libsigrok/hardware/openbench-logic-sniffer/api.c

559 lines
14 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "protocol.h"
#define SERIALCOMM "115200/8n1"
static const int32_t hwopts[] = {
SR_CONF_CONN,
SR_CONF_SERIALCOMM,
};
static const int32_t hwcaps[] = {
SR_CONF_LOGIC_ANALYZER,
SR_CONF_SAMPLERATE,
SR_CONF_TRIGGER_TYPE,
SR_CONF_CAPTURE_RATIO,
SR_CONF_LIMIT_SAMPLES,
SR_CONF_EXTERNAL_CLOCK,
SR_CONF_PATTERN_MODE,
SR_CONF_SWAP,
SR_CONF_RLE,
};
#define STR_PATTERN_EXTERNAL "external"
#define STR_PATTERN_INTERNAL "internal"
/* Supported methods of test pattern outputs */
enum {
/**
* Capture pins 31:16 (unbuffered wing) output a test pattern
* that can captured on pins 0:15.
*/
PATTERN_EXTERNAL,
/** Route test pattern internally to capture buffer. */
PATTERN_INTERNAL,
};
static const char *patterns[] = {
STR_PATTERN_EXTERNAL,
STR_PATTERN_INTERNAL,
};
/* Probes are numbered 0-31 (on the PCB silkscreen). */
SR_PRIV const char *ols_probe_names[NUM_PROBES + 1] = {
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12",
"13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23",
"24", "25", "26", "27", "28", "29", "30", "31",
NULL,
};
/* Default supported samplerates, can be overridden by device metadata. */
static const uint64_t samplerates[] = {
SR_HZ(10),
SR_MHZ(200),
SR_HZ(1),
};
SR_PRIV struct sr_dev_driver ols_driver_info;
static struct sr_dev_driver *di = &ols_driver_info;
static int dev_clear(void)
{
return std_dev_clear(di, NULL);
}
static int init(struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
static GSList *scan(GSList *options)
{
struct sr_config *src;
struct sr_dev_inst *sdi;
struct drv_context *drvc;
struct dev_context *devc;
struct sr_probe *probe;
struct sr_serial_dev_inst *serial;
GPollFD probefd;
GSList *l, *devices;
int ret, i;
const char *conn, *serialcomm;
char buf[8];
drvc = di->priv;
devices = NULL;
conn = serialcomm = NULL;
for (l = options; l; l = l->next) {
src = l->data;
switch (src->key) {
case SR_CONF_CONN:
conn = g_variant_get_string(src->data, NULL);
break;
case SR_CONF_SERIALCOMM:
serialcomm = g_variant_get_string(src->data, NULL);
break;
}
}
if (!conn)
return NULL;
if (serialcomm == NULL)
serialcomm = SERIALCOMM;
if (!(serial = sr_serial_dev_inst_new(conn, serialcomm)))
return NULL;
/* The discovery procedure is like this: first send the Reset
* command (0x00) 5 times, since the device could be anywhere
* in a 5-byte command. Then send the ID command (0x02).
* If the device responds with 4 bytes ("OLS1" or "SLA1"), we
* have a match.
*/
sr_info("Probing %s.", conn);
if (serial_open(serial, SERIAL_RDWR | SERIAL_NONBLOCK) != SR_OK)
return NULL;
ret = SR_OK;
for (i = 0; i < 5; i++) {
if ((ret = send_shortcommand(serial, CMD_RESET)) != SR_OK) {
sr_err("Port %s is not writable.", conn);
break;
}
}
if (ret != SR_OK) {
serial_close(serial);
sr_err("Could not use port %s. Quitting.", conn);
return NULL;
}
send_shortcommand(serial, CMD_ID);
/* Wait 10ms for a response. */
g_usleep(10000);
probefd.fd = serial->fd;
probefd.events = G_IO_IN;
g_poll(&probefd, 1, 1);
if (probefd.revents != G_IO_IN)
return NULL;
if (serial_read(serial, buf, 4) != 4)
return NULL;
if (strncmp(buf, "1SLO", 4) && strncmp(buf, "1ALS", 4))
return NULL;
/* Definitely using the OLS protocol, check if it supports
* the metadata command.
*/
send_shortcommand(serial, CMD_METADATA);
if (g_poll(&probefd, 1, 10) > 0) {
/* Got metadata. */
sdi = get_metadata(serial);
sdi->index = 0;
devc = sdi->priv;
} else {
/* Not an OLS -- some other board that uses the sump protocol. */
sr_info("Device does not support metadata.");
sdi = sr_dev_inst_new(0, SR_ST_INACTIVE,
"Sump", "Logic Analyzer", "v1.0");
sdi->driver = di;
for (i = 0; i < 32; i++) {
if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
ols_probe_names[i])))
return 0;
sdi->probes = g_slist_append(sdi->probes, probe);
}
devc = ols_dev_new();
sdi->priv = devc;
}
/* Configure samplerate and divider. */
if (ols_set_samplerate(sdi, DEFAULT_SAMPLERATE) != SR_OK)
sr_dbg("Failed to set default samplerate (%"PRIu64").",
DEFAULT_SAMPLERATE);
/* Clear trigger masks, values and stages. */
ols_configure_probes(sdi);
sdi->inst_type = SR_INST_SERIAL;
sdi->conn = serial;
drvc->instances = g_slist_append(drvc->instances, sdi);
devices = g_slist_append(devices, sdi);
serial_close(serial);
return devices;
}
static GSList *dev_list(void)
{
return ((struct drv_context *)(di->priv))->instances;
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct sr_serial_dev_inst *serial;
serial = sdi->conn;
if (serial_open(serial, SERIAL_RDWR | SERIAL_NONBLOCK) != SR_OK)
return SR_ERR;
sdi->status = SR_ST_ACTIVE;
return SR_OK;
}
static int cleanup(void)
{
return dev_clear();
}
static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
struct dev_context *devc;
(void)probe_group;
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
switch (id) {
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->cur_samplerate);
break;
case SR_CONF_CAPTURE_RATIO:
*data = g_variant_new_uint64(devc->capture_ratio);
break;
case SR_CONF_LIMIT_SAMPLES:
*data = g_variant_new_uint64(devc->limit_samples);
break;
case SR_CONF_PATTERN_MODE:
if (devc->flag_reg & FLAG_EXTERNAL_TEST_MODE)
*data = g_variant_new_string(STR_PATTERN_EXTERNAL);
else if (devc->flag_reg & FLAG_INTERNAL_TEST_MODE)
*data = g_variant_new_string(STR_PATTERN_INTERNAL);
break;
case SR_CONF_RLE:
*data = g_variant_new_boolean(devc->flag_reg & FLAG_RLE ? TRUE : FALSE);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
struct dev_context *devc;
int ret;
uint64_t tmp_u64;
const char *stropt;
(void)probe_group;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
switch (id) {
case SR_CONF_SAMPLERATE:
tmp_u64 = g_variant_get_uint64(data);
if (tmp_u64 < samplerates[0] || tmp_u64 > samplerates[1])
return SR_ERR_SAMPLERATE;
ret = ols_set_samplerate(sdi, g_variant_get_uint64(data));
break;
case SR_CONF_LIMIT_SAMPLES:
tmp_u64 = g_variant_get_uint64(data);
if (tmp_u64 < MIN_NUM_SAMPLES)
return SR_ERR;
devc->limit_samples = tmp_u64;
ret = SR_OK;
break;
case SR_CONF_CAPTURE_RATIO:
devc->capture_ratio = g_variant_get_uint64(data);
if (devc->capture_ratio < 0 || devc->capture_ratio > 100) {
devc->capture_ratio = 0;
ret = SR_ERR;
} else
ret = SR_OK;
break;
case SR_CONF_EXTERNAL_CLOCK:
if (g_variant_get_boolean(data)) {
sr_info("Enabling external clock.");
devc->flag_reg |= FLAG_CLOCK_EXTERNAL;
} else {
sr_info("Disabled external clock.");
devc->flag_reg &= ~FLAG_CLOCK_EXTERNAL;
}
ret = SR_OK;
break;
case SR_CONF_PATTERN_MODE:
stropt = g_variant_get_string(data, NULL);
ret = SR_OK;
if (!strcmp(stropt, STR_PATTERN_INTERNAL)) {
sr_info("Enabling internal test mode.");
devc->flag_reg |= FLAG_INTERNAL_TEST_MODE;
} else if (!strcmp(stropt, STR_PATTERN_EXTERNAL)) {
sr_info("Enabling external test mode.");
devc->flag_reg |= FLAG_EXTERNAL_TEST_MODE;
} else {
ret = SR_ERR;
}
break;
case SR_CONF_SWAP:
if (g_variant_get_boolean(data)) {
sr_info("Enabling channel swapping.");
devc->flag_reg |= FLAG_SWAP_PROBES;
} else {
sr_info("Disabling channel swapping.");
devc->flag_reg &= ~FLAG_SWAP_PROBES;
}
ret = SR_OK;
break;
case SR_CONF_RLE:
if (g_variant_get_boolean(data)) {
sr_info("Enabling RLE.");
devc->flag_reg |= FLAG_RLE;
} else {
sr_info("Disabling RLE.");
devc->flag_reg &= ~FLAG_RLE;
}
ret = SR_OK;
break;
default:
ret = SR_ERR_NA;
}
return ret;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
GVariant *gvar;
GVariantBuilder gvb;
(void)sdi;
(void)probe_group;
switch (key) {
case SR_CONF_SCAN_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
hwopts, ARRAY_SIZE(hwopts), sizeof(int32_t));
break;
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
ARRAY_SIZE(samplerates), sizeof(uint64_t));
g_variant_builder_add(&gvb, "{sv}", "samplerate-steps", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TRIGGER_TYPE:
*data = g_variant_new_string(TRIGGER_TYPE);
break;
case SR_CONF_PATTERN_MODE:
*data = g_variant_new_strv(patterns, ARRAY_SIZE(patterns));
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi,
void *cb_data)
{
struct dev_context *devc;
struct sr_serial_dev_inst *serial;
uint32_t trigger_config[4];
uint32_t data;
uint16_t readcount, delaycount;
uint8_t changrp_mask;
int num_channels;
int i;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
serial = sdi->conn;
if (ols_configure_probes(sdi) != SR_OK) {
sr_err("Failed to configure probes.");
return SR_ERR;
}
/*
* Enable/disable channel groups in the flag register according to the
* probe mask. Calculate this here, because num_channels is needed
* to limit readcount.
*/
changrp_mask = 0;
num_channels = 0;
for (i = 0; i < 4; i++) {
if (devc->probe_mask & (0xff << (i * 8))) {
changrp_mask |= (1 << i);
num_channels++;
}
}
/*
* Limit readcount to prevent reading past the end of the hardware
* buffer.
*/
readcount = MIN(devc->max_samples / num_channels, devc->limit_samples) / 4;
memset(trigger_config, 0, 16);
trigger_config[devc->num_stages] |= 0x08;
if (devc->trigger_mask[0]) {
delaycount = readcount * (1 - devc->capture_ratio / 100.0);
devc->trigger_at = (readcount - delaycount) * 4 - devc->num_stages;
if (send_longcommand(serial, CMD_SET_TRIGGER_MASK_0,
reverse32(devc->trigger_mask[0])) != SR_OK)
return SR_ERR;
if (send_longcommand(serial, CMD_SET_TRIGGER_VALUE_0,
reverse32(devc->trigger_value[0])) != SR_OK)
return SR_ERR;
if (send_longcommand(serial, CMD_SET_TRIGGER_CONFIG_0,
trigger_config[0]) != SR_OK)
return SR_ERR;
if (send_longcommand(serial, CMD_SET_TRIGGER_MASK_1,
reverse32(devc->trigger_mask[1])) != SR_OK)
return SR_ERR;
if (send_longcommand(serial, CMD_SET_TRIGGER_VALUE_1,
reverse32(devc->trigger_value[1])) != SR_OK)
return SR_ERR;
if (send_longcommand(serial, CMD_SET_TRIGGER_CONFIG_1,
trigger_config[1]) != SR_OK)
return SR_ERR;
if (send_longcommand(serial, CMD_SET_TRIGGER_MASK_2,
reverse32(devc->trigger_mask[2])) != SR_OK)
return SR_ERR;
if (send_longcommand(serial, CMD_SET_TRIGGER_VALUE_2,
reverse32(devc->trigger_value[2])) != SR_OK)
return SR_ERR;
if (send_longcommand(serial, CMD_SET_TRIGGER_CONFIG_2,
trigger_config[2]) != SR_OK)
return SR_ERR;
if (send_longcommand(serial, CMD_SET_TRIGGER_MASK_3,
reverse32(devc->trigger_mask[3])) != SR_OK)
return SR_ERR;
if (send_longcommand(serial, CMD_SET_TRIGGER_VALUE_3,
reverse32(devc->trigger_value[3])) != SR_OK)
return SR_ERR;
if (send_longcommand(serial, CMD_SET_TRIGGER_CONFIG_3,
trigger_config[3]) != SR_OK)
return SR_ERR;
} else {
if (send_longcommand(serial, CMD_SET_TRIGGER_MASK_0,
devc->trigger_mask[0]) != SR_OK)
return SR_ERR;
if (send_longcommand(serial, CMD_SET_TRIGGER_VALUE_0,
devc->trigger_value[0]) != SR_OK)
return SR_ERR;
if (send_longcommand(serial, CMD_SET_TRIGGER_CONFIG_0,
0x00000008) != SR_OK)
return SR_ERR;
delaycount = readcount;
}
sr_info("Setting samplerate to %" PRIu64 "Hz (divider %u, "
"demux %s, noise_filter %s)", devc->cur_samplerate,
devc->cur_samplerate_divider,
devc->flag_reg & FLAG_DEMUX ? "on" : "off",
devc->flag_reg & FLAG_FILTER ? "on": "off");
if (send_longcommand(serial, CMD_SET_DIVIDER,
reverse32(devc->cur_samplerate_divider)) != SR_OK)
return SR_ERR;
/* Send sample limit and pre/post-trigger capture ratio. */
data = ((readcount - 1) & 0xffff) << 16;
data |= (delaycount - 1) & 0xffff;
if (send_longcommand(serial, CMD_CAPTURE_SIZE, reverse16(data)) != SR_OK)
return SR_ERR;
/* The flag register wants them here, and 1 means "disable channel". */
devc->flag_reg |= ~(changrp_mask << 2) & 0x3c;
devc->rle_count = 0;
data = (devc->flag_reg << 24) | ((devc->flag_reg << 8) & 0xff0000);
if (send_longcommand(serial, CMD_SET_FLAGS, data) != SR_OK)
return SR_ERR;
/* Start acquisition on the device. */
if (send_shortcommand(serial, CMD_RUN) != SR_OK)
return SR_ERR;
/* Reset all operational states. */
devc->num_transfers = devc->num_samples = devc->num_bytes = 0;
memset(devc->sample, 0, 4);
/* Send header packet to the session bus. */
std_session_send_df_header(cb_data, LOG_PREFIX);
serial_source_add(serial, G_IO_IN, -1, ols_receive_data, cb_data);
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
(void)cb_data;
abort_acquisition(sdi);
return SR_OK;
}
SR_PRIV struct sr_dev_driver ols_driver_info = {
.name = "ols",
.longname = "Openbench Logic Sniffer",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = std_serial_dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};