libsigrok/hardware/victor-dmm/protocol.c

297 lines
6.6 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <glib.h>
#include <string.h>
#include <math.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "protocol.h"
/* Reverse the high nibble into the low nibble */
static uint8_t decode_digit(uint8_t in)
{
uint8_t out, i;
out = 0;
in >>= 4;
for (i = 0x08; i; i >>= 1) {
out >>= 1;
if (in & i)
out |= 0x08;
}
return out;
}
static void decode_buf(struct dev_context *devc, unsigned char *data)
{
struct sr_datafeed_packet packet;
struct sr_datafeed_analog analog;
long factor, ivalue;
uint8_t digits[4];
gboolean is_duty, is_continuity, is_diode, is_ac, is_dc, is_auto;
gboolean is_hold, is_max, is_min, is_relative, minus;
float fvalue;
digits[0] = decode_digit(data[12]);
digits[1] = decode_digit(data[11]);
digits[2] = decode_digit(data[10]);
digits[3] = decode_digit(data[9]);
if (digits[0] == 0x0f && digits[1] == 0x00 && digits[2] == 0x0a &&
digits[3] == 0x0f)
/* The "over limit" (OL) display comes through like this */
ivalue = -1;
else if (digits[0] > 9 || digits[1] > 9 || digits[2] > 9 || digits[3] > 9)
/* An invalid digit in any position denotes no value. */
ivalue = -2;
else {
ivalue = digits[0] * 1000;
ivalue += digits[1] * 100;
ivalue += digits[2] * 10;
ivalue += digits[3];
}
/* Decimal point position */
switch (data[7] >> 4) {
case 0x00:
factor = 0;
break;
case 0x02:
factor = 1;
break;
case 0x04:
factor = 2;
break;
case 0x08:
factor = 3;
break;
default:
sr_err("Unknown decimal point byte: 0x%.2x.", data[7]);
break;
}
/* Minus flag */
minus = data[2] & 0x01;
/* Mode detail symbols on the right side of the digits */
is_duty = is_continuity = is_diode = FALSE;
switch (data[4]) {
case 0x00:
/* None. */
break;
case 0x01:
/* Micro */
factor += 6;
break;
case 0x02:
/* Milli */
factor += 3;
break;
case 0x04:
/* Kilo */
ivalue *= 1000;
break;
case 0x08:
/* Mega */
ivalue *= 1000000;
break;
case 0x10:
/* Continuity shows up as Ohm + this bit */
is_continuity = TRUE;
break;
case 0x20:
/* Diode tester is Volt + this bit */
is_diode = TRUE;
break;
case 0x40:
is_duty = TRUE;
break;
case 0x80:
/* Never seen */
sr_dbg("Unknown mode right detail: 0x%.2x.", data[4]);
break;
default:
sr_dbg("Unknown/invalid mode right detail: 0x%.2x.", data[4]);
break;
}
/* Scale flags on the right, continued */
is_max = is_min = TRUE;
if (data[5] & 0x04)
is_max = TRUE;
if (data[5] & 0x08)
is_min = TRUE;
if (data[5] & 0x40)
/* Nano */
factor += 9;
/* Mode detail symbols on the left side of the digits */
is_auto = is_dc = is_ac = is_hold = is_relative = FALSE;
if (data[6] & 0x04)
is_auto = TRUE;
if (data[6] & 0x08)
is_dc = TRUE;
if (data[6] & 0x10)
is_ac = TRUE;
if (data[6] & 0x20)
is_relative = TRUE;
if (data[6] & 0x40)
is_hold = TRUE;
fvalue = (float)ivalue / pow(10, factor);
if (minus)
fvalue = -fvalue;
memset(&analog, 0, sizeof(struct sr_datafeed_analog));
/* Measurement mode */
analog.mq = -1;
switch (data[3]) {
case 0x00:
if (is_duty) {
analog.mq = SR_MQ_DUTY_CYCLE;
analog.unit = SR_UNIT_PERCENTAGE;
} else
sr_dbg("Unknown measurement mode: %.2x.", data[3]);
break;
case 0x01:
if (is_diode) {
analog.mq = SR_MQ_VOLTAGE;
analog.unit = SR_UNIT_VOLT;
analog.mqflags |= SR_MQFLAG_DIODE;
if (ivalue < 0)
fvalue = NAN;
} else {
if (ivalue < 0)
break;
analog.mq = SR_MQ_VOLTAGE;
analog.unit = SR_UNIT_VOLT;
if (is_ac)
analog.mqflags |= SR_MQFLAG_AC;
if (is_dc)
analog.mqflags |= SR_MQFLAG_DC;
}
break;
case 0x02:
analog.mq = SR_MQ_CURRENT;
analog.unit = SR_UNIT_AMPERE;
if (is_ac)
analog.mqflags |= SR_MQFLAG_AC;
if (is_dc)
analog.mqflags |= SR_MQFLAG_DC;
break;
case 0x04:
if (is_continuity) {
analog.mq = SR_MQ_CONTINUITY;
analog.unit = SR_UNIT_BOOLEAN;
fvalue = ivalue < 0 ? 0.0 : 1.0;
} else {
analog.mq = SR_MQ_RESISTANCE;
analog.unit = SR_UNIT_OHM;
if (ivalue < 0)
fvalue = INFINITY;
}
break;
case 0x08:
/* Never seen */
sr_dbg("Unknown measurement mode: 0x%.2x.", data[3]);
break;
case 0x10:
analog.mq = SR_MQ_FREQUENCY;
analog.unit = SR_UNIT_HERTZ;
break;
case 0x20:
analog.mq = SR_MQ_CAPACITANCE;
analog.unit = SR_UNIT_FARAD;
break;
case 0x40:
analog.mq = SR_MQ_TEMPERATURE;
analog.unit = SR_UNIT_CELSIUS;
break;
case 0x80:
analog.mq = SR_MQ_TEMPERATURE;
analog.unit = SR_UNIT_FAHRENHEIT;
break;
default:
sr_dbg("Unknown/invalid measurement mode: 0x%.2x.", data[3]);
break;
}
if (analog.mq == -1)
return;
if (is_auto)
analog.mqflags |= SR_MQFLAG_AUTORANGE;
if (is_hold)
analog.mqflags |= SR_MQFLAG_HOLD;
if (is_max)
analog.mqflags |= SR_MQFLAG_MAX;
if (is_min)
analog.mqflags |= SR_MQFLAG_MIN;
if (is_relative)
analog.mqflags |= SR_MQFLAG_RELATIVE;
analog.num_samples = 1;
analog.data = &fvalue;
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
sr_session_send(devc->cb_data, &packet);
devc->num_samples++;
}
SR_PRIV int victor_dmm_receive_data(struct sr_dev_inst *sdi, unsigned char *buf)
{
struct dev_context *devc;
GString *dbg;
int i;
unsigned char data[DMM_DATA_SIZE];
unsigned char obfuscation[DMM_DATA_SIZE] = "jodenxunickxia";
unsigned char shuffle[DMM_DATA_SIZE] = {
6, 13, 5, 11, 2, 7, 9, 8, 3, 10, 12, 0, 4, 1
};
devc = sdi->priv;
for (i = 0; i < DMM_DATA_SIZE && buf[i] == 0; i++);
if (i == DMM_DATA_SIZE) {
/* This DMM outputs all zeroes from time to time, just ignore it. */
sr_dbg("Received all zeroes.");
return SR_OK;
}
/* Deobfuscate and reorder data. */
for (i = 0; i < DMM_DATA_SIZE; i++)
data[shuffle[i]] = (buf[i] - obfuscation[i]) & 0xff;
if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
dbg = g_string_sized_new(128);
g_string_printf(dbg, "Deobfuscated.");
for (i = 0; i < DMM_DATA_SIZE; i++)
g_string_append_printf(dbg, " %.2x", data[i]);
sr_spew("%s", dbg->str);
g_string_free(dbg, TRUE);
}
decode_buf(devc, data);
return SR_OK;
}