libsigrok/src/hardware/sysclk-lwla/api.c

821 lines
20 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2014 Daniel Elstner <daniel.kitta@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <glib.h>
#include <libusb.h>
#include <stdlib.h>
#include <string.h>
#include <libsigrok/libsigrok.h>
#include "libsigrok-internal.h"
#include "protocol.h"
/* Supported device scan options.
*/
static const uint32_t scanopts[] = {
SR_CONF_CONN,
};
/* Driver capabilities.
*/
static const uint32_t drvopts[] = {
SR_CONF_LOGIC_ANALYZER,
};
/* Supported trigger match conditions.
*/
static const int32_t trigger_matches[] = {
SR_TRIGGER_ZERO,
SR_TRIGGER_ONE,
SR_TRIGGER_RISING,
SR_TRIGGER_FALLING,
};
/* Names assigned to available trigger sources.
*/
static const char *const trigger_source_names[] = {
[TRIGGER_CHANNELS] = "CH",
[TRIGGER_EXT_TRG] = "TRG",
};
/* Names assigned to available edge slope choices.
*/
static const char *const signal_edge_names[] = {
[EDGE_POSITIVE] = "r",
[EDGE_NEGATIVE] = "f",
};
/* Initialize the SysClk LWLA driver.
*/
static int init(struct sr_dev_driver *di, struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
/* Create a new sigrok device instance for the indicated LWLA model.
*/
static struct sr_dev_inst *dev_inst_new(const struct model_info *model)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
int i;
char name[8];
/* Initialize private device context. */
devc = g_malloc0(sizeof(struct dev_context));
devc->model = model;
devc->active_fpga_config = FPGA_NOCONF;
devc->cfg_rle = TRUE;
devc->samplerate = model->samplerates[0];
devc->channel_mask = (UINT64_C(1) << model->num_channels) - 1;
/* Create sigrok device instance. */
sdi = g_malloc0(sizeof(struct sr_dev_inst));
sdi->status = SR_ST_INACTIVE;
sdi->vendor = g_strdup(VENDOR_NAME);
sdi->model = g_strdup(model->name);
sdi->priv = devc;
/* Generate list of logic channels. */
for (i = 0; i < model->num_channels; i++) {
/* The LWLA series simply number channels from CH1 to CHxx. */
g_snprintf(name, sizeof(name), "CH%d", i + 1);
sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE, name);
}
return sdi;
}
/* Create a new device instance for a libusb device if it is a SysClk LWLA
* device and also matches the connection specification.
*/
static struct sr_dev_inst *dev_inst_new_matching(GSList *conn_matches,
libusb_device *dev)
{
GSList *node;
struct sr_usb_dev_inst *usb;
const struct model_info *model;
struct sr_dev_inst *sdi;
struct libusb_device_descriptor des;
int bus, address;
unsigned int vid, pid;
int ret;
bus = libusb_get_bus_number(dev);
address = libusb_get_device_address(dev);
for (node = conn_matches; node != NULL; node = node->next) {
usb = node->data;
if (usb && usb->bus == bus && usb->address == address)
break; /* found */
}
if (conn_matches && !node)
return NULL; /* no match */
ret = libusb_get_device_descriptor(dev, &des);
if (ret != 0) {
sr_err("Failed to get USB device descriptor: %s.",
libusb_error_name(ret));
return NULL;
}
vid = des.idVendor;
pid = des.idProduct;
/* Create sigrok device instance. */
if (vid == USB_VID_SYSCLK && pid == USB_PID_LWLA1016) {
model = &lwla1016_info;
} else if (vid == USB_VID_SYSCLK && pid == USB_PID_LWLA1034) {
model = &lwla1034_info;
} else {
if (conn_matches)
sr_warn("USB device %d.%d (%04x:%04x) is not a"
" SysClk LWLA.", bus, address, vid, pid);
return NULL;
}
sdi = dev_inst_new(model);
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new(bus, address, NULL);
return sdi;
}
/* Scan for SysClk LWLA devices and create a device instance for each one.
*/
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
GSList *conn_devices, *devices, *node;
struct drv_context *drvc;
struct sr_dev_inst *sdi;
struct sr_config *src;
const char *conn;
libusb_device **devlist;
ssize_t num_devs, i;
drvc = di->context;
conn = NULL;
conn_devices = NULL;
devices = NULL;
for (node = options; node != NULL; node = node->next) {
src = node->data;
if (src->key == SR_CONF_CONN) {
conn = g_variant_get_string(src->data, NULL);
break;
}
}
if (conn) {
/* Find devices matching the connection specification. */
conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
}
/* List all libusb devices. */
num_devs = libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
if (num_devs < 0) {
sr_err("Failed to list USB devices: %s.",
libusb_error_name(num_devs));
g_slist_free_full(conn_devices,
(GDestroyNotify)&sr_usb_dev_inst_free);
return NULL;
}
/* Scan the USB device list for matching LWLA devices. */
for (i = 0; i < num_devs; i++) {
sdi = dev_inst_new_matching(conn_devices, devlist[i]);
if (!sdi)
continue; /* no match */
/* Register device instance with driver. */
sdi->driver = di;
drvc->instances = g_slist_append(drvc->instances, sdi);
devices = g_slist_append(devices, sdi);
}
libusb_free_device_list(devlist, 1);
g_slist_free_full(conn_devices, (GDestroyNotify)&sr_usb_dev_inst_free);
return devices;
}
/* Return the list of devices found during scan.
*/
static GSList *dev_list(const struct sr_dev_driver *di)
{
struct drv_context *drvc;
drvc = di->context;
return drvc->instances;
}
/* Destroy the private device context.
*/
static void clear_dev_context(void *priv)
{
struct dev_context *devc;
devc = priv;
if (devc->acquisition) {
sr_err("Cannot clear device context during acquisition!");
return; /* leak and pray */
}
sr_dbg("Device context cleared.");
g_free(devc);
}
/* Destroy all device instances.
*/
static int dev_clear(const struct sr_dev_driver *di)
{
return std_dev_clear(di, &clear_dev_context);
}
/* Drain any pending data from the USB transfer buffers on the device.
* This may be necessary e.g. after a crash or generally to clean up after
* an abnormal condition.
*/
static int drain_usb(struct sr_usb_dev_inst *usb, unsigned int endpoint)
{
int drained, xfer_len;
int ret;
unsigned char buf[512];
const unsigned int drain_timeout_ms = 10;
drained = 0;
do {
xfer_len = 0;
ret = libusb_bulk_transfer(usb->devhdl, endpoint,
buf, sizeof(buf), &xfer_len,
drain_timeout_ms);
drained += xfer_len;
} while (ret == LIBUSB_SUCCESS && xfer_len != 0);
if (ret != LIBUSB_SUCCESS && ret != LIBUSB_ERROR_TIMEOUT) {
sr_err("Failed to drain USB endpoint %u: %s.",
endpoint & (LIBUSB_ENDPOINT_IN - 1),
libusb_error_name(ret));
return SR_ERR;
}
if (drained > 0) {
sr_warn("Drained %d bytes from USB endpoint %u.",
drained, endpoint & (LIBUSB_ENDPOINT_IN - 1));
}
return SR_OK;
}
/* Open and initialize device.
*/
static int dev_open(struct sr_dev_inst *sdi)
{
struct drv_context *drvc;
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
int ret;
drvc = sdi->driver->context;
devc = sdi->priv;
usb = sdi->conn;
if (!drvc) {
sr_err("Driver was not initialized.");
return SR_ERR;
}
if (sdi->status != SR_ST_INACTIVE) {
sr_err("Device already open.");
return SR_ERR;
}
ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
if (ret != SR_OK)
return ret;
ret = libusb_set_configuration(usb->devhdl, USB_CONFIG);
if (ret != LIBUSB_SUCCESS) {
sr_err("Failed to set USB configuration: %s.",
libusb_error_name(ret));
sr_usb_close(usb);
return SR_ERR;
}
ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
if (ret != LIBUSB_SUCCESS) {
sr_err("Failed to claim interface: %s.",
libusb_error_name(ret));
sr_usb_close(usb);
return SR_ERR;
}
ret = drain_usb(usb, EP_REPLY);
if (ret != SR_OK)
return ret;
sdi->status = SR_ST_ACTIVE;
devc->active_fpga_config = FPGA_NOCONF;
devc->state = STATE_IDLE;
ret = (*devc->model->apply_fpga_config)(sdi);
if (ret == SR_OK)
ret = (*devc->model->device_init_check)(sdi);
if (ret != SR_OK) {
sdi->status = SR_ST_INACTIVE;
sr_usb_close(usb);
}
return ret;
}
/* Shutdown and close device.
*/
static int dev_close(struct sr_dev_inst *sdi)
{
struct drv_context *drvc;
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
int ret;
drvc = sdi->driver->context;
devc = sdi->priv;
usb = sdi->conn;
if (!drvc) {
sr_err("Driver was not initialized.");
return SR_ERR;
}
if (sdi->status == SR_ST_INACTIVE) {
sr_dbg("Device already closed.");
return SR_OK;
}
if (devc->acquisition) {
sr_err("Cannot close device during acquisition!");
/* Request stop, leak handle, and prepare for the worst. */
devc->cancel_requested = TRUE;
return SR_ERR_BUG;
}
sdi->status = SR_ST_INACTIVE;
/* Download of the shutdown bitstream, if any. */
ret = (*devc->model->apply_fpga_config)(sdi);
if (ret != SR_OK)
sr_warn("Unable to shut down device.");
libusb_release_interface(usb->devhdl, USB_INTERFACE);
sr_usb_close(usb);
return ret;
}
/* Check whether the device options contain a specific key.
* Also match against get/set/list bits if specified.
*/
static int has_devopt(const struct model_info *model, uint32_t key)
{
unsigned int i;
for (i = 0; i < model->num_devopts; i++) {
if ((model->devopts[i] & (SR_CONF_MASK | key)) == key)
return TRUE;
}
return FALSE;
}
/* Read device configuration setting.
*/
static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
unsigned int idx;
(void)cg;
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
if (!has_devopt(devc->model, key | SR_CONF_GET))
return SR_ERR_NA;
switch (key) {
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->samplerate);
break;
case SR_CONF_LIMIT_MSEC:
*data = g_variant_new_uint64(devc->limit_msec);
break;
case SR_CONF_LIMIT_SAMPLES:
*data = g_variant_new_uint64(devc->limit_samples);
break;
case SR_CONF_RLE:
*data = g_variant_new_boolean(devc->cfg_rle);
break;
case SR_CONF_EXTERNAL_CLOCK:
*data = g_variant_new_boolean(devc->cfg_clock_source
== CLOCK_EXT_CLK);
break;
case SR_CONF_CLOCK_EDGE:
idx = devc->cfg_clock_edge;
if (idx >= ARRAY_SIZE(signal_edge_names))
return SR_ERR_BUG;
*data = g_variant_new_string(signal_edge_names[idx]);
break;
case SR_CONF_TRIGGER_SOURCE:
idx = devc->cfg_trigger_source;
if (idx >= ARRAY_SIZE(trigger_source_names))
return SR_ERR_BUG;
*data = g_variant_new_string(trigger_source_names[idx]);
break;
case SR_CONF_TRIGGER_SLOPE:
idx = devc->cfg_trigger_slope;
if (idx >= ARRAY_SIZE(signal_edge_names))
return SR_ERR_BUG;
*data = g_variant_new_string(signal_edge_names[idx]);
break;
default:
/* Must not happen for a key listed in devopts. */
return SR_ERR_BUG;
}
return SR_OK;
}
/* Helper for mapping a string-typed configuration value to an index
* within a table of possible values.
*/
static int lookup_index(GVariant *value, const char *const *table, int len)
{
const char *entry;
int i;
entry = g_variant_get_string(value, NULL);
if (!entry)
return -1;
/* Linear search is fine for very small tables. */
for (i = 0; i < len; ++i) {
if (strcmp(entry, table[i]) == 0)
return i;
}
return -1;
}
/* Write device configuration setting.
*/
static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
uint64_t value;
struct dev_context *devc;
int idx;
(void)cg;
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
if (!has_devopt(devc->model, key | SR_CONF_SET))
return SR_ERR_NA;
switch (key) {
case SR_CONF_SAMPLERATE:
value = g_variant_get_uint64(data);
if (value < devc->model->samplerates[devc->model->num_samplerates - 1]
|| value > devc->model->samplerates[0])
return SR_ERR_SAMPLERATE;
devc->samplerate = value;
break;
case SR_CONF_LIMIT_MSEC:
value = g_variant_get_uint64(data);
if (value > MAX_LIMIT_MSEC)
return SR_ERR_ARG;
devc->limit_msec = value;
break;
case SR_CONF_LIMIT_SAMPLES:
value = g_variant_get_uint64(data);
if (value > MAX_LIMIT_SAMPLES)
return SR_ERR_ARG;
devc->limit_samples = value;
break;
case SR_CONF_RLE:
devc->cfg_rle = g_variant_get_boolean(data);
break;
case SR_CONF_EXTERNAL_CLOCK:
devc->cfg_clock_source = (g_variant_get_boolean(data))
? CLOCK_EXT_CLK : CLOCK_INTERNAL;
break;
case SR_CONF_CLOCK_EDGE:
idx = lookup_index(data, signal_edge_names,
ARRAY_SIZE(signal_edge_names));
if (idx < 0)
return SR_ERR_ARG;
devc->cfg_clock_edge = idx;
break;
case SR_CONF_TRIGGER_SOURCE:
idx = lookup_index(data, trigger_source_names,
ARRAY_SIZE(trigger_source_names));
if (idx < 0)
return SR_ERR_ARG;
devc->cfg_trigger_source = idx;
break;
case SR_CONF_TRIGGER_SLOPE:
idx = lookup_index(data, signal_edge_names,
ARRAY_SIZE(signal_edge_names));
if (idx < 0)
return SR_ERR_ARG;
devc->cfg_trigger_slope = idx;
break;
default:
/* Must not happen for a key listed in devopts. */
return SR_ERR_BUG;
}
return SR_OK;
}
/* Apply channel configuration change.
*/
static int config_channel_set(const struct sr_dev_inst *sdi,
struct sr_channel *ch, unsigned int changes)
{
uint64_t channel_bit;
struct dev_context *devc;
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
if (ch->index < 0 || ch->index >= devc->model->num_channels) {
sr_err("Channel index %d out of range.", ch->index);
return SR_ERR_BUG;
}
if ((changes & SR_CHANNEL_SET_ENABLED) != 0) {
channel_bit = UINT64_C(1) << ch->index;
/* Enable or disable logic input for this channel. */
if (ch->enabled)
devc->channel_mask |= channel_bit;
else
devc->channel_mask &= ~channel_bit;
}
return SR_OK;
}
/* Derive trigger masks from the session's trigger configuration.
*/
static int prepare_trigger_masks(const struct sr_dev_inst *sdi)
{
uint64_t trigger_mask;
uint64_t trigger_values;
uint64_t trigger_edge_mask;
uint64_t level_bit, type_bit;
struct dev_context *devc;
struct sr_trigger *trigger;
struct sr_trigger_stage *stage;
struct sr_trigger_match *match;
const GSList *node;
int idx;
enum sr_trigger_matches trg;
devc = sdi->priv;
trigger = sr_session_trigger_get(sdi->session);
if (!trigger || !trigger->stages)
return SR_OK;
if (trigger->stages->next) {
sr_err("This device only supports 1 trigger stage.");
return SR_ERR_ARG;
}
stage = trigger->stages->data;
trigger_mask = 0;
trigger_values = 0;
trigger_edge_mask = 0;
for (node = stage->matches; node; node = node->next) {
match = node->data;
if (!match->channel->enabled)
continue; /* ignore disabled channel */
idx = match->channel->index;
trg = match->match;
if (idx < 0 || idx >= devc->model->num_channels) {
sr_err("Channel index %d out of range.", idx);
return SR_ERR_BUG; /* should not happen */
}
if (trg != SR_TRIGGER_ZERO
&& trg != SR_TRIGGER_ONE
&& trg != SR_TRIGGER_RISING
&& trg != SR_TRIGGER_FALLING) {
sr_err("Unsupported trigger match for CH%d.", idx + 1);
return SR_ERR_ARG;
}
level_bit = (trg == SR_TRIGGER_ONE
|| trg == SR_TRIGGER_RISING) ? 1 : 0;
type_bit = (trg == SR_TRIGGER_RISING
|| trg == SR_TRIGGER_FALLING) ? 1 : 0;
trigger_mask |= UINT64_C(1) << idx;
trigger_values |= level_bit << idx;
trigger_edge_mask |= type_bit << idx;
}
devc->trigger_mask = trigger_mask;
devc->trigger_values = trigger_values;
devc->trigger_edge_mask = trigger_edge_mask;
return SR_OK;
}
/* Apply current device configuration to the hardware.
*/
static int config_commit(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int ret;
devc = sdi->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
if (devc->acquisition) {
sr_err("Acquisition still in progress?");
return SR_ERR;
}
ret = prepare_trigger_masks(sdi);
if (ret != SR_OK)
return ret;
ret = (*devc->model->apply_fpga_config)(sdi);
if (ret != SR_OK) {
sr_err("Failed to apply FPGA configuration.");
return ret;
}
return SR_OK;
}
/* List available choices for a configuration setting.
*/
static int config_list(uint32_t key, GVariant **data,
const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
GVariant *gvar;
GVariantBuilder gvb;
(void)cg;
if (key == SR_CONF_SCAN_OPTIONS) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
scanopts, ARRAY_SIZE(scanopts),
sizeof(scanopts[0]));
return SR_OK;
}
if (!sdi) {
if (key != SR_CONF_DEVICE_OPTIONS)
return SR_ERR_ARG;
/* List driver capabilities. */
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
drvopts, ARRAY_SIZE(drvopts),
sizeof(drvopts[0]));
return SR_OK;
}
devc = sdi->priv;
/* List the model's device options. */
if (key == SR_CONF_DEVICE_OPTIONS) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devc->model->devopts,
devc->model->num_devopts,
sizeof(devc->model->devopts[0]));
return SR_OK;
}
if (!has_devopt(devc->model, key | SR_CONF_LIST))
return SR_ERR_NA;
switch (key) {
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE_VARDICT);
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT64,
devc->model->samplerates,
devc->model->num_samplerates,
sizeof(devc->model->samplerates[0]));
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TRIGGER_MATCH:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
trigger_matches,
ARRAY_SIZE(trigger_matches),
sizeof(trigger_matches[0]));
break;
case SR_CONF_TRIGGER_SOURCE:
*data = g_variant_new_strv(trigger_source_names,
ARRAY_SIZE(trigger_source_names));
break;
case SR_CONF_TRIGGER_SLOPE:
case SR_CONF_CLOCK_EDGE:
*data = g_variant_new_strv(signal_edge_names,
ARRAY_SIZE(signal_edge_names));
break;
default:
/* Must not happen for a key listed in devopts. */
return SR_ERR_BUG;
}
return SR_OK;
}
/* Set up the device hardware to begin capturing samples as soon as the
* configured trigger conditions are met, or immediately if no triggers
* are configured.
*/
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
(void)cb_data;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
sr_info("Starting acquisition.");
return lwla_start_acquisition(sdi);
}
/* Request that a running capture operation be stopped.
*/
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
(void)cb_data;
devc = sdi->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
if (devc->state != STATE_IDLE && !devc->cancel_requested) {
devc->cancel_requested = TRUE;
sr_dbg("Stopping acquisition.");
}
return SR_OK;
}
/* SysClk LWLA driver descriptor.
*/
SR_PRIV struct sr_dev_driver sysclk_lwla_driver_info = {
.name = "sysclk-lwla",
.longname = "SysClk LWLA series",
.api_version = 1,
.init = init,
.cleanup = dev_clear,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_channel_set = config_channel_set,
.config_commit = config_commit,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.context = NULL,
};