libsigrok/hardware/gmc-mh-1x-2x/protocol.c

1548 lines
38 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013, 2014 Matthias Heidbrink <m-sigrok@heidbrink.biz>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file
* Gossen Metrawatt Metrahit 1x/2x drivers
* @internal
*/
#include <math.h>
#include <string.h>
#include "protocol.h"
/* Internal Headers */
static guchar calc_chksum_14(guchar* dta);
static int chk_msg14(struct sr_dev_inst *sdi);
/** Set or clear flags in devc->mqflags. */
static void setmqf(struct dev_context *devc, uint64_t flags, gboolean set)
{
if (set)
devc->mqflags |= flags;
else
devc->mqflags &= ~flags;
}
/** Decode current type and measured value, Metrahit 12-16. */
static void decode_ctmv_16(uint8_t ctmv, struct dev_context *devc)
{
devc->mq = 0;
devc->unit = 0;
devc->mqflags = 0;
switch (ctmv) {
case 0x00: /* 0000 - */
break;
case 0x01: /* 0001 mV DC */
devc->scale1000 = -1; /* Fall through */
case 0x02: /* 0010 V DC */
case 0x03: /* 0011 V AC+DC */
case 0x04: /* 0100 V AC */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_VOLT;
if (ctmv <= 0x03)
devc->mqflags |= SR_MQFLAG_DC;
if (ctmv >= 0x03) {
devc->mqflags |= SR_MQFLAG_AC;
if (devc->model >= METRAHIT_16S)
devc->mqflags |= SR_MQFLAG_RMS;
}
break;
case 0x05: /* 0101 Hz (15S/16S only) */
case 0x06: /* 0110 kHz (15S/16S only) */
devc->mq = SR_MQ_FREQUENCY;
devc->unit = SR_UNIT_HERTZ;
if (ctmv == 0x06)
devc->scale1000 = 1;
break;
case 0x07: /* 0111 % (15S/16S only) */
devc->mq = SR_MQ_DUTY_CYCLE;
devc->unit = SR_UNIT_PERCENTAGE;
break;
case 0x08: /* 1000 Diode */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_VOLT;
devc->mqflags |= SR_MQFLAG_DIODE;
break;
case 0x09: /* 1001 Ohm, °C */
case 0x0a: /* 1010 kOhm */
case 0x0b: /* 1011 MOhm */
devc->mq = SR_MQ_RESISTANCE; /* Changed to temp. later if req.*/
devc->unit = SR_UNIT_OHM;
devc->scale1000 = ctmv - 0x09;
break;
case 0x0c: /* 1100 nF (15S/16S only) */
case 0x0d: /* 1101 µF (15S/16S only) */
devc->mq = SR_MQ_CAPACITANCE;
devc->unit = SR_UNIT_FARAD;
if (ctmv == 0x0c)
devc->scale1000 = -3;
else
devc->scale1000 = -2;
break;
case 0x0e: /* mA, µA */
devc->scale1000 = -1; /* Fall through. */
case 0x0f: /* A */
devc->mq = SR_MQ_CURRENT;
devc->unit = SR_UNIT_AMPERE;
if (devc->model == METRAHIT_16S)
devc->mqflags |= SR_MQFLAG_RMS;
/* 16I A only with clamp, RMS questionable. */
break;
}
}
/**
* Decode range/sign/acdc byte special chars (Metrahit 12-16).
*
* @param[in] rs Range and sign byte.
*/
static void decode_rs_16(uint8_t rs, struct dev_context *devc)
{
sr_spew("decode_rs_16(%d) scale = %f", rs, devc->scale);
if (rs & 0x04) /* Sign */
devc->scale *= -1.0;
if (devc->mq == SR_MQ_CURRENT) {
if (rs & 0x08) /* Current is AC */
devc->mqflags |= SR_MQFLAG_AC;
else
devc->mqflags |= SR_MQFLAG_DC;
}
switch (rs & 0x03) {
case 0:
if (devc->mq == SR_MQ_VOLTAGE) /* V */
devc->scale *= 0.1;
else if (devc->mq == SR_MQ_CURRENT) /* 000.0 µA */
devc->scale *= 0.00001;
else if (devc->mq == SR_MQ_RESISTANCE) {
if (devc->buflen >= 10) {
/* °C with 10 byte msg type, otherwise GOhm. */
devc->mq = SR_MQ_TEMPERATURE;
devc->unit = SR_UNIT_CELSIUS;
devc->scale *= 0.01;
} else if (devc->scale1000 == 2) {
/* 16I Iso 500/1000V 3 GOhm */
devc->scale *= 0.1;
}
}
break;
case 1:
devc->scale *= 0.0001;
break;
case 2:
devc->scale *= 0.001;
break;
case 3:
devc->scale *= 0.01;
break;
}
}
/**
* Decode special chars, Metrahit 12-16.
*
* @param[in] spc Special characters 1 and 2 (s1 | (s2 << 4)).
*/
static void decode_spc_16(uint8_t spc, struct dev_context *devc)
{
/* xxxx1xxx ON */
/* TODO: What does that mean? Power on? The 16I sets this. */
/* xxxxx1xx BEEP */
/* xxxxxx1x Low battery */
/* xxxxxxx1 FUSE */
/* 1xxxxxxx MIN */
setmqf(devc, SR_MQFLAG_MIN, spc & 0x80);
/* x1xxxxxx MAN */
setmqf(devc, SR_MQFLAG_AUTORANGE, !(spc & 0x40));
/* xx1xxxxx DATA */
setmqf(devc, SR_MQFLAG_HOLD, spc & 0x20);
/* xxx1xxxx MAX */
setmqf(devc, SR_MQFLAG_MAX, spc & 0x10);
}
/** Decode current type and measured value, Metrahit 18. */
static void decode_ctmv_18(uint8_t ctmv, struct dev_context *devc)
{
devc->mq = 0;
devc->unit = 0;
devc->mqflags = 0;
switch (ctmv) {
case 0x00: /* 0000 - */
break;
case 0x01: /* 0001 V AC */
case 0x02: /* 0010 V AC+DC */
case 0x03: /* 0011 V DC */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_VOLT;
if (ctmv <= 0x02)
devc->mqflags |= (SR_MQFLAG_AC | SR_MQFLAG_RMS);
if (ctmv >= 0x02)
devc->mqflags |= SR_MQFLAG_DC;
break;
case 0x04: /* 0100 Ohm/Ohm with buzzer */
devc->mq = SR_MQ_RESISTANCE;
devc->unit = SR_UNIT_OHM;
break;
case 0x05: /* 0101 Diode/Diode with buzzer */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_VOLT;
devc->mqflags |= SR_MQFLAG_DIODE;
break;
case 0x06: /* 0110 °C */
devc->mq = SR_MQ_TEMPERATURE;
devc->unit = SR_UNIT_CELSIUS;
break;
case 0x07: /* 0111 F */
devc->mq = SR_MQ_CAPACITANCE;
devc->unit = SR_UNIT_FARAD;
break;
case 0x08: /* 1000 mA DC */
case 0x09: /* 1001 A DC */
case 0x0a: /* 1010 mA AC+DC */
case 0x0b: /* 1011 A AC+DC */
devc->mq = SR_MQ_CURRENT;
devc->unit = SR_UNIT_AMPERE;
devc->mqflags |= SR_MQFLAG_DC;
if (ctmv >= 0x0a)
devc->mqflags |= (SR_MQFLAG_AC | SR_MQFLAG_RMS);
if ((ctmv == 0x08) || (ctmv == 0x0a))
devc->scale1000 = -1;
break;
case 0x0c: /* 1100 Hz */
devc->mq = SR_MQ_FREQUENCY;
devc->unit = SR_UNIT_HERTZ;
break;
case 0x0d: /* 1101 dB */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_DECIBEL_VOLT;
devc->mqflags |= SR_MQFLAG_AC; /* dB available for AC only */
break;
case 0x0e: /* 1110 Events AC, Events AC+DC. Actually delivers just
* current voltage via IR, nothing more. */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_VOLT;
devc->mqflags |= SR_MQFLAG_AC | SR_MQFLAG_DC | SR_MQFLAG_RMS;
break;
case 0x0f: /* 1111 Clock */
devc->mq = SR_MQ_TIME;
devc->unit = SR_UNIT_SECOND;
devc->mqflags |= SR_MQFLAG_DURATION;
break;
}
}
/**
* Decode range/sign/acdc byte special chars, Metrahit 18.
*
* @param[in] rs Rance/sign byte.
*/
static void decode_rs_18(uint8_t rs, struct dev_context *devc)
{
int range;
/* Sign */
if (((devc->scale > 0) && (rs & 0x08)) ||
((devc->scale < 0) && !(rs & 0x08)))
devc->scale *= -1.0;
/* Range */
range = rs & 0x07;
switch (devc->mq) {
case SR_MQ_VOLTAGE:
if (devc->unit == SR_UNIT_DECIBEL_VOLT) {
devc->scale *= pow(10.0, -2);
/*
* When entering relative mode, the device switches
* from 10 byte to 6 byte msg format. Unfortunately
* it switches back to 10 byte when the second value
* is measured, so that's not sufficient to
* identify relative mode.
*/
}
else if (devc->vmains_29S)
devc->scale *= pow(10.0, range - 2);
else
devc->scale *= pow(10.0, range - 5);
break;
case SR_MQ_CURRENT:
if (devc->scale1000 == -1)
devc->scale *= pow(10.0, range - 5);
else
devc->scale *= pow(10.0, range - 4);
break;
case SR_MQ_RESISTANCE:
devc->scale *= pow(10.0, range - 2);
break;
case SR_MQ_FREQUENCY:
devc->scale *= pow(10.0, range - 2);
break;
case SR_MQ_TEMPERATURE:
devc->scale *= pow(10.0, range - 2);
break;
case SR_MQ_CAPACITANCE:
devc->scale *= pow(10.0, range - 13);
break;
/* TODO: 29S Mains measurements. */
}
}
/**
* Decode special chars, Metrahit 18.
*
* @param[in] spc Special characters 1 and 2 (s1 | (s2 << 4)).
*/
static void decode_spc_18(uint8_t spc, struct dev_context *devc)
{
/* xxxx1xxx ZERO */
/* xxxxx1xx BEEP */
/* xxxxxx1x Low battery */
/* xxxxxxx1 Fuse */
if (devc->mq == SR_MQ_TIME) {
/* xxx1xxxx Clock running: 1; stop: 0 */
sr_spew("Clock running: %d", spc >> 4);
} else {
/* 1xxxxxxx MAN */
setmqf(devc, SR_MQFLAG_AUTORANGE, !(spc & 0x80));
/* x1xxxxxx MIN */
setmqf(devc, SR_MQFLAG_MIN, spc & 0x40);
/* xx1xxxxx MAX */
setmqf(devc, SR_MQFLAG_MAX, spc & 0x20);
/* xxx1xxxx DATA */
setmqf(devc, SR_MQFLAG_HOLD, spc & 0x10);
}
}
/**
* Decode current type and measured value, Metrahit 2x.
*
* @param[in] ctmv Current type and measured value (v1 | (v2 << 4)).
*/
static void decode_ctmv_2x(uint8_t ctmv, struct dev_context *devc)
{
if ((ctmv > 0x1c) || (!devc)) {
sr_err("decode_ctmv_2x(%d): invalid param(s)!", ctmv);
return;
}
devc->mq = 0;
devc->unit = 0;
devc->mqflags = 0;
switch (ctmv) {
/* 00000 unused */
case 0x01: /* 00001 V DC */
case 0x02: /* 00010 V AC+DC */
case 0x03: /* 00011 V AC */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_VOLT;
if (ctmv <= 0x02)
devc->mqflags |= SR_MQFLAG_DC;
if (ctmv >= 0x02) {
devc->mqflags |= SR_MQFLAG_AC;
if (devc->model >= METRAHIT_24S)
devc->mqflags |= SR_MQFLAG_RMS;
}
break;
case 0x04: /* 00100 mA DC */
case 0x05: /* 00101 mA AC+DC */
devc->scale1000 = -1;
case 0x06: /* 00110 A DC */
case 0x07: /* 00111 A AC+DC */
devc->mq = SR_MQ_CURRENT;
devc->unit = SR_UNIT_AMPERE;
devc->mqflags |= SR_MQFLAG_DC;
if ((ctmv == 0x05) || (ctmv == 0x07)) {
devc->mqflags |= SR_MQFLAG_AC;
if (devc->model >= METRAHIT_24S)
devc->mqflags |= SR_MQFLAG_RMS;
}
break;
case 0x08: /* 01000 Ohm */
devc->mq = SR_MQ_RESISTANCE;
devc->unit = SR_UNIT_OHM;
break;
case 0x09: /* 01001 F */
devc->mq = SR_MQ_CAPACITANCE;
devc->unit = SR_UNIT_FARAD;
devc->scale *= 0.1;
break;
case 0x0a: /* 01010 V dB */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_DECIBEL_VOLT;
devc->mqflags |= SR_MQFLAG_AC;
if (devc->model >= METRAHIT_24S)
devc->mqflags |= SR_MQFLAG_RMS;
break;
case 0x0b: /* 01011 Hz U ACDC */
case 0x0c: /* 01100 Hz U AC */
devc->mq = SR_MQ_FREQUENCY;
devc->unit = SR_UNIT_HERTZ;
devc->mqflags |= SR_MQFLAG_AC;
if (ctmv <= 0x0b)
devc->mqflags |= SR_MQFLAG_DC;
break;
case 0x0d: /* 01101 W on power, mA range (29S only) */
devc->scale *= 0.001;
/* Fall through! */
case 0x0e: /* 01110 W on power, A range (29S only) */
devc->mq = SR_MQ_POWER;
devc->unit = SR_UNIT_WATT;
break;
case 0x0f: /* 01111 Diode */
case 0x10: /* 10000 Diode with buzzer (actually cont. with voltage) */
devc->unit = SR_UNIT_VOLT;
if (ctmv == 0x0f) {
devc->mq = SR_MQ_VOLTAGE;
devc->mqflags |= SR_MQFLAG_DIODE;
} else {
devc->mq = SR_MQ_CONTINUITY;
devc->scale *= 0.00001;
}
devc->unit = SR_UNIT_VOLT;
break;
case 0x11: /* 10001 Ohm with buzzer */
devc->mq = SR_MQ_CONTINUITY;
devc->unit = SR_UNIT_OHM;
devc->scale1000 = -1;
break;
case 0x12: /* 10010 Temperature */
devc->mq = SR_MQ_TEMPERATURE;
devc->unit = SR_UNIT_CELSIUS;
/* This can be Fahrenheit. That is detected by range=4 later. */
break;
/* 0x13 10011, 0x14 10100 unsed */
case 0x15: /* 10101 Press (29S only) */
/* TODO: What does that mean? Possibly phase shift?
Then we need a unit/flag for it. */
devc->mq = SR_MQ_GAIN;
devc->unit = SR_UNIT_PERCENTAGE;
break;
case 0x16: /* 10110 Pulse W (29S only) */
/* TODO: Own unit and flag for this! */
devc->mq = SR_MQ_POWER;
devc->unit = SR_UNIT_WATT;
break;
case 0x17: /* 10111 TRMS V on mains (29S only) */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_VOLT;
devc->mqflags |= (SR_MQFLAG_AC | SR_MQFLAG_RMS);
devc->vmains_29S = TRUE;
break;
case 0x18: /* 11000 Counter (zero crossings of a signal) */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_UNITLESS;
break;
case 0x19: /* 11001 Events U ACDC */
case 0x1a: /* 11010 Events U AC */
/* TODO: No unit or flags for this yet! */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_UNITLESS;
devc->mqflags |= SR_MQFLAG_AC;
if (ctmv <= 0x19)
devc->mqflags |= SR_MQFLAG_DC;
break;
case 0x1b: /* 11011 pulse on mains (29S only) */
/* TODO: No unit or flags for this yet! */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_UNITLESS;
devc->mqflags |= SR_MQFLAG_AC;
break;
case 0x1c: /* 11100 dropout on mains (29S only) */
/* TODO: No unit or flags for this yet! */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_UNITLESS;
devc->mqflags |= SR_MQFLAG_AC;
break;
case 0x1f: /* 11111 Undocumented: 25S in stopwatch mode.
The value is voltage, not time, so treat it such. */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_VOLT;
devc->mqflags |= SR_MQFLAG_DC;
break;
case 0x20: /* 100000 Undocumented: 25S in event count mode.
Value is 0 anyway. */
devc->mq = SR_MQ_VOLTAGE;
devc->unit = SR_UNIT_UNITLESS;
break;
default:
sr_err("decode_ctmv_2x(%d, ...): Unknown ctmv!", ctmv);
break;
}
}
/**
* Decode range/sign/acdc byte special chars, Metrahit 2x, table TR.
*
* @param[in] rs Range/sign byte.
*/
static void decode_rs_2x(uint8_t rs, struct dev_context *devc)
{
int range;
/* Sign */
if (((devc->scale > 0) && (rs & 0x08)) ||
((devc->scale < 0) && !(rs & 0x08)))
devc->scale *= -1.0;
/* Range */
range = rs & 0x07;
switch (devc->mq) {
case SR_MQ_VOLTAGE:
if (devc->unit == SR_UNIT_DECIBEL_VOLT)
devc->scale *= pow(10.0, -3);
else if (devc->vmains_29S)
devc->scale *= pow(10.0, range - 2);
else
devc->scale *= pow(10.0, range - 6);
break;
case SR_MQ_CURRENT:
if (devc->scale1000 != -1) /* uA, mA */
range += 1;/* mA and A ranges differ by 10^4, not 10^3!*/
devc->scale *= pow(10.0, range - 6);
break;
case SR_MQ_RESISTANCE:
devc->scale *= pow(10.0, range - 3);
break;
case SR_MQ_FREQUENCY:
devc->scale *= pow(10.0, range - 3);
break;
case SR_MQ_TEMPERATURE:
if (range == 4) /* Indicator for °F */
devc->unit = SR_UNIT_FAHRENHEIT;
devc->scale *= pow(10.0, - 2);
break;
case SR_MQ_CAPACITANCE:
if (range == 7)
range -= 1; /* Same value as range 6 */
devc->scale *= pow(10.0, range - 13);
break;
/* TODO: 29S Mains measurements. */
}
}
/**
* Decode range/sign/acdc byte special chars, Metrahit 2x, table TR 2.
*
* @param[in] rs Range/sign byte.
*/
static void decode_rs_2x_TR2(uint8_t rs, struct dev_context *devc)
{
int range;
/* Range */
range = rs & 0x07;
switch (devc->mq) {
case SR_MQ_CURRENT:
if (devc->scale1000 == -1) /* mA */
switch(range) {
case 0: case 1: /* 100, 300 µA */
devc->scale *= pow(10.0, -6);
break;
case 2: case 3: /* 1, 3 mA */
devc->scale *= pow(10.0, -5);
break;
case 4: case 5: /* 10, 30 mA */
devc->scale *= pow(10.0, -4);
break;
case 6: case 7: /* 100, 300 mA */
devc->scale *= pow(10.0, -3);
break;
}
else /* A */
switch(range) {
case 0: case 1: /* 1, 3 A */
devc->scale *= pow(10.0, -5);
break;
case 2: /* 10 A */
devc->scale *= pow(10.0, -4);
break;
}
break;
default:
decode_rs_2x(rs, devc);
return;
}
/* Sign */
if (((devc->scale > 0) && (rs & 0x08)) ||
((devc->scale < 0) && !(rs & 0x08)))
devc->scale *= -1.0;
}
/**
* Decode special chars (Metrahit 2x).
*
* @param[in] spc Special characters 1 and 2 (s1 | (s2 << 4)).
*/
static void decode_spc_2x(uint8_t spc, struct dev_context *devc)
{
/* xxxxxxx1 Fuse */
/* xxxxxx1x Low battery */
/* xxxxx1xx BEEP */
/* xxxx1xxx ZERO */
/* xxx1xxxx DATA */
setmqf(devc, SR_MQFLAG_HOLD, spc & 0x10);
/* x11xxxxx unused */
/* 1xxxxxxx MAN */
setmqf(devc, SR_MQFLAG_AUTORANGE, !(spc & 0x80));
}
/** Clean range and sign. */
static void clean_rs_v(struct dev_context *devc)
{
devc->value = 0.0;
devc->scale = 1.0;
}
/** Clean current type, measured variable, range and sign. */
static void clean_ctmv_rs_v(struct dev_context *devc)
{
devc->mq = 0;
devc->unit = 0;
devc->mqflags = 0;
devc->scale1000 = 0;
devc->vmains_29S = FALSE;
clean_rs_v(devc);
}
/** Send prepared value. */
static void send_value(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_datafeed_analog analog;
struct sr_datafeed_packet packet;
devc = sdi->priv;
memset(&analog, 0, sizeof(analog));
analog.probes = sdi->probes;
analog.num_samples = 1;
analog.mq = devc->mq;
analog.unit = devc->unit;
analog.mqflags = devc->mqflags;
analog.data = &devc->value;
memset(&packet, 0, sizeof(packet));
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
sr_session_send(devc->cb_data, &packet);
devc->num_samples++;
}
/** Process 6-byte data message, Metrahit 1x/2x send mode. */
static void process_msg_dta_6(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int cnt;
uint8_t dgt;
devc = sdi->priv;
clean_rs_v(devc);
/* Byte 0, range and sign */
if (devc->model <= METRAHIT_16X)
decode_rs_16(bc(devc->buf[0]), devc);
else if (devc->model < METRAHIT_2X)
decode_rs_18(bc(devc->buf[0]), devc);
else {
decode_rs_2x(bc(devc->buf[0]), devc);
devc->scale *= 10; /* Compensate for format having only 5 digits, decode_rs_2x() assumes 6. */
}
/* Bytes 1-5, digits (ls first). */
for (cnt = 0; cnt < 5; cnt++) {
dgt = bc(devc->buf[1 + cnt]);
if (dgt >= 10) {
/* 10 Overload; on model <= 16X also 11 possible. */
devc->value = NAN;
devc->scale = 1.0;
break;
}
devc->value += pow(10.0, cnt) * dgt;
}
sr_spew("process_msg_dta_6() value=%f scale=%f scale1000=%d",
devc->value, devc->scale, devc->scale1000);
if (devc->value != NAN)
devc->value *= devc->scale * pow(1000.0, devc->scale1000);
/* Create and send packet. */
send_value(sdi);
}
/** Process 5-byte info message, Metrahit 1x/2x. */
static void process_msg_inf_5(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
enum model model;
devc = sdi->priv;
clean_ctmv_rs_v(devc);
/* Process byte 0 */
model = gmc_decode_model_sm(bc(devc->buf[0]));
if (model != devc->model) {
sr_warn("Model mismatch in data: Detected %s, now %s",
gmc_model_str(devc->model), gmc_model_str(model));
}
/* Process bytes 1-4 */
if (devc->model <= METRAHIT_16X) {
decode_ctmv_16(bc(devc->buf[1]), devc);
decode_spc_16(bc(devc->buf[2]) | (bc(devc->buf[3]) << 4), devc);
decode_rs_16(bc(devc->buf[4]), devc);
} else if (devc->model <= METRAHIT_18S) {
decode_ctmv_18(bc(devc->buf[1]), devc);
decode_spc_18(bc(devc->buf[2]) | (bc(devc->buf[3]) << 4), devc);
decode_rs_18(bc(devc->buf[4]), devc);
} else { /* Must be Metrahit 2x */
decode_ctmv_2x(bc(devc->buf[1]), devc);
decode_spc_2x(bc(devc->buf[2]) | (bc(devc->buf[3]) << 4), devc);
decode_rs_2x(bc(devc->buf[4]), devc);
}
}
/** Process 10-byte info/data message, Metrahit 15+. */
static void process_msg_inf_10(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int cnt;
uint8_t dgt;
devc = sdi->priv;
process_msg_inf_5(sdi);
/* Now decode numbers */
for (cnt = 0; cnt < 5; cnt++) {
dgt = bc(devc->buf[5 + cnt]);
if (dgt == 11) { /* Empty digit */
dgt = 0;
}
else if (dgt >= 12) { /* Overload */
devc->value = NAN;
devc->scale = 1.0;
break;
}
devc->value += pow(10.0, cnt) * dgt;
}
sr_spew("process_msg_inf_10() value=%f scale=%f scalet=%d",
devc->value, devc->scale, devc->scale1000);
if (devc->value != NAN)
devc->value *= devc->scale * pow(1000.0, devc->scale1000);
/* Create and send packet. */
send_value(sdi);
}
/** Decode send interval (Metrahit 2x only). */
static const char *decode_send_interval(uint8_t si)
{
switch (si) {
case 0x00:
return "0.05";
case 0x01:
return "0.1";
case 0x02:
return "0.2";
case 0x03:
return "0.5";
case 0x04:
return "00:01";
case 0x05:
return "00:02";
case 0x06:
return "00:05";
case 0x07:
return "00:10";
case 0x08:
return "00:20";
case 0x09:
return "00:30";
case 0x0a:
return "01:00";
case 0x0b:
return "02:00";
case 0x0c:
return "05:00";
case 0x0d:
return "10:00";
case 0x0e:
return "----";
case 0x0f:
return "data";
default:
return "Unknown value";
}
}
/** Process 13-byte info/data message, Metrahit 2x. */
static void process_msg_inf_13(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
enum model model;
int cnt;
uint8_t dgt;
devc = sdi->priv;
clean_ctmv_rs_v(devc);
/* Byte 0, model. */
model = gmc_decode_model_sm(bc(devc->buf[0]));
if (model != devc->model) {
sr_warn("Model mismatch in data: Detected %s, now %s",
gmc_model_str(devc->model), gmc_model_str(model));
}
/* Bytes 1-4, 11. */
decode_ctmv_2x(bc(devc->buf[1]) | (bc(devc->buf[11]) << 4), devc);
decode_spc_2x(bc(devc->buf[2]) | (bc(devc->buf[3]) << 4), devc);
decode_rs_2x(bc(devc->buf[4]), devc);
/* Bytes 5-10, digits (ls first). */
for (cnt = 0; cnt < 6; cnt++) {
dgt = bc(devc->buf[5 + cnt]);
if (dgt == 10) { /* Overload */
devc->value = NAN;
devc->scale = 1.0;
break;
}
devc->value += pow(10.0, cnt) * dgt;
}
sr_spew("process_msg_inf_13() value=%f scale=%f scale1000=%d mq=%d "
"unit=%d mqflags=0x%02llx", devc->value, devc->scale,
devc->scale1000, devc->mq, devc->unit, devc->mqflags);
if (devc->value != NAN)
devc->value *= devc->scale * pow(1000.0, devc->scale1000);
/* Byte 12, Send Interval */
sr_spew("Send interval: %s", decode_send_interval(bc(devc->buf[12])));
/* Create and send packet. */
send_value(sdi);
}
/** Dump contents of 14-byte message.
* @param buf Pointer to array of 14 data bytes.
* @param[in] raw Write only data bytes, no interpretation.
*/
void dump_msg14(guchar* buf, gboolean raw)
{
if (!buf)
return;
if (raw)
sr_spew("msg14: 0x %02x %02x %02x %02x %02x %02x %02x %02x "
"%02x %02x %02x %02x %02x %02x",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7], buf[8], buf[9], buf[10], buf[11], buf[12],
buf[13]);
else
sr_spew("msg14: 0x a=%d c1=%02x c2=%02x cmd=%02x dta=%02x "
"%02x %02x %02x %02x %02x %02x %02x %02x chs=%02x",
buf[1] == 0x2b?buf[0] >> 2:buf[0] % 0x0f, buf[1], buf[2], buf[3], buf[4], buf[5],
buf[6], buf[7], buf[8], buf[9], buf[10], buf[11],
buf[12], buf[13]);
}
/** Calc checksum for 14 byte message type.
*
* @param[in] dta Pointer to array of 13 data bytes.
* @return Checksum.
*/
static guchar calc_chksum_14(guchar* dta)
{
guchar cnt, chs;
for (chs = 0, cnt = 0; cnt < 13; cnt++)
chs += dta[cnt];
return (64 - chs) & MASK_6BITS;
}
/** Check 14-byte message, Metrahit 2x. */
static int chk_msg14(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int retc;
gboolean isreq; /* Message is request to multimeter (otherwise response) */
uint8_t addr; /* Adaptor address */
retc = SR_OK;
/* Check parameters and message */
if (!sdi || !(devc = sdi->priv))
return SR_ERR_ARG;
if (devc->buflen != 14) {
sr_err("process_msg_14(): Msg len 14 expected!");
return SR_ERR_ARG;
}
isreq = devc->buf[1] == 0x2b;
if (isreq)
addr = devc->buf[0] >> 2;
else
addr = devc->buf[0] & 0x0f;
if ((devc->addr != addr) && !(isreq && (addr == 0))) {
sr_err("process_msg_14(): Address mismatch, msg for other device!");
retc = SR_ERR_ARG;
}
if (devc->buf[1] == 0) { /* Error msg from device! */
retc = SR_ERR_ARG;
switch (devc->buf[2]) {
case 1: /* Not used */
sr_err("Device: Illegal error code!");
break;
case 2: /* Incorrect check sum of received block */
sr_err("Device: Incorrect checksum in cmd!");
break;
case 3: /* Incorrect length of received block */
sr_err("Device: Incorrect block length in cmd!");
break;
case 4: /* Incorrect 2nd or 3rd byte */
sr_err("Device: Incorrect byte 2 or 3 in cmd!");
break;
case 5: /* Parameter out of range */
sr_err("Device: Parameter out of range!");
break;
default:
sr_err("Device: Unknown error code!");
}
retc = SR_ERR_ARG;
}
else if (!isreq && ((devc->buf[1] != 0x27) || (devc->buf[2] != 0x3f))) {
sr_err("process_msg_14(): byte 1/2 unexpected!");
retc = SR_ERR_ARG;
}
if (calc_chksum_14(devc->buf) != devc->buf[13]) {
sr_err("process_msg_14(): Invalid checksum!");
retc = SR_ERR_ARG;
}
if (retc != SR_OK)
dump_msg14(devc->buf, TRUE);
return retc;
}
/** Check 14-byte message, Metrahit 2x. */
SR_PRIV int process_msg14(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int retc;
uint8_t addr;
uint8_t cnt, dgt;
if ((retc = chk_msg14(sdi)) != SR_OK)
return retc;
devc = sdi->priv;
clean_ctmv_rs_v(devc);
addr = devc->buf[0] & MASK_6BITS;
if (addr != devc->addr)
sr_info("Device address mismatch %d/%d!", addr, devc->addr);
switch (devc->buf[3]) { /* That's the command this reply is for */
/* 0 cannot occur, the respective message is not a 14-byte message */
case 1: /* Read first free and occupied address */
sr_spew("Cmd %d unimplemented!", devc->buf[3]);
break;
case 2: /* Clear all RAM in multimeter */
sr_spew("Cmd %d unimplemented!", devc->buf[3]);
break;
case 3: /* Read firmware version and status */
sr_spew("Cmd 3, Read firmware and status", devc->buf[3]);
switch (devc->cmd_idx) {
case 0:
devc->fw_ver_maj = devc->buf[5];
devc->fw_ver_min = devc->buf[4];
sr_spew("Firmware version %d.%d", (int)devc->fw_ver_maj, (int)devc->fw_ver_min);
sr_spew("Rotary Switch Position (1..10): %d", (int)devc->buf[6]);
/** Docs say values 0..9, but that's not true */
sr_spew("Measurement Function: %d ", (int)devc->buf[7]);
decode_ctmv_2x(devc->buf[7], devc);
sr_spew("Range: 0x%x", devc->buf[8]);
decode_rs_2x_TR2(devc->buf[8] & 0x0f, devc); /* Docs wrong, uses conversion table TR_2! */
devc->autorng = (devc->buf[8] & 0x20) == 0;
// TODO 9, 10: 29S special functions
devc->ubatt = 0.1 * (float)devc->buf[11];
devc->model = gmc_decode_model_bd(devc->buf[12]);
sr_spew("Model=%s, battery voltage=%2.1f V", gmc_model_str(devc->model), (double)devc->ubatt);
break;
case 1:
sr_spew("Internal version %d.%d", (int)devc->buf[5], (int)devc->buf[4]);
sr_spew("Comm mode: 0x%x", (int)devc->buf[6]);
sr_spew("Block cnt%%64: %d", (int)devc->buf[7]);
sr_spew("drpCi: %d drpCh: %d", (int)devc->buf[8], (int)devc->buf[9]);
// Semantics undocumented. Possibly Metrahit 29S dropouts stuff?
break;
default:
sr_spew("Cmd 3: Unknown cmd_idx=%d", devc->cmd_idx);
break;
}
break;
case 4: /* Set real time, date, sample rate, trigger, ... */
sr_spew("Cmd %d unimplemented!", devc->buf[3]);
break;
case 5: /* Read real time, date, sample rate, trigger... */
sr_spew("Cmd %d unimplemented!", devc->buf[3]);
break;
case 6: /* Set modes or power off */
sr_spew("Cmd %d unimplemented!", devc->buf[3]);
break;
case 7: /* Set measurement function, range, autom/man. */
sr_spew("Cmd %d unimplemented!", devc->buf[3]);
break;
case 8: /* Get one measurement value */
sr_spew("Cmd 8, get one measurement value");
sr_spew("Measurement Function: %d ", (int)devc->buf[5]);
decode_ctmv_2x(devc->buf[5], devc);
if (!(devc->buf[6] & 0x10)) /* If bit4=0, old data. */
return SR_OK;
decode_rs_2x_TR2(devc->buf[6] & 0x0f, devc); // The docs say conversion table TR_3, but that does not work
setmqf(devc, SR_MQFLAG_AUTORANGE, devc->autorng);
/* 6 digits */
for (cnt = 0; cnt < 6; cnt++) {
dgt = bc(devc->buf[7 + cnt]);
if (dgt == 10) { /* Overload */
devc->value = NAN;
devc->scale = 1.0;
break;
}
else if (dgt == 13) { /* FUSE */
sr_err("FUSE!");
}
else if (dgt == 14) { /* Function recognition mode, OPEN */
sr_info("Function recognition mode, OPEN!");
devc->value = NAN;
devc->scale = 1.0;
break;
}
devc->value += pow(10.0, cnt) * dgt;
}
sr_spew("process_msg14() value=%f scale=%f scale1000=%d mq=%d "
"unit=%d mqflags=0x%02llx", devc->value, devc->scale,
devc->scale1000, devc->mq, devc->unit, devc->mqflags);
if (devc->value != NAN)
devc->value *= devc->scale * pow(1000.0, devc->scale1000);
send_value(sdi);
break;
default:
sr_spew("Unknown cmd %d!", devc->buf[3]);
break;
}
return SR_OK;
}
/** Data reception callback function. */
SR_PRIV int gmc_mh_1x_2x_receive_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct sr_serial_dev_inst *serial;
uint8_t buf, msgt;
int len;
gdouble elapsed_s;
(void)fd;
if (!(sdi = cb_data))
return TRUE;
if (!(devc = sdi->priv))
return TRUE;
serial = sdi->conn;
if (revents == G_IO_IN) { /* Serial data arrived. */
while (GMC_BUFSIZE - devc->buflen - 1 > 0) {
len = serial_read(serial, devc->buf + devc->buflen, 1);
if (len < 1)
break;
buf = *(devc->buf + devc->buflen);
sr_spew("read 0x%02x/%d/%d", buf, buf, buf & MSGC_MASK);
devc->buflen += len;
if (!devc->settings_ok) {
/*
* If no device type/settings record processed
* yet, wait for one.
*/
if ((devc->buf[0] & MSGID_MASK) != MSGID_INF) {
devc->buflen = 0;
continue;
}
devc->settings_ok = TRUE;
}
msgt = devc->buf[0] & MSGID_MASK;
switch (msgt) {
case MSGID_INF:
if (devc->buflen == 13) {
process_msg_inf_13(sdi);
devc->buflen = 0;
continue;
} else if ((devc->buflen == 10) &&
(devc->model <= METRAHIT_18S)) {
process_msg_inf_10(sdi);
devc->buflen = 0;
continue;
}
else if ((devc->buflen >= 5) &&
(devc->buf[devc->buflen - 1] &
MSGID_MASK) != MSGID_DATA) {
/*
* Char just received is beginning
* of next message.
*/
process_msg_inf_5(sdi);
devc->buf[0] =
devc->buf[devc->buflen - 1];
devc->buflen = 1;
continue;
}
break;
case MSGID_DTA:
case MSGID_D10:
if (devc->buflen == 6) {
process_msg_dta_6(sdi);
devc->buflen = 0;
}
break;
case MSGID_DATA:
sr_err("Comm error, unexpected data byte!");
devc->buflen = 0;
break;
}
}
}
/* If number of samples or time limit reached, stop acquisition. */
if (devc->limit_samples && (devc->num_samples >= devc->limit_samples))
sdi->driver->dev_acquisition_stop(sdi, cb_data);
if (devc->limit_msec) {
elapsed_s = g_timer_elapsed(devc->elapsed_msec, NULL);
if ((elapsed_s * 1000) >= devc->limit_msec)
sdi->driver->dev_acquisition_stop(sdi, cb_data);
}
return TRUE;
}
SR_PRIV int gmc_mh_2x_receive_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct sr_serial_dev_inst *serial;
uint8_t buf;
int len;
gdouble elapsed_s;
(void)fd;
if (!(sdi = cb_data))
return TRUE;
if (!(devc = sdi->priv))
return TRUE;
serial = sdi->conn;
if (revents == G_IO_IN) { /* Serial data arrived. */
while (GMC_BUFSIZE - devc->buflen - 1 > 0) {
len = serial_read(serial, devc->buf + devc->buflen, 1);
if (len < 1)
break;
buf = *(devc->buf + devc->buflen);
sr_spew("read 0x%02x/%d/%d", buf, buf, buf & MASK_6BITS);
devc->buf[devc->buflen] &= MASK_6BITS;
devc->buflen += len;
if (devc->buflen == 14) {
devc->response_pending = FALSE;
sr_spew("gmc_mh_2x_receive_data processing msg");
process_msg14(sdi);
devc->buflen = 0;
}
}
}
/* If number of samples or time limit reached, stop acquisition. */
if (devc->limit_samples && (devc->num_samples >= devc->limit_samples))
sdi->driver->dev_acquisition_stop(sdi, cb_data);
if (devc->limit_msec) {
elapsed_s = g_timer_elapsed(devc->elapsed_msec, NULL);
if ((elapsed_s * 1000) >= devc->limit_msec)
sdi->driver->dev_acquisition_stop(sdi, cb_data);
}
/* Request next data set, if required */
if (sdi->status == SR_ST_ACTIVE) {
if (devc->response_pending) {
gint64 elapsed_us = g_get_monotonic_time() - devc->req_sent_at;
if (elapsed_us > 1*1000*1000) /* Timeout! */
devc->response_pending = FALSE;
}
if (!devc->response_pending) {
devc->cmd_seq++;
if (devc->cmd_seq % 10 == 0) {
if (req_stat14(sdi, FALSE) != SR_OK)
return FALSE;
}
else if (req_meas14(sdi) != SR_OK)
return FALSE;
}
}
return TRUE;
}
/** Create 14 (42) byte command for Metrahit 2x multimeter in bidir mode.
*
* Actually creates 42 bytes due to the encoding method used.
* @param[in] addr Device address (0=adapter, 1..15 multimeter; for byte 0).
* @param[in] func Function code (byte 3).
* @param[in] params Further parameters (9 bytes)
* @param[out] buf Buffer to create msg in (42 bytes).
*/
void create_cmd_14(guchar addr, guchar func, guchar* params, guchar* buf)
{
uint8_t dta[14]; /* Unencoded message */
int cnt;
if (!params || !buf)
return;
/* 0: Address */
dta[0] = ((addr << 2) | 0x03) & MASK_6BITS;
/* 1-3: Set command header */
dta[1] = 0x2b;
dta[2] = 0x3f;
dta[3] = func;
/* 4-12: Copy further parameters */
for (cnt = 0; cnt < 9; cnt++)
dta[cnt+4] = (params[cnt] & MASK_6BITS);
/* 13: Checksum (b complement) */
dta[13] = calc_chksum_14(dta);
/* The whole message is packed into 3 bytes per byte now (lower 6 bits only) the most
* peculiar way I have ever seen. Possibly to improve IR communication? */
for (cnt = 0; cnt < 14; cnt++) {
buf[3*cnt] = (dta[cnt] & 0x01 ? 0x0f : 0) | (dta[cnt] & 0x02 ? 0xf0 : 0);
buf[3*cnt + 1] = (dta[cnt] & 0x04 ? 0x0f : 0) | (dta[cnt] & 0x08 ? 0xf0 : 0);
buf[3*cnt + 2] = (dta[cnt] & 0x10 ? 0x0f : 0) | (dta[cnt] & 0x20 ? 0xf0 : 0);
}
}
/** Request one measurement from 2x multimeter (msg 8).
*
*/
int req_meas14(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_serial_dev_inst *serial;
uint8_t params[9];
uint8_t msg[42];
if (!sdi || !(devc = sdi->priv) || !(serial = sdi->conn))
return SR_ERR;
memset(params, 0, sizeof(params));
params[0] = 0;
devc->cmd_idx = 0;
create_cmd_14(devc->addr, 8, params, msg);
devc->req_sent_at = g_get_monotonic_time();
if (serial_write(serial, msg, sizeof(msg)) == -1) {
return SR_ERR;
}
devc->response_pending = TRUE;
return SR_OK;
}
/** Request status from 2x multimeter (msg 3).
* @param[in] power_on Try to power on powered off multimeter by sending additional messages.
*/
int req_stat14(const struct sr_dev_inst *sdi, gboolean power_on)
{
struct dev_context *devc;
struct sr_serial_dev_inst *serial;
uint8_t params[9];
uint8_t msg[42];
if (!sdi || !(devc = sdi->priv) || !(serial = sdi->conn))
return SR_ERR;
memset(params, 0, sizeof(params));
params[0] = 0;
devc->cmd_idx = 0;
create_cmd_14(devc->addr, 3, params, msg);
if (power_on) {
sr_info("Write some data and wait 3s to turn on powered off device...");
if (serial_write(serial, msg, sizeof(msg)) < 0)
return SR_ERR;
g_usleep(1*1000*1000);
if (serial_write(serial, msg, sizeof(msg)) < 0)
return SR_ERR;
g_usleep(1*1000*1000);
if (serial_write(serial, msg, sizeof(msg)) < 0)
return SR_ERR;
g_usleep(1*1000*1000);
serial_flush(serial);
}
/* Write message and wait for reply */
devc->req_sent_at = g_get_monotonic_time();
if (serial_write(serial, msg, sizeof(msg)) == -1) {
return SR_ERR;
}
devc->response_pending = TRUE;
return SR_OK;
}
/** Decode model in "send mode".
*
* @param[in] mcode Model code.
* @return Model code.
*/
SR_PRIV int gmc_decode_model_sm(uint8_t mcode)
{
if (mcode > 0xf) {
sr_err("decode_model(%d): Model code 0..15 expected!", mcode);
return METRAHIT_NONE;
}
switch(mcode) {
case 0x04: /* 0100b */
return METRAHIT_12S;
case 0x08: /* 1000b */
return METRAHIT_13S14A;
case 0x09: /* 1001b */
return METRAHIT_14S;
case 0x0A: /* 1010b */
return METRAHIT_15S;
case 0x0B: /* 1011b */
return METRAHIT_16S;
case 0x06: /* 0110b (undocumented by GMC!) */
return METRAHIT_16I;
case 0x0D: /* 1101b */
return METRAHIT_18S;
case 0x02: /* 0010b */
return METRAHIT_22SM;
case 0x03: /* 0011b */
return METRAHIT_23S;
case 0x0f: /* 1111b */
return METRAHIT_24S;
case 0x05: /* 0101b */
return METRAHIT_25S;
case 0x01: /* 0001b */
return METRAHIT_26SM;
case 0x0c: /* 1100b */
return METRAHIT_28S;
case 0x0e: /* 1110b */
return METRAHIT_29S;
default:
sr_err("Unknown model code %d!", mcode);
return METRAHIT_NONE;
}
}
/** Convert GMC model code in bidirectional mode to sigrok-internal one.
*
* @param[in] mcode Model code.
*
* @return Model code.
*/
SR_PRIV int gmc_decode_model_bd(uint8_t mcode)
{
switch (mcode & 0x1f) {
case 2:
if (mcode & 0x20)
return METRAHIT_22M;
else
return METRAHIT_22S;
case 3:
return METRAHIT_23S;
case 4:
return METRAHIT_24S;
case 5:
return METRAHIT_25S;
case 1:
if (mcode & 0x20)
return METRAHIT_26M;
else
return METRAHIT_26S;
case 12:
return METRAHIT_28S;
case 14:
return METRAHIT_29S;
default:
sr_err("Unknown model code %d!", mcode);
return METRAHIT_NONE;
}
}
/** Convert sigrok-internal model code to string.
*
* @param[in] mcode Model code.
*
* @return Model code string.
*/
SR_PRIV const char *gmc_model_str(enum model mcode)
{
switch (mcode) {
case METRAHIT_NONE:
return "-uninitialized model variable-";
case METRAHIT_12S:
return "METRAHit 12S";
case METRAHIT_13S14A:
return "METRAHit 13S/14A";
case METRAHIT_14S:
return "METRAHit 14S";
case METRAHIT_15S:
return "METRAHit 15S";
case METRAHIT_16S:
return "METRAHit 16S";
case METRAHIT_16I:
return "METRAHit 16I";
case METRAHIT_18S:
return "METRAHit 18S";
case METRAHIT_22SM:
return "METRAHit 22S/M";
case METRAHIT_22S:
return "METRAHit 22S";
case METRAHIT_22M:
return "METRAHit 22M";
case METRAHIT_23S:
return "METRAHit 23S";
case METRAHIT_24S:
return "METRAHit 24S";
case METRAHIT_25S:
return "METRAHit 25S";
case METRAHIT_26SM:
return "METRAHit 26S/M";
case METRAHIT_26S:
return "METRAHit 26S";
case METRAHIT_26M:
return "METRAHit 26M";
case METRAHIT_28S:
return "METRAHit 28S";
case METRAHIT_29S:
return "METRAHit 29S";
default:
return "Unknown model code";
}
}
/** @copydoc sr_dev_driver.config_set
*/
SR_PRIV int config_set(int key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
struct dev_context *devc;
uint8_t params[9];
uint8_t msg[42];
(void)probe_group;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
if (!(devc = sdi->priv)) {
sr_err("sdi->priv was NULL.");
return SR_ERR_BUG;
}
switch (key) {
case SR_CONF_POWER_OFF:
if (devc->model < METRAHIT_2X)
return SR_ERR_NA;
if (!g_variant_get_boolean(data))
return SR_ERR;
sr_info("Powering device off.");
memset(params, 0, sizeof(params));
params[0] = 5;
params[1] = 5;
create_cmd_14(devc->addr, 6, params, msg);
if (serial_write(sdi->conn, msg, sizeof(msg)) == -1)
return SR_ERR;
else
g_usleep(2000000); /* Wait to ensure transfer before interface switched off. */
break;
case SR_CONF_LIMIT_MSEC:
if (g_variant_get_uint64(data) == 0) {
sr_err("LIMIT_MSEC can't be 0.");
return SR_ERR;
}
devc->limit_msec = g_variant_get_uint64(data);
sr_dbg("Setting time limit to %" PRIu64 "ms.",
devc->limit_msec);
break;
case SR_CONF_LIMIT_SAMPLES:
devc->limit_samples = g_variant_get_uint64(data);
sr_dbg("Setting sample limit to %" PRIu64 ".",
devc->limit_samples);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}