libsigrok/hardware/zeroplus-logic-cube/zeroplus.c

833 lines
20 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <inttypes.h>
#include <glib.h>
#include <libusb.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "analyzer.h"
#define USB_VENDOR 0x0c12
#define VENDOR_NAME "ZEROPLUS"
#define MODEL_NAME "Logic Cube LAP-C"
#define MODEL_VERSION NULL
#define NUM_PROBES 16
#define USB_INTERFACE 0
#define USB_CONFIGURATION 1
#define NUM_TRIGGER_STAGES 4
#define TRIGGER_TYPES "01"
#define PACKET_SIZE 2048 /* ?? */
//#define ZP_EXPERIMENTAL
typedef struct {
unsigned short vid;
unsigned short pid;
char *model_name;
unsigned int channels;
unsigned int sample_depth; /* In Ksamples/channel */
unsigned int max_sampling_freq;
} model_t;
/*
* Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
* same 128K sample depth.
*/
static model_t zeroplus_models[] = {
{0x0c12, 0x7009, "LAP-C(16064)", 16, 64, 100},
{0x0c12, 0x700A, "LAP-C(16128)", 16, 128, 200},
/* TODO: we don't know anything about these
{0x0c12, 0x700B, "LAP-C(32128)", 32, 128, 200},
{0x0c12, 0x700C, "LAP-C(321000)", 32, 1024, 200},
{0x0c12, 0x700D, "LAP-C(322000)", 32, 2048, 200},
*/
{0x0c12, 0x700E, "LAP-C(16032)", 16, 32, 100},
{0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
{ 0, 0, 0, 0, 0, 0 }
};
static const int hwcaps[] = {
SR_HWCAP_LOGIC_ANALYZER,
SR_HWCAP_SAMPLERATE,
SR_HWCAP_CAPTURE_RATIO,
/* These are really implemented in the driver, not the hardware. */
SR_HWCAP_LIMIT_SAMPLES,
0,
};
/*
* ZEROPLUS LAP-C (16032) numbers the 16 probes A0-A7 and B0-B7.
* We currently ignore other untested/unsupported devices here.
*/
static const char *probe_names[NUM_PROBES + 1] = {
"A0",
"A1",
"A2",
"A3",
"A4",
"A5",
"A6",
"A7",
"B0",
"B1",
"B2",
"B3",
"B4",
"B5",
"B6",
"B7",
NULL,
};
/* List of struct sr_dev_inst, maintained by dev_open()/dev_close(). */
SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info;
static struct sr_dev_driver *di = &zeroplus_logic_cube_driver_info;
/*
* The hardware supports more samplerates than these, but these are the
* options hardcoded into the vendor's Windows GUI.
*/
/*
* TODO: We shouldn't support 150MHz and 200MHz on devices that don't go up
* that high.
*/
static const uint64_t supported_samplerates[] = {
SR_HZ(100),
SR_HZ(500),
SR_KHZ(1),
SR_KHZ(5),
SR_KHZ(25),
SR_KHZ(50),
SR_KHZ(100),
SR_KHZ(200),
SR_KHZ(400),
SR_KHZ(800),
SR_MHZ(1),
SR_MHZ(10),
SR_MHZ(25),
SR_MHZ(50),
SR_MHZ(80),
SR_MHZ(100),
SR_MHZ(150),
SR_MHZ(200),
0,
};
static const struct sr_samplerates samplerates = {
0,
0,
0,
supported_samplerates,
};
/* Private, per-device-instance driver context. */
struct dev_context {
uint64_t cur_samplerate;
uint64_t max_samplerate;
uint64_t limit_samples;
int num_channels; /* TODO: This isn't initialized before it's needed :( */
int memory_size;
unsigned int max_memory_size;
//uint8_t probe_mask;
//uint8_t trigger_mask[NUM_TRIGGER_STAGES];
//uint8_t trigger_value[NUM_TRIGGER_STAGES];
// uint8_t trigger_buffer[NUM_TRIGGER_STAGES];
int trigger;
unsigned int capture_ratio;
/* TODO: this belongs in the device instance */
struct sr_usb_dev_inst *usb;
};
static int hw_dev_close(struct sr_dev_inst *sdi);
static unsigned int get_memory_size(int type)
{
if (type == MEMORY_SIZE_8K)
return 8 * 1024;
else if (type == MEMORY_SIZE_64K)
return 64 * 1024;
else if (type == MEMORY_SIZE_128K)
return 128 * 1024;
else if (type == MEMORY_SIZE_512K)
return 512 * 1024;
else
return 0;
}
#if 0
static int configure_probes(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
const struct sr_probe *probe;
const GSList *l;
int probe_bit, stage, i;
char *tc;
/* Note: sdi and sdi->priv are non-NULL, the caller checked this. */
devc = sdi->priv;
devc->probe_mask = 0;
for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
devc->trigger_mask[i] = 0;
devc->trigger_value[i] = 0;
}
stage = -1;
for (l = sdi->probes; l; l = l->next) {
probe = (struct sr_probe *)l->data;
if (probe->enabled == FALSE)
continue;
probe_bit = 1 << (probe->index);
devc->probe_mask |= probe_bit;
if (probe->trigger) {
stage = 0;
for (tc = probe->trigger; *tc; tc++) {
devc->trigger_mask[stage] |= probe_bit;
if (*tc == '1')
devc->trigger_value[stage] |= probe_bit;
stage++;
if (stage > NUM_TRIGGER_STAGES)
return SR_ERR;
}
}
}
return SR_OK;
}
#endif
static int configure_probes(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
const GSList *l;
const struct sr_probe *probe;
char *tc;
int type;
/* Note: sdi and sdi->priv are non-NULL, the caller checked this. */
devc = sdi->priv;
for (l = sdi->probes; l; l = l->next) {
probe = (struct sr_probe *)l->data;
if (probe->enabled == FALSE)
continue;
if ((tc = probe->trigger)) {
switch (*tc) {
case '1':
type = TRIGGER_HIGH;
break;
case '0':
type = TRIGGER_LOW;
break;
#if 0
case 'r':
type = TRIGGER_POSEDGE;
break;
case 'f':
type = TRIGGER_NEGEDGE;
break;
case 'c':
type = TRIGGER_ANYEDGE;
break;
#endif
default:
return SR_ERR;
}
analyzer_add_trigger(probe->index, type);
devc->trigger = 1;
}
}
return SR_OK;
}
static int clear_instances(void)
{
GSList *l;
struct sr_dev_inst *sdi;
struct drv_context *drvc;
struct dev_context *devc;
drvc = di->priv;
for (l = drvc->instances; l; l = l->next) {
sdi = l->data;
if (!(devc = sdi->priv)) {
/* Log error, but continue cleaning up the rest. */
sr_err("zeroplus: %s: sdi->priv was NULL, continuing", __func__);
continue;
}
sr_usb_dev_inst_free(devc->usb);
/* Properly close all devices... */
hw_dev_close(sdi);
/* ...and free all their memory. */
sr_dev_inst_free(sdi);
}
g_slist_free(drvc->instances);
drvc->instances = NULL;
return SR_OK;
}
/*
* API callbacks
*/
static int hw_init(struct sr_context *sr_ctx)
{
struct drv_context *drvc;
if (!(drvc = g_try_malloc0(sizeof(struct drv_context)))) {
sr_err("zeroplus: driver context malloc failed.");
return SR_ERR_MALLOC;
}
drvc->sr_ctx = sr_ctx;
di->priv = drvc;
return SR_OK;
}
static GSList *hw_scan(GSList *options)
{
struct sr_dev_inst *sdi;
struct sr_probe *probe;
struct drv_context *drvc;
struct dev_context *devc;
model_t *prof;
struct libusb_device_descriptor des;
libusb_device **devlist;
GSList *devices;
int ret, devcnt, i, j;
(void)options;
drvc = di->priv;
devices = NULL;
clear_instances();
/* Find all ZEROPLUS analyzers and add them to device list. */
devcnt = 0;
libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
for (i = 0; devlist[i]; i++) {
ret = libusb_get_device_descriptor(devlist[i], &des);
if (ret != 0) {
sr_err("zp: failed to get device descriptor: %s",
libusb_error_name(ret));
continue;
}
prof = NULL;
for (j = 0; j < zeroplus_models[j].vid; j++) {
if (des.idVendor == zeroplus_models[j].vid &&
des.idProduct == zeroplus_models[j].pid) {
prof = &zeroplus_models[j];
}
}
/* Skip if the device was not found */
if (!prof)
continue;
sr_info("zp: Found ZEROPLUS model %s", prof->model_name);
/* Register the device with libsigrok. */
if (!(sdi = sr_dev_inst_new(devcnt, SR_ST_INACTIVE,
VENDOR_NAME, prof->model_name, NULL))) {
sr_err("zp: %s: sr_dev_inst_new failed", __func__);
return NULL;
}
sdi->driver = di;
/* Allocate memory for our private driver context. */
if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) {
sr_err("zp: %s: devc malloc failed", __func__);
return NULL;
}
sdi->priv = devc;
devc->num_channels = prof->channels;
#ifdef ZP_EXPERIMENTAL
devc->max_memory_size = 128 * 1024;
devc->max_samplerate = 200;
#else
devc->max_memory_size = prof->sample_depth * 1024;
devc->max_samplerate = prof->max_sampling_freq;
#endif
devc->max_samplerate *= SR_MHZ(1);
devc->memory_size = MEMORY_SIZE_8K;
// memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
/* Fill in probelist according to this device's profile. */
for (j = 0; j < devc->num_channels; j++) {
if (!(probe = sr_probe_new(j, SR_PROBE_LOGIC, TRUE,
probe_names[j])))
return NULL;
sdi->probes = g_slist_append(sdi->probes, probe);
}
devices = g_slist_append(devices, sdi);
drvc->instances = g_slist_append(drvc->instances, sdi);
devc->usb = sr_usb_dev_inst_new(
libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), NULL);
devcnt++;
}
libusb_free_device_list(devlist, 1);
return devices;
}
static GSList *hw_dev_list(void)
{
struct drv_context *drvc;
drvc = di->priv;
return drvc->instances;
}
static int hw_dev_open(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct drv_context *drvc = di->priv;
libusb_device **devlist, *dev;
struct libusb_device_descriptor des;
int device_count, ret, i;
if (!(devc = sdi->priv)) {
sr_err("zp: %s: sdi->priv was NULL", __func__);
return SR_ERR_ARG;
}
device_count = libusb_get_device_list(drvc->sr_ctx->libusb_ctx,
&devlist);
if (device_count < 0) {
sr_err("zp: Failed to retrieve device list");
return SR_ERR;
}
dev = NULL;
for (i = 0; i < device_count; i++) {
if ((ret = libusb_get_device_descriptor(devlist[i], &des))) {
sr_err("zp: Failed to get device descriptor: %s.",
libusb_error_name(ret));
continue;
}
if (libusb_get_bus_number(devlist[i]) == devc->usb->bus
&& libusb_get_device_address(devlist[i]) == devc->usb->address) {
dev = devlist[i];
break;
}
}
if (!dev) {
sr_err("device on bus %d address %d disappeared!",
devc->usb->bus, devc->usb->address);
return SR_ERR;
}
if (!(ret = libusb_open(dev, &(devc->usb->devhdl)))) {
sdi->status = SR_ST_ACTIVE;
sr_info("zp: opened device %d on %d.%d interface %d",
sdi->index, devc->usb->bus,
devc->usb->address, USB_INTERFACE);
} else {
sr_err("zp: failed to open device: %s", libusb_error_name(ret));
return SR_ERR;
}
ret = libusb_set_configuration(devc->usb->devhdl, USB_CONFIGURATION);
if (ret < 0) {
sr_err("zp: Unable to set USB configuration %d: %s",
USB_CONFIGURATION, libusb_error_name(ret));
return SR_ERR;
}
ret = libusb_claim_interface(devc->usb->devhdl, USB_INTERFACE);
if (ret != 0) {
sr_err("zp: Unable to claim interface: %s",
libusb_error_name(ret));
return SR_ERR;
}
/* Set default configuration after power on */
if (analyzer_read_status(devc->usb->devhdl) == 0)
analyzer_configure(devc->usb->devhdl);
analyzer_reset(devc->usb->devhdl);
analyzer_initialize(devc->usb->devhdl);
//analyzer_set_memory_size(MEMORY_SIZE_512K);
// analyzer_set_freq(g_freq, g_freq_scale);
analyzer_set_trigger_count(1);
// analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
// * get_memory_size(g_memory_size)) / 100) >> 2);
#if 0
if (g_double_mode == 1)
analyzer_set_compression(COMPRESSION_DOUBLE);
else if (g_compression == 1)
analyzer_set_compression(COMPRESSION_ENABLE);
else
#endif
analyzer_set_compression(COMPRESSION_NONE);
if (devc->cur_samplerate == 0) {
/* Samplerate hasn't been set. Default to 1MHz. */
analyzer_set_freq(1, FREQ_SCALE_MHZ);
devc->cur_samplerate = SR_MHZ(1);
}
return SR_OK;
}
static int hw_dev_close(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
if (!(devc = sdi->priv)) {
sr_err("zp: %s: sdi->priv was NULL", __func__);
return SR_ERR;
}
if (!devc->usb->devhdl)
return SR_ERR;
sr_info("zp: closing device %d on %d.%d interface %d", sdi->index,
devc->usb->bus, devc->usb->address, USB_INTERFACE);
libusb_release_interface(devc->usb->devhdl, USB_INTERFACE);
libusb_reset_device(devc->usb->devhdl);
libusb_close(devc->usb->devhdl);
devc->usb->devhdl = NULL;
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int hw_cleanup(void)
{
struct drv_context *drvc;
if (!(drvc = di->priv))
return SR_OK;
clear_instances();
return SR_OK;
}
static int hw_info_get(int info_id, const void **data,
const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
switch (info_id) {
case SR_DI_HWCAPS:
*data = hwcaps;
break;
case SR_DI_NUM_PROBES:
if (sdi) {
devc = sdi->priv;
*data = GINT_TO_POINTER(devc->num_channels);
sr_spew("zp: %s: Returning number of channels: %d.",
__func__, devc->num_channels);
} else
return SR_ERR;
break;
case SR_DI_PROBE_NAMES:
*data = probe_names;
sr_spew("zp: %s: Returning probenames.", __func__);
break;
case SR_DI_SAMPLERATES:
*data = &samplerates;
sr_spew("zp: %s: Returning samplerates.", __func__);
break;
case SR_DI_TRIGGER_TYPES:
*data = TRIGGER_TYPES;
sr_spew("zp: %s: Returning triggertypes: %s.", __func__, TRIGGER_TYPES);
break;
case SR_DI_CUR_SAMPLERATE:
if (sdi) {
devc = sdi->priv;
*data = &devc->cur_samplerate;
sr_spew("zp: %s: Returning samplerate: %" PRIu64 "Hz.",
__func__, devc->cur_samplerate);
} else
return SR_ERR;
break;
default:
return SR_ERR_ARG;
}
return SR_OK;
}
static int set_samplerate(struct dev_context *devc, uint64_t samplerate)
{
int i;
for (i = 0; supported_samplerates[i]; i++)
if (samplerate == supported_samplerates[i])
break;
if (!supported_samplerates[i] || samplerate > devc->max_samplerate) {
sr_err("zp: %s: unsupported samplerate", __func__);
return SR_ERR_ARG;
}
sr_info("zp: Setting samplerate to %" PRIu64 "Hz.", samplerate);
if (samplerate >= SR_MHZ(1))
analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
else if (samplerate >= SR_KHZ(1))
analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
else
analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
devc->cur_samplerate = samplerate;
return SR_OK;
}
static int set_limit_samples(struct dev_context *devc, uint64_t samples)
{
devc->limit_samples = samples;
if (samples <= 2 * 1024)
devc->memory_size = MEMORY_SIZE_8K;
else if (samples <= 16 * 1024)
devc->memory_size = MEMORY_SIZE_64K;
else if (samples <= 32 * 1024 ||
devc->max_memory_size <= 32 * 1024)
devc->memory_size = MEMORY_SIZE_128K;
else
devc->memory_size = MEMORY_SIZE_512K;
sr_info("zp: Setting memory size to %dK.",
get_memory_size(devc->memory_size) / 1024);
analyzer_set_memory_size(devc->memory_size);
return SR_OK;
}
static int set_capture_ratio(struct dev_context *devc, uint64_t ratio)
{
if (ratio > 100) {
sr_err("zp: %s: invalid capture ratio", __func__);
return SR_ERR_ARG;
}
devc->capture_ratio = ratio;
sr_info("zp: Setting capture ratio to %d%%.", devc->capture_ratio);
return SR_OK;
}
static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap,
const void *value)
{
struct dev_context *devc;
if (!sdi) {
sr_err("zp: %s: sdi was NULL", __func__);
return SR_ERR_ARG;
}
if (!(devc = sdi->priv)) {
sr_err("zp: %s: sdi->priv was NULL", __func__);
return SR_ERR_ARG;
}
switch (hwcap) {
case SR_HWCAP_SAMPLERATE:
return set_samplerate(devc, *(const uint64_t *)value);
case SR_HWCAP_LIMIT_SAMPLES:
return set_limit_samples(devc, *(const uint64_t *)value);
case SR_HWCAP_CAPTURE_RATIO:
return set_capture_ratio(devc, *(const uint64_t *)value);
default:
return SR_ERR;
}
}
static void set_triggerbar(struct dev_context *devc)
{
unsigned int ramsize;
unsigned int n;
unsigned int triggerbar;
ramsize = get_memory_size(devc->memory_size) / 4;
if (devc->trigger) {
n = ramsize;
if (devc->max_memory_size < n)
n = devc->max_memory_size;
if (devc->limit_samples < n)
n = devc->limit_samples;
n = n * devc->capture_ratio / 100;
if (n > ramsize - 8)
triggerbar = ramsize - 8;
else
triggerbar = n;
} else {
triggerbar = 0;
}
analyzer_set_triggerbar_address(triggerbar);
analyzer_set_ramsize_trigger_address(ramsize - triggerbar);
sr_dbg("zp: triggerbar_address = %d(0x%x)", triggerbar, triggerbar);
sr_dbg("zp: ramsize_triggerbar_address = %d(0x%x)",
ramsize - triggerbar, ramsize - triggerbar);
}
static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
void *cb_data)
{
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct sr_datafeed_header header;
struct sr_datafeed_meta_logic meta;
//uint64_t samples_read;
int res;
unsigned int packet_num;
unsigned int n;
unsigned char *buf;
struct dev_context *devc;
if (!(devc = sdi->priv)) {
sr_err("zp: %s: sdi->priv was NULL", __func__);
return SR_ERR_ARG;
}
if (configure_probes(sdi) != SR_OK) {
sr_err("zp: failed to configured probes");
return SR_ERR;
}
set_triggerbar(devc);
/* push configured settings to device */
analyzer_configure(devc->usb->devhdl);
analyzer_start(devc->usb->devhdl);
sr_info("zp: Waiting for data");
analyzer_wait_data(devc->usb->devhdl);
sr_info("zp: Stop address = 0x%x",
analyzer_get_stop_address(devc->usb->devhdl));
sr_info("zp: Now address = 0x%x",
analyzer_get_now_address(devc->usb->devhdl));
sr_info("zp: Trigger address = 0x%x",
analyzer_get_trigger_address(devc->usb->devhdl));
packet.type = SR_DF_HEADER;
packet.payload = &header;
header.feed_version = 1;
gettimeofday(&header.starttime, NULL);
sr_session_send(cb_data, &packet);
/* Send metadata about the SR_DF_LOGIC packets to come. */
packet.type = SR_DF_META_LOGIC;
packet.payload = &meta;
meta.samplerate = devc->cur_samplerate;
meta.num_probes = devc->num_channels;
sr_session_send(cb_data, &packet);
if (!(buf = g_try_malloc(PACKET_SIZE))) {
sr_err("zp: %s: buf malloc failed", __func__);
return SR_ERR_MALLOC;
}
//samples_read = 0;
analyzer_read_start(devc->usb->devhdl);
/* Send the incoming transfer to the session bus. */
n = get_memory_size(devc->memory_size);
if (devc->max_memory_size * 4 < n)
n = devc->max_memory_size * 4;
for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
res = analyzer_read_data(devc->usb->devhdl, buf, PACKET_SIZE);
sr_info("zp: Tried to read %d bytes, actually read %d bytes",
PACKET_SIZE, res);
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = PACKET_SIZE;
logic.unitsize = 4;
logic.data = buf;
sr_session_send(cb_data, &packet);
//samples_read += res / 4;
}
analyzer_read_stop(devc->usb->devhdl);
g_free(buf);
packet.type = SR_DF_END;
sr_session_send(cb_data, &packet);
return SR_OK;
}
/* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct sr_datafeed_packet packet;
struct dev_context *devc;
packet.type = SR_DF_END;
sr_session_send(cb_data, &packet);
if (!(devc = sdi->priv)) {
sr_err("zp: %s: sdi->priv was NULL", __func__);
return SR_ERR_BUG;
}
analyzer_reset(devc->usb->devhdl);
/* TODO: Need to cancel and free any queued up transfers. */
return SR_OK;
}
SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info = {
.name = "zeroplus-logic-cube",
.longname = "ZEROPLUS Logic Cube LAP-C series",
.api_version = 1,
.init = hw_init,
.cleanup = hw_cleanup,
.scan = hw_scan,
.dev_list = hw_dev_list,
.dev_clear = hw_cleanup,
.dev_open = hw_dev_open,
.dev_close = hw_dev_close,
.info_get = hw_info_get,
.dev_config_set = hw_dev_config_set,
.dev_acquisition_start = hw_dev_acquisition_start,
.dev_acquisition_stop = hw_dev_acquisition_stop,
.priv = NULL,
};