libsigrok/hardware/hameg-hmo/api.c

968 lines
22 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 poljar (Damir Jelić) <poljarinho@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <glib/gstdio.h>
#include "protocol.h"
#define SERIALCOMM "115200/8n1/flow=1"
SR_PRIV struct sr_dev_driver hameg_hmo_driver_info;
static struct sr_dev_driver *di = &hameg_hmo_driver_info;
static const char *manufacturers[] = {
"HAMEG",
};
static const int32_t hwopts[] = {
SR_CONF_CONN,
SR_CONF_SERIALCOMM,
};
struct usb_id_info {
uint16_t vendor_id;
uint16_t product_id;
};
static struct usb_id_info ho_models[] = {
{ 0x0403, 0xed72 }, /* HO720 */
{ 0x0403, 0xed73 }, /* HO730 */
};
enum {
PG_INVALID = -1,
PG_NONE,
PG_ANALOG,
PG_DIGITAL,
};
static int init(struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
/**
* Find USB serial devices via the USB vendor ID and product ID.
*
* @param vendor_id Vendor ID of the USB device.
* @param product_id Product ID of the USB device.
*
* @return A GSList of strings containing the path of the serial device or
* NULL if no serial device is found. The returned list must be freed
* by the caller.
*/
static GSList *auto_find_usb(uint16_t vendor_id, uint16_t product_id)
{
#ifdef __linux__
const gchar *usb_dev;
const char device_tree[] = "/sys/bus/usb/devices/";
GDir *devices_dir, *device_dir;
GSList *l = NULL;
GSList *tty_devs;
GSList *matched_paths;
FILE *fd;
char tmp[5];
gchar *vendor_path, *product_path, *path_copy;
gchar *prefix, *subdir_path, *device_path, *tty_path;
unsigned long read_vendor_id, read_product_id;
const char *file;
l = NULL;
tty_devs = NULL;
matched_paths = NULL;
if (!(devices_dir = g_dir_open(device_tree, 0, NULL)))
return NULL;
/*
* Find potential candidates using the vendor ID and product ID
* and store them in matched_paths.
*/
while ((usb_dev = g_dir_read_name(devices_dir))) {
vendor_path = g_strconcat(device_tree,
usb_dev, "/idVendor", NULL);
product_path = g_strconcat(device_tree,
usb_dev, "/idProduct", NULL);
if (!g_file_test(vendor_path, G_FILE_TEST_EXISTS) ||
!g_file_test(product_path, G_FILE_TEST_EXISTS))
goto skip_device;
if ((fd = g_fopen(vendor_path, "r")) == NULL)
goto skip_device;
if (fgets(tmp, sizeof(tmp), fd) == NULL) {
fclose(fd);
goto skip_device;
}
read_vendor_id = strtoul(tmp, NULL, 16);
fclose(fd);
if ((fd = g_fopen(product_path, "r")) == NULL)
goto skip_device;
if (fgets(tmp, sizeof(tmp), fd) == NULL) {
fclose(fd);
goto skip_device;
}
read_product_id = strtoul(tmp, NULL, 16);
fclose(fd);
if (vendor_id == read_vendor_id &&
product_id == read_product_id) {
path_copy = g_strdup(usb_dev);
matched_paths = g_slist_prepend(matched_paths,
path_copy);
}
skip_device:
g_free(vendor_path);
g_free(product_path);
}
g_dir_close(devices_dir);
/* For every matched device try to find a ttyUSBX subfolder. */
for (l = matched_paths; l; l = l->next) {
subdir_path = NULL;
device_path = g_strconcat(device_tree, l->data, NULL);
if (!(device_dir = g_dir_open(device_path, 0, NULL))) {
g_free(device_path);
continue;
}
prefix = g_strconcat(l->data, ":", NULL);
while ((file = g_dir_read_name(device_dir))) {
if (g_str_has_prefix(file, prefix)) {
subdir_path = g_strconcat(device_path,
"/", file, NULL);
break;
}
}
g_dir_close(device_dir);
g_free(prefix);
g_free(device_path);
if (subdir_path) {
if (!(device_dir = g_dir_open(subdir_path, 0, NULL))) {
g_free(subdir_path);
continue;
}
g_free(subdir_path);
while ((file = g_dir_read_name(device_dir))) {
if (g_str_has_prefix(file, "ttyUSB")) {
tty_path = g_strconcat("/dev/",
file, NULL);
sr_dbg("Found USB device %04x:%04x attached to %s.",
vendor_id, product_id, tty_path);
tty_devs = g_slist_prepend(tty_devs,
tty_path);
break;
}
}
g_dir_close(device_dir);
}
}
g_slist_free_full(matched_paths, g_free);
return tty_devs;
#else
(void)vendor_id;
(void)product_id;
return NULL;
#endif
}
static int check_manufacturer(const char *manufacturer)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(manufacturers); ++i)
if (!strcmp(manufacturer, manufacturers[i]))
return SR_OK;
return SR_ERR;
}
static struct sr_dev_inst *hmo_probe_serial_device(const char *serial_device,
const char *serial_options)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct sr_scpi_hw_info *hw_info;
struct sr_scpi_dev_inst *scpi;
sdi = NULL;
devc = NULL;
scpi = NULL;
hw_info = NULL;
if (!(scpi = scpi_dev_inst_new(di->priv, serial_device, serial_options)))
goto fail;
sr_info("Probing %s.", serial_device);
if (sr_scpi_open(scpi) != SR_OK)
goto fail;
if (sr_scpi_get_hw_id(scpi, &hw_info) != SR_OK) {
sr_info("Couldn't get IDN response.");
goto fail;
}
if (check_manufacturer(hw_info->manufacturer) != SR_OK)
goto fail;
if (!(sdi = sr_dev_inst_new(0, SR_ST_ACTIVE,
hw_info->manufacturer, hw_info->model,
hw_info->firmware_version))) {
goto fail;
}
sr_scpi_hw_info_free(hw_info);
hw_info = NULL;
if (!(devc = g_try_malloc0(sizeof(struct dev_context))))
goto fail;
sdi->driver = di;
sdi->priv = devc;
sdi->inst_type = SR_INST_SCPI;
sdi->conn = scpi;
if (hmo_init_device(sdi) != SR_OK)
goto fail;
sr_scpi_close(sdi->conn);
sdi->status = SR_ST_INACTIVE;
return sdi;
fail:
if (hw_info)
sr_scpi_hw_info_free(hw_info);
if (scpi)
sr_scpi_free(scpi);
if (sdi)
sr_dev_inst_free(sdi);
if (devc)
g_free(devc);
return NULL;
}
static GSList *scan(GSList *options)
{
GSList *devices;
struct drv_context *drvc;
struct sr_dev_inst *sdi;
const char *serial_device, *serial_options;
GSList *l, *tty_devs;
unsigned int i;
serial_device = NULL;
serial_options = SERIALCOMM;
sdi = NULL;
devices = NULL;
drvc = di->priv;
drvc->instances = NULL;
if (sr_serial_extract_options(options, &serial_device,
&serial_options) == SR_OK) {
sdi = hmo_probe_serial_device(serial_device, serial_options);
if (sdi != NULL) {
devices = g_slist_append(devices, sdi);
drvc->instances = g_slist_append(drvc->instances, sdi);
}
} else {
tty_devs = NULL;
for (i = 0; i < ARRAY_SIZE(ho_models); i++) {
if ((l = auto_find_usb(ho_models[i].vendor_id,
ho_models[i].product_id)) == NULL)
continue;
tty_devs = g_slist_concat(tty_devs, l);
}
for (l = tty_devs; l; l = l->next) {
sdi = hmo_probe_serial_device(l->data, serial_options);
if (sdi != NULL) {
devices = g_slist_append(devices, sdi);
drvc->instances = g_slist_append(drvc->instances, sdi);
}
}
g_slist_free_full(tty_devs, g_free);
}
return devices;
}
static GSList *dev_list(void)
{
return ((struct drv_context *)(di->priv))->instances;
}
static void clear_helper(void *priv)
{
unsigned int i;
struct dev_context *devc;
struct scope_config *model;
devc = priv;
model = devc->model_config;
hmo_scope_state_free(devc->model_state);
for (i = 0; i < model->analog_channels; ++i)
g_slist_free(devc->analog_groups[i].probes);
for (i = 0; i < model->digital_pods; ++i) {
g_slist_free(devc->digital_groups[i].probes);
g_free(devc->digital_groups[i].name);
}
g_free(devc->analog_groups);
g_free(devc->digital_groups);
g_free(devc);
}
static int dev_clear(void)
{
return std_dev_clear(di, clear_helper);
}
static int dev_open(struct sr_dev_inst *sdi)
{
if (sdi->status != SR_ST_ACTIVE && sr_scpi_open(sdi->conn) != SR_OK)
return SR_ERR;
if (hmo_scope_state_get(sdi) != SR_OK)
return SR_ERR;
sdi->status = SR_ST_ACTIVE;
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
if (sdi->status == SR_ST_INACTIVE)
return SR_OK;
sr_scpi_close(sdi->conn);
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int cleanup(void)
{
dev_clear();
return SR_OK;
}
static int check_probe_group(struct dev_context *devc,
const struct sr_probe_group *probe_group)
{
unsigned int i;
struct scope_config *model;
model = devc->model_config;
if (!probe_group)
return PG_NONE;
for (i = 0; i < model->analog_channels; ++i)
if (probe_group == &devc->analog_groups[i])
return PG_ANALOG;
for (i = 0; i < model->digital_pods; ++i)
if (probe_group == &devc->digital_groups[i])
return PG_DIGITAL;
sr_err("Invalid probe group specified.");
return PG_INVALID;
}
static int config_get(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
int ret, pg_type;
unsigned int i;
struct dev_context *devc;
struct scope_config *model;
struct scope_state *state;
if (!sdi || !(devc = sdi->priv))
return SR_ERR_ARG;
if ((pg_type = check_probe_group(devc, probe_group)) == PG_INVALID)
return SR_ERR;
ret = SR_ERR_NA;
model = devc->model_config;
state = devc->model_state;
switch (key) {
case SR_CONF_NUM_TIMEBASE:
*data = g_variant_new_int32(model->num_xdivs);
ret = SR_OK;
break;
case SR_CONF_NUM_VDIV:
if (pg_type == PG_NONE) {
sr_err("No probe group specified.");
return SR_ERR_PROBE_GROUP;
} else if (pg_type == PG_ANALOG) {
for (i = 0; i < model->analog_channels; ++i) {
if (probe_group != &devc->analog_groups[i])
continue;
*data = g_variant_new_int32(model->num_ydivs);
ret = SR_OK;
break;
}
} else {
ret = SR_ERR_NA;
}
break;
case SR_CONF_TRIGGER_SOURCE:
*data = g_variant_new_string((*model->trigger_sources)[state->trigger_source]);
ret = SR_OK;
break;
case SR_CONF_COUPLING:
if (pg_type == PG_NONE) {
sr_err("No probe group specified.");
return SR_ERR_PROBE_GROUP;
} else if (pg_type == PG_ANALOG) {
for (i = 0; i < model->analog_channels; ++i) {
if (probe_group != &devc->analog_groups[i])
continue;
*data = g_variant_new_string((*model->coupling_options)[state->analog_channels[i].coupling]);
ret = SR_OK;
break;
}
} else {
ret = SR_ERR_NA;
}
break;
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(state->sample_rate);
ret = SR_OK;
break;
default:
ret = SR_ERR_NA;
}
return ret;
}
static GVariant *build_tuples(const uint64_t (*array)[][2], unsigned int n)
{
unsigned int i;
GVariant *rational[2];
GVariantBuilder gvb;
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
for (i = 0; i < n; i++) {
rational[0] = g_variant_new_uint64((*array)[i][0]);
rational[1] = g_variant_new_uint64((*array)[i][1]);
/* FIXME: Valgrind reports a memory leak here. */
g_variant_builder_add_value(&gvb, g_variant_new_tuple(rational, 2));
}
return g_variant_builder_end(&gvb);
}
static int config_set(int key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
int ret, pg_type;
unsigned int i, j;
char command[MAX_COMMAND_SIZE], float_str[30];
struct dev_context *devc;
struct scope_config *model;
struct scope_state *state;
const char *tmp;
uint64_t p, q;
double tmp_d;
gboolean update_sample_rate;
if (!sdi || !(devc = sdi->priv))
return SR_ERR_ARG;
if ((pg_type = check_probe_group(devc, probe_group)) == PG_INVALID)
return SR_ERR;
model = devc->model_config;
state = devc->model_state;
update_sample_rate = FALSE;
ret = SR_ERR_NA;
switch (key) {
case SR_CONF_LIMIT_FRAMES:
devc->frame_limit = g_variant_get_uint64(data);
ret = SR_OK;
break;
case SR_CONF_TRIGGER_SOURCE:
tmp = g_variant_get_string(data, NULL);
for (i = 0; (*model->trigger_sources)[i]; i++) {
if (g_strcmp0(tmp, (*model->trigger_sources)[i]) != 0)
continue;
state->trigger_source = i;
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_TRIGGER_SOURCE],
(*model->trigger_sources)[i]);
ret = sr_scpi_send(sdi->conn, command);
break;
}
break;
case SR_CONF_VDIV:
if (pg_type == PG_NONE) {
sr_err("No probe group specified.");
return SR_ERR_PROBE_GROUP;
}
g_variant_get(data, "(tt)", &p, &q);
for (i = 0; i < model->num_vdivs; i++) {
if (p != (*model->vdivs)[i][0] ||
q != (*model->vdivs)[i][1])
continue;
for (j = 1; j <= model->analog_channels; ++j) {
if (probe_group != &devc->analog_groups[j - 1])
continue;
state->analog_channels[j - 1].vdiv = i;
g_ascii_formatd(float_str, sizeof(float_str), "%E", (float) p / q);
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_VERTICAL_DIV],
j, float_str);
if (sr_scpi_send(sdi->conn, command) != SR_OK ||
sr_scpi_get_opc(sdi->conn) != SR_OK)
return SR_ERR;
break;
}
ret = SR_OK;
break;
}
break;
case SR_CONF_TIMEBASE:
g_variant_get(data, "(tt)", &p, &q);
for (i = 0; i < model->num_timebases; i++) {
if (p != (*model->timebases)[i][0] ||
q != (*model->timebases)[i][1])
continue;
state->timebase = i;
g_ascii_formatd(float_str, sizeof(float_str), "%E", (float) p / q);
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_TIMEBASE],
float_str);
ret = sr_scpi_send(sdi->conn, command);
update_sample_rate = TRUE;
break;
}
break;
case SR_CONF_HORIZ_TRIGGERPOS:
tmp_d = g_variant_get_double(data);
if (tmp_d < 0.0 || tmp_d > 1.0)
return SR_ERR;
state->horiz_triggerpos = -(tmp_d - 0.5) * state->timebase * model->num_xdivs;
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_HORIZ_TRIGGERPOS],
state->horiz_triggerpos);
ret = sr_scpi_send(sdi->conn, command);
break;
case SR_CONF_TRIGGER_SLOPE:
tmp = g_variant_get_string(data, NULL);
if (!tmp || !(tmp[0] == 'f' || tmp[0] == 'r'))
return SR_ERR_ARG;
state->trigger_slope = (tmp[0] == 'r') ? 0 : 1;
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_TRIGGER_SLOPE],
(state->trigger_slope == 0) ? "POS" : "NEG");
ret = sr_scpi_send(sdi->conn, command);
break;
case SR_CONF_COUPLING:
if (pg_type == PG_NONE) {
sr_err("No probe group specified.");
return SR_ERR_PROBE_GROUP;
}
tmp = g_variant_get_string(data, NULL);
for (i = 0; (*model->coupling_options)[i]; i++) {
if (strcmp(tmp, (*model->coupling_options)[i]) != 0)
continue;
for (j = 1; j <= model->analog_channels; ++j) {
if (probe_group != &devc->analog_groups[j - 1])
continue;
state->analog_channels[j-1].coupling = i;
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_COUPLING],
j, tmp);
if (sr_scpi_send(sdi->conn, command) != SR_OK ||
sr_scpi_get_opc(sdi->conn) != SR_OK)
return SR_ERR;
break;
}
ret = SR_OK;
break;
}
break;
default:
ret = SR_ERR_NA;
break;
}
if (ret == SR_OK)
ret = sr_scpi_get_opc(sdi->conn);
if (ret == SR_OK && update_sample_rate)
ret = hmo_update_sample_rate(sdi);
return ret;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
int pg_type;
struct dev_context *devc;
struct scope_config *model;
if (!sdi || !(devc = sdi->priv))
return SR_ERR_ARG;
if ((pg_type = check_probe_group(devc, probe_group)) == PG_INVALID)
return SR_ERR;
model = devc->model_config;
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
if (pg_type == PG_NONE) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
model->hw_caps, model->num_hwcaps,
sizeof(int32_t));
} else if (pg_type == PG_ANALOG) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
model->analog_hwcaps, model->num_analog_hwcaps,
sizeof(int32_t));
} else {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
NULL, 0, sizeof(int32_t));
}
break;
case SR_CONF_COUPLING:
if (pg_type == PG_NONE)
return SR_ERR_PROBE_GROUP;
*data = g_variant_new_strv(*model->coupling_options,
g_strv_length((char **)*model->coupling_options));
break;
case SR_CONF_TRIGGER_SOURCE:
*data = g_variant_new_strv(*model->trigger_sources,
g_strv_length((char **)*model->trigger_sources));
break;
case SR_CONF_TIMEBASE:
*data = build_tuples(model->timebases, model->num_timebases);
break;
case SR_CONF_VDIV:
if (pg_type == PG_NONE)
return SR_ERR_PROBE_GROUP;
*data = build_tuples(model->vdivs, model->num_vdivs);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
SR_PRIV int hmo_request_data(const struct sr_dev_inst *sdi)
{
char command[MAX_COMMAND_SIZE];
struct sr_probe *probe;
struct dev_context *devc;
struct scope_config *model;
devc = sdi->priv;
model = devc->model_config;
probe = devc->current_probe->data;
switch (probe->type) {
case SR_PROBE_ANALOG:
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_GET_ANALOG_DATA],
probe->index + 1);
break;
case SR_PROBE_LOGIC:
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_GET_DIG_DATA],
probe->index < 8 ? 1 : 2);
break;
default:
sr_err("Invalid probe type.");
break;
}
return sr_scpi_send(sdi->conn, command);
}
static int hmo_check_probes(GSList *probes)
{
GSList *l;
struct sr_probe *probe;
gboolean enabled_pod1, enabled_pod2, enabled_chan3, enabled_chan4;
enabled_pod1 = enabled_pod2 = enabled_chan3 = enabled_chan4 = FALSE;
for (l = probes; l; l = l->next) {
probe = l->data;
switch (probe->type) {
case SR_PROBE_ANALOG:
if (probe->index == 2)
enabled_chan3 = TRUE;
else if (probe->index == 3)
enabled_chan4 = TRUE;
break;
case SR_PROBE_LOGIC:
if (probe->index < 8)
enabled_pod1 = TRUE;
else
enabled_pod2 = TRUE;
break;
default:
return SR_ERR;
}
}
if ((enabled_pod1 && enabled_chan3) ||
(enabled_pod2 && enabled_chan4))
return SR_ERR;
return SR_OK;
}
static int hmo_setup_probes(const struct sr_dev_inst *sdi)
{
GSList *l;
unsigned int i;
gboolean *pod_enabled, setup_changed;
char command[MAX_COMMAND_SIZE];
struct scope_state *state;
struct scope_config *model;
struct sr_probe *probe;
struct dev_context *devc;
struct sr_scpi_dev_inst *scpi;
devc = sdi->priv;
scpi = sdi->conn;
state = devc->model_state;
model = devc->model_config;
setup_changed = FALSE;
pod_enabled = g_try_malloc0(sizeof(gboolean) * model->digital_pods);
for (l = sdi->probes; l; l = l->next) {
probe = l->data;
switch (probe->type) {
case SR_PROBE_ANALOG:
if (probe->enabled == state->analog_channels[probe->index].state)
break;
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_ANALOG_CHAN_STATE],
probe->index + 1, probe->enabled);
if (sr_scpi_send(scpi, command) != SR_OK)
return SR_ERR;
state->analog_channels[probe->index].state = probe->enabled;
setup_changed = TRUE;
break;
case SR_PROBE_LOGIC:
/*
* A digital POD needs to be enabled for every group of
* 8 probes.
*/
if (probe->enabled)
pod_enabled[probe->index < 8 ? 0 : 1] = TRUE;
if (probe->enabled == state->digital_channels[probe->index])
break;
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_DIG_CHAN_STATE],
probe->index, probe->enabled);
if (sr_scpi_send(scpi, command) != SR_OK)
return SR_ERR;
state->digital_channels[probe->index] = probe->enabled;
setup_changed = TRUE;
break;
default:
return SR_ERR;
}
}
for (i = 1; i <= model->digital_pods; ++i) {
if (state->digital_pods[i - 1] == pod_enabled[i - 1])
continue;
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_DIG_POD_STATE],
i, pod_enabled[i - 1]);
if (sr_scpi_send(scpi, command) != SR_OK)
return SR_ERR;
state->digital_pods[i - 1] = pod_enabled[i - 1];
setup_changed = TRUE;
}
g_free(pod_enabled);
if (setup_changed && hmo_update_sample_rate(sdi) != SR_OK)
return SR_ERR;
return SR_OK;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
GSList *l;
gboolean digital_added;
struct sr_probe *probe;
struct dev_context *devc;
struct sr_scpi_dev_inst *scpi;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
scpi = sdi->conn;
devc = sdi->priv;
digital_added = FALSE;
for (l = sdi->probes; l; l = l->next) {
probe = l->data;
if (!probe->enabled)
continue;
/* Only add a single digital probe. */
if (probe->type != SR_PROBE_LOGIC || !digital_added) {
devc->enabled_probes = g_slist_append(
devc->enabled_probes, probe);
if (probe->type == SR_PROBE_LOGIC)
digital_added = TRUE;
}
}
if (!devc->enabled_probes)
return SR_ERR;
if (hmo_check_probes(devc->enabled_probes) != SR_OK) {
sr_err("Invalid probe configuration specified!");
return SR_ERR_NA;
}
if (hmo_setup_probes(sdi) != SR_OK) {
sr_err("Failed to setup probe configuration!");
return SR_ERR;
}
sr_scpi_source_add(scpi, G_IO_IN, 50, hmo_receive_data, (void *)sdi);
/* Send header packet to the session bus. */
std_session_send_df_header(cb_data, LOG_PREFIX);
devc->current_probe = devc->enabled_probes;
return hmo_request_data(sdi);
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
struct sr_scpi_dev_inst *scpi;
struct sr_datafeed_packet packet;
(void)cb_data;
packet.type = SR_DF_END;
packet.payload = NULL;
sr_session_send(sdi, &packet);
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
devc->num_frames = 0;
g_slist_free(devc->enabled_probes);
devc->enabled_probes = NULL;
scpi = sdi->conn;
sr_scpi_source_remove(scpi);
return SR_OK;
}
SR_PRIV struct sr_dev_driver hameg_hmo_driver_info = {
.name = "hameg-hmo",
.longname = "Hameg HMO",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};