLERATE;
|
|
|
|
if (samplerate <= MHZ(50)) {
|
|
ret = upload_firmware(0, sigma);
|
|
sigma->num_probes = 16;
|
|
}
|
|
if (samplerate == MHZ(100)) {
|
|
ret = upload_firmware(1, sigma);
|
|
sigma->num_probes = 8;
|
|
}
|
|
else if (samplerate == MHZ(200)) {
|
|
ret = upload_firmware(2, sigma);
|
|
sigma->num_probes = 4;
|
|
}
|
|
|
|
sigma->cur_samplerate = samplerate;
|
|
sigma->samples_per_event = 16 / sigma->num_probes;
|
|
sigma->state.state = SIGMA_IDLE;
|
|
|
|
g_message("Firmware uploaded");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* In 100 and 200 MHz mode, only a single pin rising/falling can be
|
|
* set as trigger. In other modes, two rising/falling triggers can be set,
|
|
* in addition to value/mask trigger for any number of probes.
|
|
*
|
|
* The Sigma supports complex triggers using boolean expressions, but this
|
|
* has not been implemented yet.
|
|
*/
|
|
static int configure_probes(struct sigrok_device_instance *sdi, GSList *probes)
|
|
{
|
|
struct sigma *sigma = sdi->priv;
|
|
struct probe *probe;
|
|
GSList *l;
|
|
int trigger_set = 0;
|
|
int probebit;
|
|
|
|
memset(&sigma->trigger, 0, sizeof(struct sigma_trigger));
|
|
|
|
for (l = probes; l; l = l->next) {
|
|
probe = (struct probe *)l->data;
|
|
probebit = 1 << (probe->index - 1);
|
|
|
|
if (!probe->enabled || !probe->trigger)
|
|
continue;
|
|
|
|
if (sigma->cur_samplerate >= MHZ(100)) {
|
|
/* Fast trigger support. */
|
|
if (trigger_set) {
|
|
g_warning("Asix Sigma only supports a single "
|
|
"pin trigger in 100 and 200 "
|
|
"MHz mode.");
|
|
return SIGROK_ERR;
|
|
}
|
|
if (probe->trigger[0] == 'f')
|
|
sigma->trigger.fallingmask |= probebit;
|
|
else if (probe->trigger[0] == 'r')
|
|
sigma->trigger.risingmask |= probebit;
|
|
else {
|
|
g_warning("Asix Sigma only supports "
|
|
"rising/falling trigger in 100 "
|
|
"and 200 MHz mode.");
|
|
return SIGROK_ERR;
|
|
}
|
|
|
|
++trigger_set;
|
|
} else {
|
|
/* Simple trigger support (event). */
|
|
if (probe->trigger[0] == '1') {
|
|
sigma->trigger.simplevalue |= probebit;
|
|
sigma->trigger.simplemask |= probebit;
|
|
}
|
|
else if (probe->trigger[0] == '0') {
|
|
sigma->trigger.simplevalue &= ~probebit;
|
|
sigma->trigger.simplemask |= probebit;
|
|
}
|
|
else if (probe->trigger[0] == 'f') {
|
|
sigma->trigger.fallingmask |= probebit;
|
|
++trigger_set;
|
|
}
|
|
else if (probe->trigger[0] == 'r') {
|
|
sigma->trigger.risingmask |= probebit;
|
|
++trigger_set;
|
|
}
|
|
|
|
/*
|
|
* Actually, Sigma supports 2 rising/falling triggers,
|
|
* but they are ORed and the current trigger syntax
|
|
* does not permit ORed triggers.
|
|
*/
|
|
if (trigger_set > 1) {
|
|
g_warning("Asix Sigma only supports 1 rising/"
|
|
"falling triggers.");
|
|
return SIGROK_ERR;
|
|
}
|
|
}
|
|
|
|
if (trigger_set)
|
|
sigma->use_triggers = 1;
|
|
}
|
|
|
|
return SIGROK_OK;
|
|
}
|
|
|
|
static void hw_closedev(int device_index)
|
|
{
|
|
struct sigrok_device_instance *sdi;
|
|
struct sigma *sigma;
|
|
|
|
if ((sdi = get_sigrok_device_instance(device_instances, device_index)))
|
|
{
|
|
sigma = sdi->priv;
|
|
if (sdi->status == ST_ACTIVE)
|
|
ftdi_usb_close(&sigma->ftdic);
|
|
|
|
sdi->status = ST_INACTIVE;
|
|
}
|
|
}
|
|
|
|
static void hw_cleanup(void)
|
|
{
|
|
GSList *l;
|
|
struct sigrok_device_instance *sdi;
|
|
|
|
/* Properly close all devices. */
|
|
for (l = device_instances; l; l = l->next) {
|
|
sdi = l->data;
|
|
if (sdi->priv != NULL)
|
|
free(sdi->priv);
|
|
sigrok_device_instance_free(sdi);
|
|
}
|
|
g_slist_free(device_instances);
|
|
device_instances = NULL;
|
|
}
|
|
|
|
static void *hw_get_device_info(int device_index, int device_info_id)
|
|
{
|
|
struct sigrok_device_instance *sdi;
|
|
struct sigma *sigma;
|
|
void *info = NULL;
|
|
|
|
if (!(sdi = get_sigrok_device_instance(device_instances, device_index))) {
|
|
fprintf(stderr, "It's NULL.\n");
|
|
return NULL;
|
|
}
|
|
|
|
sigma = sdi->priv;
|
|
|
|
switch (device_info_id) {
|
|
case DI_INSTANCE:
|
|
info = sdi;
|
|
break;
|
|
case DI_NUM_PROBES:
|
|
info = GINT_TO_POINTER(16);
|
|
break;
|
|
case DI_SAMPLERATES:
|
|
info = &samplerates;
|
|
break;
|
|
case DI_TRIGGER_TYPES:
|
|
info = (char *)TRIGGER_TYPES;
|
|
break;
|
|
case DI_CUR_SAMPLERATE:
|
|
info = &sigma->cur_samplerate;
|
|
break;
|
|
}
|
|
|
|
return info;
|
|
}
|
|
|
|
static int hw_get_status(int device_index)
|
|
{
|
|
struct sigrok_device_instance *sdi;
|
|
|
|
sdi = get_sigrok_device_instance(device_instances, device_index);
|
|
if (sdi)
|
|
return sdi->status;
|
|
else
|
|
return ST_NOT_FOUND;
|
|
}
|
|
|
|
static int *hw_get_capabilities(void)
|
|
{
|
|
return capabilities;
|
|
}
|
|
|
|
static int hw_set_configuration(int device_index, int capability, void *value)
|
|
{
|
|
struct sigrok_device_instance *sdi;
|
|
struct sigma *sigma;
|
|
int ret;
|
|
|
|
if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
|
|
return SIGROK_ERR;
|
|
|
|
sigma = sdi->priv;
|
|
|
|
if (capability == HWCAP_SAMPLERATE) {
|
|
ret = set_samplerate(sdi, *(uint64_t*) value);
|
|
} else if (capability == HWCAP_PROBECONFIG) {
|
|
ret = configure_probes(sdi, value);
|
|
} else if (capability == HWCAP_LIMIT_MSEC) {
|
|
sigma->limit_msec = *(uint64_t*) value;
|
|
if (sigma->limit_msec > 0)
|
|
ret = SIGROK_OK;
|
|
else
|
|
ret = SIGROK_ERR;
|
|
} else if (capability == HWCAP_CAPTURE_RATIO) {
|
|
sigma->capture_ratio = *(uint64_t*) value;
|
|
if (sigma->capture_ratio < 0 || sigma->capture_ratio > 100)
|
|
ret = SIGROK_ERR;
|
|
else
|
|
ret = SIGROK_OK;
|
|
} else {
|
|
ret = SIGROK_ERR;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Software trigger to determine exact trigger position. */
|
|
static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
|
|
struct sigma_trigger *t)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
if (i > 0)
|
|
last_sample = samples[i-1];
|
|
|
|
/* Simple triggers. */
|
|
if ((samples[i] & t->simplemask) != t->simplevalue)
|
|
continue;
|
|
|
|
/* Rising edge. */
|
|
if ((last_sample & t->risingmask) != 0 || (samples[i] &
|
|
t->risingmask) != t->risingmask)
|
|
continue;
|
|
|
|
/* Falling edge. */
|
|
if ((last_sample & t->fallingmask) != t->fallingmask ||
|
|
(samples[i] & t->fallingmask) != 0)
|
|
continue;
|
|
|
|
break;
|
|
}
|
|
|
|
/* If we did not match, return original trigger pos. */
|
|
return i & 0x7;
|
|
}
|
|
|
|
/*
|
|
* Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
|
|
* Each event is 20ns apart, and can contain multiple samples.
|
|
*
|
|
* For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
|
|
* For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
|
|
* For 50 MHz and below, events contain one sample for each channel,
|
|
* spread 20 ns apart.
|
|
*/
|
|
static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
|
|
uint16_t *lastsample, int triggerpos,
|
|
uint16_t limit_chunk, void *user_data)
|
|
{
|
|
struct sigrok_device_instance *sdi = user_data;
|
|
struct sigma *sigma = sdi->priv;
|
|
uint16_t tsdiff, ts;
|
|
uint16_t samples[65536 * sigma->samples_per_event];
|
|
struct datafeed_packet packet;
|
|
int i, j, k, l, numpad, tosend;
|
|
size_t n = 0, sent = 0;
|
|
int clustersize = EVENTS_PER_CLUSTER * sigma->samples_per_event;
|
|
uint16_t *event;
|
|
uint16_t cur_sample;
|
|
int triggerts = -1;
|
|
|
|
/* Check if trigger is in this chunk. */
|
|
if (triggerpos != -1) {
|
|
if (sigma->cur_samplerate <= MHZ(50))
|
|
triggerpos -= EVENTS_PER_CLUSTER - 1;
|
|
|
|
if (triggerpos < 0)
|
|
triggerpos = 0;
|
|
|
|
/* Find in which cluster the trigger occured. */
|
|
triggerts = triggerpos / 7;
|
|
}
|
|
|
|
/* For each ts. */
|
|
for (i = 0; i < 64; ++i) {
|
|
ts = *(uint16_t *) &buf[i * 16];
|
|
tsdiff = ts - *lastts;
|
|
*lastts = ts;
|
|
|
|
/* Decode partial chunk. */
|
|
if (limit_chunk && ts > limit_chunk)
|
|
return SIGROK_OK;
|
|
|
|
/* Pad last sample up to current point. */
|
|
numpad = tsdiff * sigma->samples_per_event - clustersize;
|
|
if (numpad > 0) {
|
|
for (j = 0; j < numpad; ++j)
|
|
samples[j] = *lastsample;
|
|
|
|
n = numpad;
|
|
}
|
|
|
|
/* Send samples between previous and this timestamp to sigrok. */
|
|
sent = 0;
|
|
while (sent < n) {
|
|
tosend = MIN(2048, n - sent);
|
|
|
|
packet.type = DF_LOGIC;
|
|
packet.length = tosend * sizeof(uint16_t);
|
|
packet.unitsize = 2;
|
|
packet.payload = samples + sent;
|
|
session_bus(sigma->session_id, &packet);
|
|
|
|
sent += tosend;
|
|
}
|
|
n = 0;
|
|
|
|
event = (uint16_t *) &buf[i * 16 + 2];
|
|
cur_sample = 0;
|
|
|
|
/* For each event in cluster. */
|
|
for (j = 0; j < 7; ++j) {
|
|
|
|
/* For each sample in event. */
|
|
for (k = 0; k < sigma->samples_per_event; ++k) {
|
|
cur_sample = 0;
|
|
|
|
/* For each probe. */
|
|
for (l = 0; l < sigma->num_probes; ++l)
|
|
cur_sample |= (!!(event[j] & (1 << (l *
|
|
sigma->samples_per_event
|
|
+ k))))
|
|
<< l;
|
|
|
|
samples[n++] = cur_sample;
|
|
}
|
|
}
|
|
|
|
/* Send data up to trigger point (if triggered). */
|
|
sent = 0;
|
|
if (i == triggerts) {
|
|
/*
|
|
* Trigger is not always accurate to sample because of
|
|
* pipeline delay. However, it always triggers before
|
|
* the actual event. We therefore look at the next
|
|
* samples to pinpoint the exact position of the trigger.
|
|
*/
|
|
tosend = get_trigger_offset(samples, *lastsample,
|
|
&sigma->trigger);
|
|
|
|
if (tosend > 0) {
|
|
packet.type = DF_LOGIC;
|
|
packet.length = tosend * sizeof(uint16_t);
|
|
packet.unitsize = 2;
|
|
packet.payload = samples;
|
|
session_bus(sigma->session_id, &packet);
|
|
|
|
sent += tosend;
|
|
}
|
|
|
|
/* Only send trigger if explicitly enabled. */
|
|
if (sigma->use_triggers) {
|
|
packet.type = DF_TRIGGER;
|
|
packet.length = 0;
|
|
packet.payload = 0;
|
|
session_bus(sigma->session_id, &packet);
|
|
}
|
|
}
|
|
|
|
/* Send rest of the chunk to sigrok. */
|
|
tosend = n - sent;
|
|
|
|
if (tosend > 0) {
|
|
packet.type = DF_LOGIC;
|
|
packet.length = tosend * sizeof(uint16_t);
|
|
packet.unitsize = 2;
|
|
packet.payload = samples + sent;
|
|
session_bus(sigma->session_id, &packet);
|
|
}
|
|
|
|
*lastsample = samples[n - 1];
|
|
}
|
|
|
|
return SIGROK_OK;
|
|
}
|
|
|
|
static int receive_data(int fd, int revents, void *user_data)
|
|
{
|
|
struct sigrok_device_instance *sdi = user_data;
|
|
struct sigma *sigma = sdi->priv;
|
|
struct datafeed_packet packet;
|
|
const int chunks_per_read = 32;
|
|
unsigned char buf[chunks_per_read * CHUNK_SIZE];
|
|
int bufsz, numchunks, i, newchunks;
|
|
uint64_t running_msec;
|
|
struct timeval tv;
|
|
|
|
fd = fd;
|
|
revents = revents;
|
|
|
|
numchunks = (sigma->state.stoppos + 511) / 512;
|
|
|
|
if (sigma->state.state == SIGMA_IDLE)
|
|
return FALSE;
|
|
|
|
if (sigma->state.state == SIGMA_CAPTURE) {
|
|
|
|
/* Check if the timer has expired, or memory is full. */
|
|
gettimeofday(&tv, 0);
|
|
running_msec = (tv.tv_sec - sigma->start_tv.tv_sec) * 1000 +
|
|
(tv.tv_usec - sigma->start_tv.tv_usec) / 1000;
|
|
|
|
if (running_msec < sigma->limit_msec && numchunks < 32767)
|
|
return FALSE;
|
|
|
|
hw_stop_acquisition(sdi->index, user_data);
|
|
|
|
return FALSE;
|
|
|
|
} else if (sigma->state.state == SIGMA_DOWNLOAD) {
|
|
if (sigma->state.chunks_downloaded >= numchunks) {
|
|
/* End of samples. */
|
|
packet.type = DF_END;
|
|
packet.length = 0;
|
|
session_bus(sigma->session_id, &packet);
|
|
|
|
sigma->state.state = SIGMA_IDLE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
newchunks = MIN(chunks_per_read,
|
|
numchunks - sigma->state.chunks_downloaded);
|
|
|
|
g_message("Downloading sample data: %.0f %%",
|
|
100.0 * sigma->state.chunks_downloaded / numchunks);
|
|
|
|
bufsz = sigma_read_dram(sigma->state.chunks_downloaded,
|
|
newchunks, buf, sigma);
|
|
|
|
/* Find first ts. */
|
|
if (sigma->state.chunks_downloaded == 0) {
|
|
sigma->state.lastts = *(uint16_t *) buf - 1;
|
|
sigma->state.lastsample = 0;
|
|
}
|
|
|
|
/* Decode chunks and send them to sigrok. */
|
|
for (i = 0; i < newchunks; ++i) {
|
|
int limit_chunk = 0;
|
|
|
|
/* The last chunk may potentially be only in part. */
|
|
if (sigma->state.chunks_downloaded == numchunks - 1)
|
|
{
|
|
/* Find the last valid timestamp */
|
|
limit_chunk = sigma->state.stoppos % 512 + sigma->state.lastts;
|
|
}
|
|
|
|
if (sigma->state.chunks_downloaded + i == sigma->state.triggerchunk)
|
|
decode_chunk_ts(buf + (i * CHUNK_SIZE),
|
|
&sigma->state.lastts,
|
|
&sigma->state.lastsample,
|
|
sigma->state.triggerpos & 0x1ff,
|
|
limit_chunk, user_data);
|
|
else
|
|
decode_chunk_ts(buf + (i * CHUNK_SIZE),
|
|
&sigma->state.lastts,
|
|
&sigma->state.lastsample,
|
|
-1, limit_chunk, user_data);
|
|
|
|
++sigma->state.chunks_downloaded;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Build a LUT entry used by the trigger functions. */
|
|
static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
|
|
{
|
|
int i, j, k, bit;
|
|
|
|
/* For each quad probe. */
|
|
for (i = 0; i < 4; ++i) {
|
|
entry[i] = 0xffff;
|
|
|
|
/* For each bit in LUT. */
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
/* For each probe in quad. */
|
|
for (k = 0; k < 4; ++k) {
|
|
bit = 1 << (i * 4 + k);
|
|
|
|
/* Set bit in entry */
|
|
if ((mask & bit) &&
|
|
((!(value & bit)) !=
|
|
(!(j & (1 << k)))))
|
|
entry[i] &= ~(1 << j);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Add a logical function to LUT mask. */
|
|
static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
|
|
int index, int neg, uint16_t *mask)
|
|
{
|
|
int i, j;
|
|
int x[2][2], tmp, a, b, aset, bset, rset;
|
|
|
|
memset(x, 0, 4 * sizeof(int));
|
|
|
|
/* Trigger detect condition. */
|
|
switch (oper) {
|
|
case OP_LEVEL:
|
|
x[0][1] = 1;
|
|
x[1][1] = 1;
|
|
break;
|
|
case OP_NOT:
|
|
x[0][0] = 1;
|
|
x[1][0] = 1;
|
|
break;
|
|
case OP_RISE:
|
|
x[0][1] = 1;
|
|
break;
|
|
case OP_FALL:
|
|
x[1][0] = 1;
|
|
break;
|
|
case OP_RISEFALL:
|
|
x[0][1] = 1;
|
|
x[1][0] = 1;
|
|
break;
|
|
case OP_NOTRISE:
|
|
x[1][1] = 1;
|
|
x[0][0] = 1;
|
|
x[1][0] = 1;
|
|
break;
|
|
case OP_NOTFALL:
|
|
x[1][1] = 1;
|
|
x[0][0] = 1;
|
|
x[0][1] = 1;
|
|
break;
|
|
case OP_NOTRISEFALL:
|
|
x[1][1] = 1;
|
|
x[0][0] = 1;
|
|
break;
|
|
}
|
|
|
|
/* Transpose if neg is set. */
|
|
if (neg) {
|
|
for (i = 0; i < 2; ++i)
|
|
for (j = 0; j < 2; ++j) {
|
|
tmp = x[i][j];
|
|
x[i][j] = x[1-i][1-j];
|
|
x[1-i][1-j] = tmp;
|
|
}
|
|
}
|
|
|
|
/* Update mask with function. */
|
|
for (i = 0; i < 16; ++i) {
|
|
a = (i >> (2 * index + 0)) & 1;
|
|
b = (i >> (2 * index + 1)) & 1;
|
|
|
|
aset = (*mask >> i) & 1;
|
|
bset = x[b][a];
|
|
|
|
if (func == FUNC_AND || func == FUNC_NAND)
|
|
rset = aset & bset;
|
|
else if (func == FUNC_OR || func == FUNC_NOR)
|
|
rset = aset | bset;
|
|
else if (func == FUNC_XOR || func == FUNC_NXOR)
|
|
rset = aset ^ bset;
|
|
|
|
if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
|
|
rset = !rset;
|
|
|
|
*mask &= ~(1 << i);
|
|
|
|
if (rset)
|
|
*mask |= 1 << i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build trigger LUTs used by 50 MHz and lower sample rates for supporting
|
|
* simple pin change and state triggers. Only two transitions (rise/fall) can be
|
|
* set at any time, but a full mask and value can be set (0/1).
|
|
*/
|
|
static int build_basic_trigger(struct triggerlut *lut, struct sigma *sigma)
|
|
{
|
|
int i,j;
|
|
uint16_t masks[2] = { 0, 0 };
|
|
|
|
memset(lut, 0, sizeof(struct triggerlut));
|
|
|
|
/* Contant for simple triggers. */
|
|
lut->m4 = 0xa000;
|
|
|
|
/* Value/mask trigger support. */
|
|
build_lut_entry(sigma->trigger.simplevalue, sigma->trigger.simplemask,
|
|
lut->m2d);
|
|
|
|
/* Rise/fall trigger support. */
|
|
for (i = 0, j = 0; i < 16; ++i) {
|
|
if (sigma->trigger.risingmask & (1 << i) ||
|
|
sigma->trigger.fallingmask & (1 << i))
|
|
masks[j++] = 1 << i;
|
|
}
|
|
|
|
build_lut_entry(masks[0], masks[0], lut->m0d);
|
|
build_lut_entry(masks[1], masks[1], lut->m1d);
|
|
|
|
/* Add glue logic */
|
|
if (masks[0] || masks[1]) {
|
|
/* Transition trigger. */
|
|
if (masks[0] & sigma->trigger.risingmask)
|
|
add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
|
|
if (masks[0] & sigma->trigger.fallingmask)
|
|
add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
|
|
if (masks[1] & sigma->trigger.risingmask)
|
|
add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
|
|
if (masks[1] & sigma->trigger.fallingmask)
|
|
add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
|
|
} else {
|
|
/* Only value/mask trigger. */
|
|
lut->m3 = 0xffff;
|
|
}
|
|
|
|
/* Triggertype: event. */
|
|
lut->params.selres = 3;
|
|
|
|
return SIGROK_OK;
|
|
}
|
|
|
|
static int hw_start_acquisition(int device_index, gpointer session_device_id)
|
|
{
|
|
struct sigrok_device_instance *sdi;
|
|
struct sigma *sigma;
|
|
struct datafeed_packet packet;
|
|
struct datafeed_header header;
|
|
struct clockselect_50 clockselect;
|
|
int frac;
|
|
uint8_t triggerselect;
|
|
struct triggerinout triggerinout_conf;
|
|
struct triggerlut lut;
|
|
int triggerpin;
|
|
|
|
session_device_id = session_device_id;
|
|
|
|
if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
|
|
return SIGROK_ERR;
|
|
|
|
sigma = sdi->priv;
|
|
|
|
/* If the samplerate has not been set, default to 200 KHz. */
|
|
if (sigma->cur_firmware == -1)
|
|
set_samplerate(sdi, KHZ(200));
|
|
|
|
/* Enter trigger programming mode. */
|
|
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, sigma);
|
|
|
|
/* 100 and 200 MHz mode. */
|
|
if (sigma->cur_samplerate >= MHZ(100)) {
|
|
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, sigma);
|
|
|
|
/* Find which pin to trigger on from mask. */
|
|
for (triggerpin = 0; triggerpin < 8; ++triggerpin)
|
|
if ((sigma->trigger.risingmask | sigma->trigger.fallingmask) &
|
|
(1 << triggerpin))
|
|
break;
|
|
|
|
/* Set trigger pin and light LED on trigger. */
|
|
triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
|
|
|
|
/* Default rising edge. */
|
|
if (sigma->trigger.fallingmask)
|
|
triggerselect |= 1 << 3;
|
|
|
|
/* All other modes. */
|
|
} else if (sigma->cur_samplerate <= MHZ(50)) {
|
|
build_basic_trigger(&lut, sigma);
|
|
|
|
sigma_write_trigger_lut(&lut, sigma);
|
|
|
|
triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
|
|
}
|
|
|
|
/* Setup trigger in and out pins to default values. */
|
|
memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
|
|
triggerinout_conf.trgout_bytrigger = 1;
|
|
triggerinout_conf.trgout_enable = 1;
|
|
|
|
sigma_write_register(WRITE_TRIGGER_OPTION,
|
|
(uint8_t *) &triggerinout_conf,
|
|
sizeof(struct triggerinout), sigma);
|
|
|
|
/* Go back to normal mode. */
|
|
sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, sigma);
|
|
|
|
/* Set clock select register. */
|
|
if (sigma->cur_samplerate == MHZ(200))
|
|
/* Enable 4 probes. */
|
|
sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, sigma);
|
|
else if (sigma->cur_samplerate == MHZ(100))
|
|
/* Enable 8 probes. */
|
|
sigma_set_register(WRITE_CLOCK_SELECT, 0x00, sigma);
|
|
else {
|
|
/*
|
|
* 50 MHz mode (or fraction thereof). Any fraction down to
|
|
* 50 MHz / 256 can be used, but is not supported by sigrok API.
|
|
*/
|
|
frac = MHZ(50) / sigma->cur_samplerate - 1;
|
|
|
|
clockselect.async = 0;
|
|
clockselect.fraction = frac;
|
|
clockselect.disabled_probes = 0;
|
|
|
|
sigma_write_register(WRITE_CLOCK_SELECT,
|
|
(uint8_t *) &clockselect,
|
|
sizeof(clockselect), sigma);
|
|
}
|
|
|
|
/* Setup maximum post trigger time. */
|
|
sigma_set_register(WRITE_POST_TRIGGER,
|
|
(sigma->capture_ratio * 255) / 100, sigma);
|
|
|
|
/* Start acqusition. */
|
|
gettimeofday(&sigma->start_tv, 0);
|
|
sigma_set_register(WRITE_MODE, 0x0d, sigma);
|
|
|
|
sigma->session_id = session_device_id;
|
|
|
|
/* Send header packet to the session bus. */
|
|
packet.type = DF_HEADER;
|
|
packet.length = sizeof(struct datafeed_header);
|
|
packet.payload = &header;
|
|
header.feed_version = 1;
|
|
gettimeofday(&header.starttime, NULL);
|
|
header.samplerate = sigma->cur_samplerate;
|
|
header.protocol_id = PROTO_RAW;
|
|
header.num_logic_probes = sigma->num_probes;
|
|
header.num_analog_probes = 0;
|
|
session_bus(session_device_id, &packet);
|
|
|
|
/* Add capture source. */
|
|
source_add(0, G_IO_IN, 10, receive_data, sdi);
|
|
|
|
sigma->state.state = SIGMA_CAPTURE;
|
|
|
|
return SIGROK_OK;
|
|
}
|
|
|
|
static void hw_stop_acquisition(int device_index, gpointer session_device_id)
|
|
{
|
|
struct sigrok_device_instance *sdi;
|
|
struct sigma *sigma;
|
|
uint8_t modestatus;
|
|
|
|
if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
|
|
return;
|
|
|
|
sigma = sdi->priv;
|
|
|
|
session_device_id = session_device_id;
|
|
|
|
/* Stop acquisition. */
|
|
sigma_set_register(WRITE_MODE, 0x11, sigma);
|
|
|
|
/* Set SDRAM Read Enable. */
|
|
sigma_set_register(WRITE_MODE, 0x02, sigma);
|
|
|
|
/* Get the current position. */
|
|
sigma_read_pos(&sigma->state.stoppos, &sigma->state.triggerpos, sigma);
|
|
|
|
/* Check if trigger has fired. */
|
|
modestatus = sigma_get_register(READ_MODE, sigma);
|
|
if (modestatus & 0x20) {
|
|
sigma->state.triggerchunk = sigma->state.triggerpos / 512;
|
|
|
|
} else
|
|
sigma->state.triggerchunk = -1;
|
|
|
|
sigma->state.chunks_downloaded = 0;
|
|
|
|
sigma->state.state = SIGMA_DOWNLOAD;
|
|
}
|
|
|
|
struct device_plugin asix_sigma_plugin_info = {
|
|
"asix-sigma",
|
|
1,
|
|
hw_init,
|
|
hw_cleanup,
|
|
hw_opendev,
|
|
hw_closedev,
|
|
hw_get_device_info,
|
|
hw_get_status,
|
|
hw_get_capabilities,
|
|
hw_set_configuration,
|
|
hw_start_acquisition,
|
|
hw_stop_acquisition,
|
|
};
|