libsigrok/hardware/ikalogic-scanalogic2/api.c

529 lines
12 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Marc Schink <sigrok-dev@marcschink.de>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "protocol.h"
static const int hwcaps[] = {
SR_CONF_LOGIC_ANALYZER,
SR_CONF_SAMPLERATE,
SR_CONF_LIMIT_SAMPLES,
SR_CONF_TRIGGER_TYPE,
SR_CONF_CAPTURE_RATIO,
};
SR_PRIV const uint64_t sl2_samplerates[NUM_SAMPLERATES] = {
SR_KHZ(1.25),
SR_KHZ(10),
SR_KHZ(50),
SR_KHZ(100),
SR_KHZ(250),
SR_KHZ(500),
SR_MHZ(1),
SR_MHZ(2.5),
SR_MHZ(5),
SR_MHZ(10),
SR_MHZ(20),
};
static const char *probe_names[NUM_PROBES + 1] = {
"0", "1", "2", "3",
NULL,
};
SR_PRIV struct sr_dev_driver ikalogic_scanalogic2_driver_info;
static struct sr_dev_driver *di = &ikalogic_scanalogic2_driver_info;
static int init(struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
static GSList *scan(GSList *options)
{
GSList *usb_devices, *devices, *l;
struct drv_context *drvc;
struct sr_dev_inst *sdi;
struct sr_probe *probe;
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
struct device_info dev_info;
int ret, device_index, i;
char *fw_ver_str;
(void)options;
devices = NULL;
drvc = di->priv;
drvc->instances = NULL;
device_index = 0;
usb_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, USB_VID_PID);
if (usb_devices == NULL)
return NULL;
for (l = usb_devices; l; l = l->next) {
usb = l->data;
if ((ret = sl2_get_device_info(*usb, &dev_info)) < 0) {
sr_warn("Failed to get device information: %d.", ret);
sr_usb_dev_inst_free(usb);
continue;
}
if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
sr_err("Device instance malloc failed.");
sr_usb_dev_inst_free(usb);
continue;
}
if (!(devc->xfer_in = libusb_alloc_transfer(0))) {
sr_err("Transfer malloc failed.");
sr_usb_dev_inst_free(usb);
g_free(devc);
continue;
}
if (!(devc->xfer_out = libusb_alloc_transfer(0))) {
sr_err("Transfer malloc failed.");
sr_usb_dev_inst_free(usb);
libusb_free_transfer(devc->xfer_in);
g_free(devc);
continue;
}
fw_ver_str = g_strdup_printf("%u.%u", dev_info.fw_ver_major,
dev_info.fw_ver_minor);
if (!fw_ver_str) {
sr_err("Firmware string malloc failed.");
sr_usb_dev_inst_free(usb);
libusb_free_transfer(devc->xfer_in);
libusb_free_transfer(devc->xfer_out);
g_free(devc);
continue;
}
sdi = sr_dev_inst_new(device_index, SR_ST_INACTIVE, VENDOR_NAME,
MODEL_NAME, fw_ver_str);
g_free(fw_ver_str);
if (!sdi) {
sr_err("sr_dev_inst_new failed.");
sr_usb_dev_inst_free(usb);
libusb_free_transfer(devc->xfer_in);
libusb_free_transfer(devc->xfer_out);
g_free(devc);
continue;
}
sdi->priv = devc;
sdi->driver = di;
sdi->inst_type = SR_INST_USB;
sdi->conn = usb;
for (i = 0; probe_names[i]; i++) {
probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
probe_names[i]);
sdi->probes = g_slist_append(sdi->probes, probe);
devc->probes[i] = probe;
}
devc->state = STATE_IDLE;
devc->next_state = STATE_IDLE;
/* Set default samplerate. */
sl2_set_samplerate(sdi, DEFAULT_SAMPLERATE);
/* Set default capture ratio. */
devc->capture_ratio = 0;
/* Set default after trigger delay. */
devc->after_trigger_delay = 0;
memset(devc->xfer_buf_in, 0, LIBUSB_CONTROL_SETUP_SIZE +
PACKET_LENGTH);
memset(devc->xfer_buf_out, 0, LIBUSB_CONTROL_SETUP_SIZE +
PACKET_LENGTH);
libusb_fill_control_setup(devc->xfer_buf_in,
USB_REQUEST_TYPE_IN, USB_HID_GET_REPORT,
USB_HID_REPORT_TYPE_FEATURE, USB_INTERFACE,
PACKET_LENGTH);
libusb_fill_control_setup(devc->xfer_buf_out,
USB_REQUEST_TYPE_OUT, USB_HID_SET_REPORT,
USB_HID_REPORT_TYPE_FEATURE, USB_INTERFACE,
PACKET_LENGTH);
devc->xfer_data_in = devc->xfer_buf_in +
LIBUSB_CONTROL_SETUP_SIZE;
devc->xfer_data_out = devc->xfer_buf_out +
LIBUSB_CONTROL_SETUP_SIZE;
drvc->instances = g_slist_append(drvc->instances, sdi);
devices = g_slist_append(devices, sdi);
device_index++;
}
g_slist_free(usb_devices);
return devices;
}
static GSList *dev_list(void)
{
return ((struct drv_context *)(di->priv))->instances;
}
static void clear_dev_context(void *priv)
{
struct dev_context *devc;
devc = priv;
sr_dbg("Device context cleared.");
libusb_free_transfer(devc->xfer_in);
libusb_free_transfer(devc->xfer_out);
g_free(devc);
}
static int dev_clear(void)
{
return std_dev_clear(di, &clear_dev_context);
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct drv_context *drvc;
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
uint8_t buffer[PACKET_LENGTH];
int ret;
if (!(drvc = di->priv)) {
sr_err("Driver was not initialized.");
return SR_ERR;
}
usb = sdi->conn;
devc = sdi->priv;
if (sr_usb_open(drvc->sr_ctx->libusb_ctx, usb) != SR_OK)
return SR_ERR;
/*
* Determine if a kernel driver is active on this interface and, if so,
* detach it.
*/
if (libusb_kernel_driver_active(usb->devhdl, USB_INTERFACE) == 1) {
ret = libusb_detach_kernel_driver(usb->devhdl, USB_INTERFACE);
if (ret < 0) {
sr_err("Failed to detach kernel driver: %s.",
libusb_error_name(ret));
return SR_ERR;
}
}
if ((ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE)) < 0) {
sr_err("Failed to claim interface: %s.",
libusb_error_name(ret));
return SR_ERR;
}
libusb_fill_control_transfer(devc->xfer_in, usb->devhdl,
devc->xfer_buf_in, sl2_receive_transfer_in,
sdi, USB_TIMEOUT);
libusb_fill_control_transfer(devc->xfer_out, usb->devhdl,
devc->xfer_buf_out, sl2_receive_transfer_out,
sdi, USB_TIMEOUT);
memset(buffer, 0, sizeof(buffer));
buffer[0] = CMD_RESET;
if ((ret = sl2_transfer_out(usb->devhdl, buffer)) != PACKET_LENGTH) {
sr_err("Device reset failed: %s.", libusb_error_name(ret));
return SR_ERR;
}
/*
* Set the device to idle state. If the device is not in idle state it
* possibly will reset itself after a few seconds without being used
* and thereby close the connection.
*/
buffer[0] = CMD_IDLE;
if ((ret = sl2_transfer_out(usb->devhdl, buffer)) != PACKET_LENGTH) {
sr_err("Failed to set device in idle state: %s.",
libusb_error_name(ret));
return SR_ERR;
}
sdi->status = SR_ST_ACTIVE;
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
struct sr_usb_dev_inst *usb;
if (!di->priv) {
sr_err("Driver was not initialized.");
return SR_ERR;
}
usb = sdi->conn;
if (!usb->devhdl)
return SR_OK;
libusb_release_interface(usb->devhdl, USB_INTERFACE);
libusb_close(usb->devhdl);
usb->devhdl = NULL;
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int cleanup(void)
{
return dev_clear();
}
static int config_get(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *channel_group)
{
struct dev_context *devc;
int ret;
(void)channel_group;
ret = SR_OK;
devc = sdi->priv;
switch (key) {
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->samplerate);
break;
case SR_CONF_CAPTURE_RATIO:
*data = g_variant_new_uint64(devc->capture_ratio);
break;
default:
return SR_ERR_NA;
}
return ret;
}
static int config_set(int key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *channel_group)
{
uint64_t samplerate, limit_samples, capture_ratio;
int ret;
(void)channel_group;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
ret = SR_OK;
switch (key) {
case SR_CONF_LIMIT_SAMPLES:
limit_samples = g_variant_get_uint64(data);
ret = sl2_set_limit_samples(sdi, limit_samples);
break;
case SR_CONF_SAMPLERATE:
samplerate = g_variant_get_uint64(data);
ret = sl2_set_samplerate(sdi, samplerate);
break;
case SR_CONF_CAPTURE_RATIO:
capture_ratio = g_variant_get_uint64(data);
ret = sl2_set_capture_ratio(sdi, capture_ratio);
break;
default:
return SR_ERR_NA;
}
return ret;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *channel_group)
{
GVariant *gvar, *grange[2];
GVariantBuilder gvb;
int ret;
(void)sdi;
(void)channel_group;
ret = SR_OK;
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, hwcaps,
ARRAY_SIZE(hwcaps), sizeof(int32_t));
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
sl2_samplerates, ARRAY_SIZE(sl2_samplerates),
sizeof(uint64_t));
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TRIGGER_TYPE:
*data = g_variant_new_string(TRIGGER_TYPES);
break;
case SR_CONF_LIMIT_SAMPLES:
grange[0] = g_variant_new_uint64(0);
grange[1] = g_variant_new_uint64(MAX_SAMPLES);
*data = g_variant_new_tuple(grange, 2);
break;
default:
return SR_ERR_NA;
}
return ret;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
struct drv_context *drvc;
struct dev_context *devc;
uint16_t trigger_bytes, tmp;
unsigned int i, j;
int ret;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
drvc = di->priv;
devc->cb_data = cb_data;
devc->wait_data_ready_locked = TRUE;
devc->stopping_in_progress = FALSE;
devc->transfer_error = FALSE;
devc->samples_processed = 0;
devc->channel = 0;
devc->sample_packet = 0;
/*
* The trigger must be configured first because the calculation of the
* pre and post trigger samples depends on a configured trigger.
*/
sl2_configure_trigger(sdi);
sl2_calculate_trigger_samples(sdi);
trigger_bytes = devc->pre_trigger_bytes + devc->post_trigger_bytes;
/* Calculate the number of expected sample packets. */
devc->num_sample_packets = trigger_bytes / PACKET_NUM_SAMPLE_BYTES;
/* Round up the number of expected sample packets. */
if (trigger_bytes % PACKET_NUM_SAMPLE_BYTES != 0)
devc->num_sample_packets++;
devc->num_enabled_probes = 0;
/*
* Count the number of enabled probes and number them for a sequential
* access.
*/
for (i = 0, j = 0; i < NUM_PROBES; i++) {
if (devc->probes[i]->enabled) {
devc->num_enabled_probes++;
devc->probe_map[j] = i;
j++;
}
}
sr_dbg("Number of enabled probes: %i.", devc->num_enabled_probes);
/* Set up the transfer buffer for the acquisition. */
devc->xfer_data_out[0] = CMD_SAMPLE;
devc->xfer_data_out[1] = 0x00;
tmp = GUINT16_TO_LE(devc->pre_trigger_bytes);
memcpy(devc->xfer_data_out + 2, &tmp, sizeof(tmp));
tmp = GUINT16_TO_LE(devc->post_trigger_bytes);
memcpy(devc->xfer_data_out + 4, &tmp, sizeof(tmp));
devc->xfer_data_out[6] = devc->samplerate_id;
devc->xfer_data_out[7] = devc->trigger_type;
devc->xfer_data_out[8] = devc->trigger_channel;
devc->xfer_data_out[9] = 0x00;
tmp = GUINT16_TO_LE(devc->after_trigger_delay);
memcpy(devc->xfer_data_out + 10, &tmp, sizeof(tmp));
if ((ret = libusb_submit_transfer(devc->xfer_out)) != 0) {
sr_err("Submit transfer failed: %s.", libusb_error_name(ret));
return SR_ERR;
}
usb_source_add(drvc->sr_ctx, 100, ikalogic_scanalogic2_receive_data, (void *)sdi);
sr_dbg("Acquisition started successfully.");
/* Send header packet to the session bus. */
std_session_send_df_header(cb_data, LOG_PREFIX);
devc->next_state = STATE_SAMPLE;
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
(void)cb_data;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
sr_dbg("Stopping acquisition.");
sdi->status = SR_ST_STOPPING;
return SR_OK;
}
SR_PRIV struct sr_dev_driver ikalogic_scanalogic2_driver_info = {
.name = "ikalogic-scanalogic2",
.longname = "IKALOGIC Scanalogic-2",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};