716 lines
20 KiB
C
716 lines
20 KiB
C
/*
|
|
* This file is part of the libsigrok project.
|
|
*
|
|
* Copyright (C) 2015 Uwe Hermann <uwe@hermann-uwe.de>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <check.h>
|
|
#include <libsigrok/libsigrok.h>
|
|
#include "lib.h"
|
|
|
|
/*
|
|
* This test sequence cannot use internal helpers, since it's limited
|
|
* to the library's public API (by design). That is why there are local
|
|
* helper routines for endianess handling.
|
|
*/
|
|
|
|
static int host_be;
|
|
|
|
static void get_host_endianess(void)
|
|
{
|
|
int x;
|
|
uint8_t *p;
|
|
|
|
p = (void *)&x;
|
|
x = 1;
|
|
host_be = *p ? 0 : 1;
|
|
}
|
|
|
|
static void swap_bytes(uint8_t *buff, size_t blen)
|
|
{
|
|
size_t idx;
|
|
uint8_t tmp;
|
|
|
|
for (idx = 0; idx < blen / 2; idx++) {
|
|
tmp = buff[blen - 1 - idx];
|
|
buff[blen - 1 - idx] = buff[idx];
|
|
buff[idx] = tmp;
|
|
}
|
|
}
|
|
|
|
static int sr_analog_init_(struct sr_datafeed_analog *analog,
|
|
struct sr_analog_encoding *encoding,
|
|
struct sr_analog_meaning *meaning,
|
|
struct sr_analog_spec *spec,
|
|
int digits)
|
|
{
|
|
memset(analog, 0, sizeof(*analog));
|
|
memset(encoding, 0, sizeof(*encoding));
|
|
memset(meaning, 0, sizeof(*meaning));
|
|
memset(spec, 0, sizeof(*spec));
|
|
|
|
analog->encoding = encoding;
|
|
analog->meaning = meaning;
|
|
analog->spec = spec;
|
|
|
|
encoding->unitsize = sizeof(float);
|
|
encoding->is_float = TRUE;
|
|
#ifdef WORDS_BIGENDIAN
|
|
encoding->is_bigendian = TRUE;
|
|
#else
|
|
encoding->is_bigendian = FALSE;
|
|
#endif
|
|
encoding->digits = digits;
|
|
encoding->is_digits_decimal = TRUE;
|
|
encoding->scale.p = 1;
|
|
encoding->scale.q = 1;
|
|
encoding->offset.p = 0;
|
|
encoding->offset.q = 1;
|
|
|
|
spec->spec_digits = digits;
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
START_TEST(test_analog_to_float)
|
|
{
|
|
int ret;
|
|
unsigned int i;
|
|
float f, fout;
|
|
struct sr_channel ch;
|
|
struct sr_datafeed_analog analog;
|
|
struct sr_analog_encoding encoding;
|
|
struct sr_analog_meaning meaning;
|
|
struct sr_analog_spec spec;
|
|
const float v[] = {-12.9, -333.999, 0, 3.1415, 29.7, 989898.121212};
|
|
|
|
sr_analog_init_(&analog, &encoding, &meaning, &spec, 3);
|
|
analog.num_samples = 1;
|
|
analog.data = &f;
|
|
meaning.channels = g_slist_append(NULL, &ch);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(v); i++) {
|
|
fout = 19;
|
|
f = v[i];
|
|
ret = sr_analog_to_float(&analog, &fout);
|
|
fail_unless(ret == SR_OK, "sr_analog_to_float() failed: %d.", ret);
|
|
fail_unless(fabs(f - fout) <= 0.001, "%f != %f", f, fout);
|
|
}
|
|
}
|
|
END_TEST
|
|
|
|
START_TEST(test_analog_to_float_null)
|
|
{
|
|
int ret;
|
|
float f, fout;
|
|
struct sr_datafeed_analog analog;
|
|
struct sr_analog_encoding encoding;
|
|
struct sr_analog_meaning meaning;
|
|
struct sr_analog_spec spec;
|
|
|
|
f = G_PI;
|
|
sr_analog_init_(&analog, &encoding, &meaning, &spec, 3);
|
|
analog.num_samples = 1;
|
|
analog.data = &f;
|
|
|
|
ret = sr_analog_to_float(NULL, &fout);
|
|
fail_unless(ret == SR_ERR_ARG);
|
|
ret = sr_analog_to_float(&analog, NULL);
|
|
fail_unless(ret == SR_ERR_ARG);
|
|
ret = sr_analog_to_float(NULL, NULL);
|
|
fail_unless(ret == SR_ERR_ARG);
|
|
|
|
analog.data = NULL;
|
|
ret = sr_analog_to_float(&analog, &fout);
|
|
fail_unless(ret == SR_ERR_ARG);
|
|
analog.data = &f;
|
|
|
|
analog.meaning = NULL;
|
|
ret = sr_analog_to_float(&analog, &fout);
|
|
fail_unless(ret == SR_ERR_ARG);
|
|
analog.meaning = &meaning;
|
|
|
|
analog.encoding = NULL;
|
|
ret = sr_analog_to_float(&analog, &fout);
|
|
fail_unless(ret == SR_ERR_ARG);
|
|
analog.encoding = &encoding;
|
|
}
|
|
END_TEST
|
|
|
|
START_TEST(test_analog_to_float_conv)
|
|
{
|
|
static const int with_diag = 0;
|
|
|
|
struct {
|
|
const char *desc;
|
|
void *bytes;
|
|
size_t nums, unit;
|
|
int is_fp, is_sign, is_be;
|
|
int scale, offset;
|
|
float *want;
|
|
} *item, items[] = {
|
|
/* Test to cover multiple values in an array, odd numbers. */
|
|
{
|
|
.desc = "float single input, native, value array",
|
|
.bytes = (float[]){ -12.9, -333.999, 0, 3.14, 29.7, 9898.12, },
|
|
.nums = 6, .unit = sizeof(float),
|
|
.is_fp = TRUE, .is_sign = FALSE, .is_be = host_be,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ -12.9, -333.999, 0, 3.14, 29.7, 9898.12, },
|
|
},
|
|
/* Tests to cover floating point input data conversion. */
|
|
{
|
|
.desc = "float single input, native",
|
|
.bytes = (float[]){ 1.0, 2.0, 3.0, 4.0, },
|
|
.nums = 4, .unit = sizeof(float),
|
|
.is_fp = TRUE, .is_sign = FALSE, .is_be = host_be,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ 1.0, 2.0, 3.0, 4.0, },
|
|
},
|
|
{
|
|
.desc = "float single input, big endian",
|
|
.bytes = (float[]){ 1.0, 2.0, 3.0, 4.0, },
|
|
.nums = 4, .unit = sizeof(float),
|
|
.is_fp = TRUE, .is_sign = FALSE, .is_be = TRUE,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ 1.0, 2.0, 3.0, 4.0, },
|
|
},
|
|
{
|
|
.desc = "float single input, little endian",
|
|
.bytes = (float[]){ 1.0, 2.0, 3.0, 4.0, },
|
|
.nums = 4, .unit = sizeof(float),
|
|
.is_fp = TRUE, .is_sign = FALSE, .is_be = FALSE,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ 1.0, 2.0, 3.0, 4.0, },
|
|
},
|
|
{
|
|
.desc = "float double input, native",
|
|
.bytes = (double[]){ 1.0, 2.0, 3.0, 4.0, },
|
|
.nums = 4, .unit = sizeof(double),
|
|
.is_fp = TRUE, .is_sign = FALSE, .is_be = host_be,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ 1.0, 2.0, 3.0, 4.0, },
|
|
},
|
|
{
|
|
.desc = "float half input, unsupported, fake bytes",
|
|
.bytes = (uint16_t[]){ 0x1234, 0x5678, },
|
|
.nums = 2, .unit = sizeof(uint16_t),
|
|
.is_fp = TRUE, .is_sign = FALSE, .is_be = host_be,
|
|
.want = NULL,
|
|
},
|
|
{
|
|
.desc = "float quad input, unsupported, fake bytes",
|
|
.bytes = (uint64_t[]){ 0x0, 0x0, },
|
|
.nums = 1, .unit = 2 * sizeof(uint64_t),
|
|
.is_fp = TRUE, .is_sign = FALSE, .is_be = host_be,
|
|
.want = NULL,
|
|
},
|
|
/* Tests to cover integer input data conversion. */
|
|
{
|
|
.desc = "int u8 input",
|
|
.bytes = (uint8_t[]){ 1, 2, 3, 4, },
|
|
.nums = 4, .unit = sizeof(uint8_t),
|
|
.is_fp = FALSE, .is_sign = FALSE, .is_be = host_be,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ 1.0, 2.0, 3.0, 4.0, },
|
|
},
|
|
{
|
|
.desc = "int i8 input",
|
|
.bytes = (int8_t[]){ -1, 2, -3, 4, },
|
|
.nums = 4, .unit = sizeof(int8_t),
|
|
.is_fp = FALSE, .is_sign = TRUE, .is_be = host_be,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ -1.0, 2.0, -3.0, 4.0, },
|
|
},
|
|
{
|
|
.desc = "int u16 input, big endian",
|
|
.bytes = (uint16_t[]){ 1, 2, 3, 4, },
|
|
.nums = 4, .unit = sizeof(uint16_t),
|
|
.is_fp = FALSE, .is_sign = FALSE, .is_be = TRUE,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ 1.0, 2.0, 3.0, 4.0, },
|
|
},
|
|
{
|
|
.desc = "int u16 input, little endian",
|
|
.bytes = (uint16_t[]){ 1, 2, 3, 4, },
|
|
.nums = 4, .unit = sizeof(uint16_t),
|
|
.is_fp = FALSE, .is_sign = FALSE, .is_be = FALSE,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ 1.0, 2.0, 3.0, 4.0, },
|
|
},
|
|
{
|
|
.desc = "int i16 input, big endian",
|
|
.bytes = (int16_t[]){ 1, -2, 3, -4, },
|
|
.nums = 4, .unit = sizeof(int16_t),
|
|
.is_fp = FALSE, .is_sign = TRUE, .is_be = TRUE,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ 1.0, -2.0, 3.0, -4.0, },
|
|
},
|
|
{
|
|
.desc = "int i16 input, little endian",
|
|
.bytes = (int16_t[]){ 1, -2, 3, -4, },
|
|
.nums = 4, .unit = sizeof(int16_t),
|
|
.is_fp = FALSE, .is_sign = TRUE, .is_be = FALSE,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ 1.0, -2.0, 3.0, -4.0, },
|
|
},
|
|
{
|
|
.desc = "int u32 input, big endian",
|
|
.bytes = (uint32_t[]){ 1, 2, 3, 4, },
|
|
.nums = 4, .unit = sizeof(uint32_t),
|
|
.is_fp = FALSE, .is_sign = FALSE, .is_be = TRUE,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ 1.0, 2.0, 3.0, 4.0, },
|
|
},
|
|
{
|
|
.desc = "int u32 input, little endian",
|
|
.bytes = (uint32_t[]){ 1, 2, 3, 4, },
|
|
.nums = 4, .unit = sizeof(uint32_t),
|
|
.is_fp = FALSE, .is_sign = FALSE, .is_be = FALSE,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ 1.0, 2.0, 3.0, 4.0, },
|
|
},
|
|
{
|
|
.desc = "int i32 input, big endian",
|
|
.bytes = (int32_t[]){ 1, 2, -3, -4, },
|
|
.nums = 4, .unit = sizeof(int32_t),
|
|
.is_fp = FALSE, .is_sign = TRUE, .is_be = TRUE,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ 1.0, 2.0, -3.0, -4.0, },
|
|
},
|
|
{
|
|
.desc = "int i32 input, little endian",
|
|
.bytes = (int32_t[]){ 1, 2, -3, -4, },
|
|
.nums = 4, .unit = sizeof(int32_t),
|
|
.is_fp = FALSE, .is_sign = TRUE, .is_be = FALSE,
|
|
.scale = 1, .offset = 0,
|
|
.want = (float[]){ 1.0, 2.0, -3.0, -4.0, },
|
|
},
|
|
{
|
|
.desc = "int u64 input, unsupported",
|
|
.bytes = (uint64_t[]){ 1, 2, 3, 4, },
|
|
.nums = 4, .unit = sizeof(uint64_t),
|
|
.is_fp = FALSE, .is_sign = FALSE, .is_be = TRUE,
|
|
.want = NULL,
|
|
},
|
|
/* Tests to cover scale/offset calculation. */
|
|
{
|
|
.desc = "float single input, scale + offset",
|
|
.bytes = (float[]){ 1.0, 2.0, 3.0, 4.0, },
|
|
.nums = 4, .unit = sizeof(float),
|
|
.is_fp = TRUE, .is_sign = FALSE, .is_be = host_be,
|
|
.scale = 3, .offset = 2,
|
|
.want = (float[]){ 5.0, 8.0, 11.0, 14.0, },
|
|
},
|
|
{
|
|
.desc = "int u8 input, scale + offset",
|
|
.bytes = (uint8_t[]){ 1, 2, 3, 4, },
|
|
.nums = 4, .unit = sizeof(uint8_t),
|
|
.is_fp = FALSE, .is_sign = FALSE, .is_be = TRUE,
|
|
.scale = 3, .offset = 2,
|
|
.want = (float[]){ 5.0, 8.0, 11.0, 14.0, },
|
|
},
|
|
};
|
|
const size_t max_floats = 6;
|
|
struct sr_channel ch = {
|
|
.index = 0,
|
|
.enabled = TRUE,
|
|
.type = SR_CHANNEL_LOGIC,
|
|
.name = "input",
|
|
};
|
|
|
|
size_t item_idx;
|
|
char item_text[32];
|
|
struct sr_datafeed_analog analog;
|
|
struct sr_analog_encoding encoding;
|
|
struct sr_analog_meaning meaning;
|
|
struct sr_analog_spec spec;
|
|
size_t byte_count, value_idx;
|
|
uint8_t f_in[max_floats * sizeof(double)], *byte_ptr;
|
|
float f_out[max_floats];
|
|
int ret;
|
|
float want, have;
|
|
|
|
for (item_idx = 0; item_idx < ARRAY_SIZE(items); item_idx++) {
|
|
item = &items[item_idx];
|
|
|
|
/* Construct "4x u32le" style test item identification. */
|
|
snprintf(item_text, sizeof(item_text), "%zu: %zux %c%zu%s",
|
|
item_idx, item->nums,
|
|
item->is_fp ? 'f' : item->is_sign ? 'i' : 'u',
|
|
item->unit * 8, item->is_be ? "be" : "le");
|
|
if (with_diag) {
|
|
fprintf(stderr, "%s -- %s", item_text, item->desc);
|
|
fflush(stderr);
|
|
}
|
|
|
|
/* Copy input data bytes, optionally adjust endianess. */
|
|
byte_count = item->nums * item->unit;
|
|
memcpy(f_in, item->bytes, byte_count);
|
|
if (item->is_be != host_be) {
|
|
byte_ptr = &f_in[0];
|
|
for (value_idx = 0; value_idx < item->nums; value_idx++) {
|
|
swap_bytes(byte_ptr, item->unit);
|
|
byte_ptr += item->unit;
|
|
}
|
|
}
|
|
if (with_diag) {
|
|
fprintf(stderr, " -- bytes:");
|
|
for (value_idx = 0; value_idx < byte_count; value_idx++)
|
|
fprintf(stderr, " %02x", f_in[value_idx]);
|
|
fflush(stderr);
|
|
}
|
|
|
|
/* Setup the analog feed description. */
|
|
sr_analog_init_(&analog, &encoding, &meaning, &spec, 3);
|
|
analog.num_samples = item->nums;
|
|
analog.data = &f_in[0];
|
|
encoding.unitsize = item->unit;
|
|
encoding.is_float = item->is_fp;
|
|
encoding.is_signed = item->is_sign;
|
|
encoding.is_bigendian = item->is_be;
|
|
encoding.scale.p = item->scale ? item->scale : 1;
|
|
encoding.offset.p = item->offset;
|
|
meaning.channels = g_slist_append(NULL, &ch);
|
|
|
|
/* Convert to an array of single precision float values. */
|
|
ret = sr_analog_to_float(&analog, &f_out[0]);
|
|
if (!item->want) {
|
|
fail_if(ret == SR_OK,
|
|
"%s: sr_analog_to_float() passed", item_text);
|
|
if (with_diag) {
|
|
fprintf(stderr, " -- expected fail, OK\n");
|
|
fflush(stderr);
|
|
}
|
|
continue;
|
|
}
|
|
fail_unless(ret == SR_OK,
|
|
"%s: sr_analog_to_float() failed: %d", item_text, ret);
|
|
if (with_diag) {
|
|
fprintf(stderr, " -- float:");
|
|
for (value_idx = 0; value_idx < item->nums; value_idx++)
|
|
fprintf(stderr, " %f", f_out[value_idx]);
|
|
fprintf(stderr, "\n");
|
|
fflush(stderr);
|
|
}
|
|
|
|
/*
|
|
* Compare result data to the expectation. No tolerance
|
|
* is required here due to the input set's values. This
|
|
* test concentrates on endianess / data type / bit count
|
|
* conversion and simple scale/offset calculation, neither
|
|
* on precision nor rounding nor truncation.
|
|
*/
|
|
for (value_idx = 0; value_idx < item->nums; value_idx++) {
|
|
want = item->want[value_idx];
|
|
have = f_out[value_idx];
|
|
fail_unless(want == have,
|
|
"%s: input %f != output %f",
|
|
item_text, want, have);
|
|
}
|
|
}
|
|
}
|
|
END_TEST
|
|
|
|
START_TEST(test_analog_si_prefix)
|
|
{
|
|
struct {
|
|
float input_value;
|
|
int input_digits;
|
|
float output_value;
|
|
int output_digits;
|
|
const char *output_si_prefix;
|
|
} v[] = {
|
|
{ 12.0 , 0, 12.0 , 0, "" },
|
|
{ 12.0 , 1, 12.0 , 1, "" },
|
|
{ 12.0 , -1, 0.012, 2, "k" },
|
|
{ 1024.0 , 0, 1.024, 3, "k" },
|
|
{ 1024.0 , -1, 1.024, 2, "k" },
|
|
{ 1024.0 , -3, 1.024, 0, "k" },
|
|
{ 12.0e5 , 0, 1.2, 6, "M" },
|
|
{ 0.123456, 0, 0.123456, 0, "" },
|
|
{ 0.123456, 1, 0.123456, 1, "" },
|
|
{ 0.123456, 2, 0.123456, 2, "" },
|
|
{ 0.123456, 3, 123.456, 0, "m" },
|
|
{ 0.123456, 4, 123.456, 1, "m" },
|
|
{ 0.123456, 5, 123.456, 2, "m" },
|
|
{ 0.123456, 6, 123.456, 3, "m" },
|
|
{ 0.123456, 7, 123.456, 4, "m" },
|
|
{ 0.0123 , 4, 12.3, 1, "m" },
|
|
{ 0.00123 , 5, 1.23, 2, "m" },
|
|
{ 0.000123, 4, 0.123, 1, "m" },
|
|
{ 0.000123, 5, 0.123, 2, "m" },
|
|
{ 0.000123, 6, 123.0, 0, "µ" },
|
|
{ 0.000123, 7, 123.0, 1, "µ" },
|
|
};
|
|
|
|
for (unsigned int i = 0; i < ARRAY_SIZE(v); i++) {
|
|
float value = v[i].input_value;
|
|
int digits = v[i].input_digits;
|
|
const char *si_prefix = sr_analog_si_prefix(&value, &digits);
|
|
|
|
fail_unless(fabs(value - v[i].output_value) <= 0.00001,
|
|
"sr_analog_si_prefix() unexpected output value %f (i=%d).",
|
|
value , i);
|
|
fail_unless(digits == v[i].output_digits,
|
|
"sr_analog_si_prefix() unexpected output digits %d (i=%d).",
|
|
digits, i);
|
|
fail_unless(!strcmp(si_prefix, v[i].output_si_prefix),
|
|
"sr_analog_si_prefix() unexpected output prefix \"%s\" (i=%d).",
|
|
si_prefix, i);
|
|
}
|
|
}
|
|
END_TEST
|
|
|
|
START_TEST(test_analog_si_prefix_null)
|
|
{
|
|
float value = 1.23;
|
|
int digits = 1;
|
|
const char *si_prefix;
|
|
|
|
si_prefix = sr_analog_si_prefix(NULL, &digits);
|
|
fail_unless(!strcmp(si_prefix, ""));
|
|
si_prefix = sr_analog_si_prefix(&value, NULL);
|
|
fail_unless(!strcmp(si_prefix, ""));
|
|
si_prefix = sr_analog_si_prefix(NULL, NULL);
|
|
fail_unless(!strcmp(si_prefix, ""));
|
|
}
|
|
END_TEST
|
|
|
|
START_TEST(test_analog_unit_to_string)
|
|
{
|
|
int ret;
|
|
unsigned int i;
|
|
char *result;
|
|
struct sr_datafeed_analog analog;
|
|
struct sr_analog_encoding encoding;
|
|
struct sr_analog_meaning meaning;
|
|
struct sr_analog_spec spec;
|
|
const int u[] = {SR_UNIT_VOLT, SR_UNIT_AMPERE, SR_UNIT_CELSIUS};
|
|
const int f[] = {SR_MQFLAG_RMS, 0, 0};
|
|
const char *r[] = {"V RMS", "A", "°C"};
|
|
|
|
sr_analog_init_(&analog, &encoding, &meaning, &spec, 3);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r); i++) {
|
|
meaning.unit = u[i];
|
|
meaning.mqflags = f[i];
|
|
ret = sr_analog_unit_to_string(&analog, &result);
|
|
fail_unless(ret == SR_OK);
|
|
fail_unless(result != NULL);
|
|
fail_unless(!strcmp(result, r[i]), "%s != %s", result, r[i]);
|
|
g_free(result);
|
|
}
|
|
}
|
|
END_TEST
|
|
|
|
START_TEST(test_analog_unit_to_string_null)
|
|
{
|
|
int ret;
|
|
char *result;
|
|
struct sr_datafeed_analog analog;
|
|
struct sr_analog_encoding encoding;
|
|
struct sr_analog_meaning meaning;
|
|
struct sr_analog_spec spec;
|
|
|
|
sr_analog_init_(&analog, &encoding, &meaning, &spec, 3);
|
|
|
|
meaning.unit = SR_UNIT_VOLT;
|
|
meaning.mqflags = SR_MQFLAG_RMS;
|
|
|
|
ret = sr_analog_unit_to_string(NULL, &result);
|
|
fail_unless(ret == SR_ERR_ARG);
|
|
ret = sr_analog_unit_to_string(&analog, NULL);
|
|
fail_unless(ret == SR_ERR_ARG);
|
|
ret = sr_analog_unit_to_string(NULL, NULL);
|
|
fail_unless(ret == SR_ERR_ARG);
|
|
|
|
analog.meaning = NULL;
|
|
ret = sr_analog_unit_to_string(&analog, &result);
|
|
fail_unless(ret == SR_ERR_ARG);
|
|
}
|
|
END_TEST
|
|
|
|
START_TEST(test_set_rational)
|
|
{
|
|
unsigned int i;
|
|
struct sr_rational r;
|
|
const int64_t p[] = {0, 1, -5, INT64_MAX};
|
|
const uint64_t q[] = {0, 2, 7, UINT64_MAX};
|
|
|
|
for (i = 0; i < ARRAY_SIZE(p); i++) {
|
|
sr_rational_set(&r, p[i], q[i]);
|
|
fail_unless(r.p == p[i] && r.q == q[i]);
|
|
}
|
|
}
|
|
END_TEST
|
|
|
|
START_TEST(test_set_rational_null)
|
|
{
|
|
sr_rational_set(NULL, 5, 7);
|
|
}
|
|
END_TEST
|
|
|
|
START_TEST(test_cmp_rational)
|
|
{
|
|
const struct sr_rational r[] = { { 1, 1 },
|
|
{ 2, 2 },
|
|
{ 1000, 1000 },
|
|
{ INT64_MAX, INT64_MAX },
|
|
{ 1, 4 },
|
|
{ 2, 8 },
|
|
{ INT64_MAX, UINT64_MAX },
|
|
{ INT64_MIN, UINT64_MAX },
|
|
};
|
|
|
|
fail_unless(sr_rational_eq(&r[0], &r[0]) == 1);
|
|
fail_unless(sr_rational_eq(&r[0], &r[1]) == 1);
|
|
fail_unless(sr_rational_eq(&r[1], &r[2]) == 1);
|
|
fail_unless(sr_rational_eq(&r[2], &r[3]) == 1);
|
|
fail_unless(sr_rational_eq(&r[3], &r[3]) == 1);
|
|
|
|
fail_unless(sr_rational_eq(&r[4], &r[4]) == 1);
|
|
fail_unless(sr_rational_eq(&r[4], &r[5]) == 1);
|
|
fail_unless(sr_rational_eq(&r[5], &r[5]) == 1);
|
|
|
|
fail_unless(sr_rational_eq(&r[6], &r[6]) == 1);
|
|
fail_unless(sr_rational_eq(&r[7], &r[7]) == 1);
|
|
|
|
fail_unless(sr_rational_eq(&r[1], &r[4]) == 0);
|
|
}
|
|
END_TEST
|
|
|
|
START_TEST(test_mult_rational)
|
|
{
|
|
const struct sr_rational r[][3] = {
|
|
/* a * b = c */
|
|
{ { 1, 1 }, { 1, 1 }, { 1, 1 }},
|
|
{ { 2, 1 }, { 3, 1 }, { 6, 1 }},
|
|
{ { 1, 2 }, { 2, 1 }, { 1, 1 }},
|
|
/* Test negative numbers */
|
|
{ { -1, 2 }, { 2, 1 }, { -1, 1 }},
|
|
{ { -1, 2 }, { -2, 1 }, { 1, 1 }},
|
|
{ { -(1ll<<20), (1ll<<10) }, { -(1ll<<20), 1 }, { (1ll<<30), 1 }},
|
|
/* Test reduction */
|
|
{ { INT32_MAX, (1ll<<12) }, { (1<<2), 1 }, { INT32_MAX, (1ll<<10) }},
|
|
{ { INT64_MAX, (1ll<<63) }, { (1<<3), 1 }, { INT64_MAX, (1ll<<60) }},
|
|
/* Test large numbers */
|
|
{ { (1ll<<40), (1ll<<10) }, { (1ll<<30), 1 }, { (1ll<<60), 1 }},
|
|
{ { -(1ll<<40), (1ll<<10) }, { -(1ll<<30), 1 }, { (1ll<<60), 1 }},
|
|
|
|
{ { 1000, 1 }, { 8000, 1 }, { 8000000, 1 }},
|
|
{ { 10000, 1 }, { 80000, 1 }, { 800000000, 1 }},
|
|
{ { 10000*3, 4 }, { 80000*3, 1 }, { 200000000*9, 1 }},
|
|
{ { 1, 1000 }, { 1, 8000 }, { 1, 8000000 }},
|
|
{ { 1, 10000 }, { 1, 80000 }, { 1, 800000000 }},
|
|
{ { 4, 10000*3 }, { 1, 80000*3 }, { 1, 200000000*9 }},
|
|
|
|
{ { -10000*3, 4 }, { 80000*3, 1 }, { -200000000*9, 1 }},
|
|
{ { 10000*3, 4 }, { -80000*3, 1 }, { -200000000*9, 1 }},
|
|
};
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(r); i++) {
|
|
struct sr_rational res;
|
|
|
|
int rc = sr_rational_mult(&res, &r[i][0], &r[i][1]);
|
|
fail_unless(rc == SR_OK);
|
|
fail_unless(sr_rational_eq(&res, &r[i][2]) == 1,
|
|
"sr_rational_mult() failed: [%d] %ld/%lu != %ld/%lu.",
|
|
i, res.p, res.q, r[i][2].p, r[i][2].q);
|
|
}
|
|
}
|
|
END_TEST
|
|
|
|
START_TEST(test_div_rational)
|
|
{
|
|
const struct sr_rational r[][3] = {
|
|
/* a * b = c */
|
|
{ { 1, 1 }, { 1, 1 }, { 1, 1 }},
|
|
{ { 2, 1 }, { 1, 3 }, { 6, 1 }},
|
|
{ { 1, 2 }, { 1, 2 }, { 1, 1 }},
|
|
/* Test negative numbers */
|
|
{ { -1, 2 }, { 1, 2 }, { -1, 1 }},
|
|
{ { -1, 2 }, { -1, 2 }, { 1, 1 }},
|
|
{ { -(1ll<<20), (1ll<<10) }, { -1, (1ll<<20) }, { (1ll<<30), 1 }},
|
|
/* Test reduction */
|
|
{ { INT32_MAX, (1ll<<12) }, { 1, (1<<2) }, { INT32_MAX, (1ll<<10) }},
|
|
{ { INT64_MAX, (1ll<<63) }, { 1, (1<<3) }, { INT64_MAX, (1ll<<60) }},
|
|
/* Test large numbers */
|
|
{ { (1ll<<40), (1ll<<10) }, { 1, (1ll<<30) }, { (1ll<<60), 1 }},
|
|
{ { -(1ll<<40), (1ll<<10) }, { -1, (1ll<<30) }, { (1ll<<60), 1 }},
|
|
|
|
{ { 10000*3, 4 }, { 1, 80000*3 }, { 200000000*9, 1 }},
|
|
{ { 4, 10000*3 }, { 80000*3, 1 }, { 1, 200000000*9 }},
|
|
|
|
{ { -10000*3, 4 }, { 1, 80000*3 }, { -200000000*9, 1 }},
|
|
{ { 10000*3, 4 }, { -1, 80000*3 }, { -200000000*9, 1 }},
|
|
};
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(r); i++) {
|
|
struct sr_rational res;
|
|
|
|
int rc = sr_rational_div(&res, &r[i][0], &r[i][1]);
|
|
fail_unless(rc == SR_OK);
|
|
fail_unless(sr_rational_eq(&res, &r[i][2]) == 1,
|
|
"sr_rational_mult() failed: [%d] %ld/%lu != %ld/%lu.",
|
|
i, res.p, res.q, r[i][2].p, r[i][2].q);
|
|
}
|
|
|
|
{
|
|
struct sr_rational res;
|
|
int rc = sr_rational_div(&res, &r[0][0], &((struct sr_rational){ 0, 5 }));
|
|
|
|
fail_unless(rc == SR_ERR_ARG);
|
|
}
|
|
}
|
|
END_TEST
|
|
|
|
Suite *suite_analog(void)
|
|
{
|
|
Suite *s;
|
|
TCase *tc;
|
|
|
|
get_host_endianess();
|
|
|
|
s = suite_create("analog");
|
|
|
|
tc = tcase_create("analog_to_float");
|
|
tcase_add_test(tc, test_analog_to_float);
|
|
tcase_add_test(tc, test_analog_to_float_null);
|
|
tcase_add_test(tc, test_analog_to_float_conv);
|
|
suite_add_tcase(s, tc);
|
|
|
|
tc = tcase_create("analog_si_unit");
|
|
tcase_add_test(tc, test_analog_si_prefix);
|
|
tcase_add_test(tc, test_analog_si_prefix_null);
|
|
tcase_add_test(tc, test_analog_unit_to_string);
|
|
tcase_add_test(tc, test_analog_unit_to_string_null);
|
|
suite_add_tcase(s, tc);
|
|
|
|
tc = tcase_create("analog_rational");
|
|
tcase_add_test(tc, test_set_rational);
|
|
tcase_add_test(tc, test_set_rational_null);
|
|
tcase_add_test(tc, test_cmp_rational);
|
|
tcase_add_test(tc, test_mult_rational);
|
|
tcase_add_test(tc, test_div_rational);
|
|
suite_add_tcase(s, tc);
|
|
|
|
return s;
|
|
}
|