libsigrok/hardware/openbench-logic-sniffer/ols.c

921 lines
23 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2010 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <termios.h>
#endif
#include <string.h>
#include <sys/time.h>
#include <inttypes.h>
#ifdef _WIN32
/* TODO */
#else
#include <arpa/inet.h>
#endif
#include <glib.h>
#include <sigrok.h>
#include <sigrok-internal.h>
#include "ols.h"
#ifdef _WIN32
#define O_NONBLOCK FIONBIO
#endif
static int capabilities[] = {
SR_HWCAP_LOGIC_ANALYZER,
SR_HWCAP_SAMPLERATE,
SR_HWCAP_CAPTURE_RATIO,
SR_HWCAP_LIMIT_SAMPLES,
0,
};
/* default supported samplerates, can be overridden by device metadata */
static struct sr_samplerates samplerates = {
SR_HZ(10),
SR_MHZ(200),
SR_HZ(1),
NULL,
};
/* List of struct sr_serial_device_instance */
static GSList *device_instances = NULL;
static int send_shortcommand(int fd, uint8_t command)
{
char buf[1];
g_debug("ols: sending cmd 0x%.2x", command);
buf[0] = command;
if (serial_write(fd, buf, 1) != 1)
return SR_ERR;
return SR_OK;
}
static int send_longcommand(int fd, uint8_t command, uint32_t data)
{
char buf[5];
g_debug("ols: sending cmd 0x%.2x data 0x%.8x", command, data);
buf[0] = command;
buf[1] = (data & 0xff000000) >> 24;
buf[2] = (data & 0xff0000) >> 16;
buf[3] = (data & 0xff00) >> 8;
buf[4] = data & 0xff;
if (serial_write(fd, buf, 5) != 5)
return SR_ERR;
return SR_OK;
}
static int configure_probes(struct ols_device *ols, GSList *probes)
{
struct sr_probe *probe;
GSList *l;
int probe_bit, stage, i;
char *tc;
ols->probe_mask = 0;
for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
ols->trigger_mask[i] = 0;
ols->trigger_value[i] = 0;
}
ols->num_stages = 0;
for (l = probes; l; l = l->next) {
probe = (struct sr_probe *)l->data;
if (!probe->enabled)
continue;
/*
* Set up the probe mask for later configuration into the
* flag register.
*/
probe_bit = 1 << (probe->index - 1);
ols->probe_mask |= probe_bit;
if (!probe->trigger)
continue;
/* Configure trigger mask and value. */
stage = 0;
for (tc = probe->trigger; tc && *tc; tc++) {
ols->trigger_mask[stage] |= probe_bit;
if (*tc == '1')
ols->trigger_value[stage] |= probe_bit;
stage++;
if (stage > 3)
/*
* TODO: Only supporting parallel mode, with
* up to 4 stages.
*/
return SR_ERR;
}
if (stage > ols->num_stages)
ols->num_stages = stage;
}
return SR_OK;
}
static uint32_t reverse16(uint32_t in)
{
uint32_t out;
out = (in & 0xff) << 8;
out |= (in & 0xff00) >> 8;
out |= (in & 0xff0000) << 8;
out |= (in & 0xff000000) >> 8;
return out;
}
static uint32_t reverse32(uint32_t in)
{
uint32_t out;
out = (in & 0xff) << 24;
out |= (in & 0xff00) << 8;
out |= (in & 0xff0000) >> 8;
out |= (in & 0xff000000) >> 24;
return out;
}
static struct ols_device *ols_device_new(void)
{
struct ols_device *ols;
ols = g_malloc0(sizeof(struct ols_device));
ols->trigger_at = -1;
ols->probe_mask = 0xffffffff;
ols->cur_samplerate = SR_KHZ(200);
return ols;
}
static struct sr_device_instance *get_metadata(int fd)
{
struct sr_device_instance *sdi;
struct ols_device *ols;
uint32_t tmp_int;
uint8_t key, type, token;
GString *tmp_str, *devicename, *version;
gchar tmp_c;
sdi = sr_device_instance_new(0, SR_ST_INACTIVE, NULL, NULL, NULL);
ols = ols_device_new();
sdi->priv = ols;
devicename = g_string_new("");
version = g_string_new("");
key = 0xff;
while (key) {
if (serial_read(fd, &key, 1) != 1 || key == 0x00)
break;
type = key >> 5;
token = key & 0x1f;
switch (type) {
case 0:
/* NULL-terminated string */
tmp_str = g_string_new("");
while (serial_read(fd, &tmp_c, 1) == 1 && tmp_c != '\0')
g_string_append_c(tmp_str, tmp_c);
g_debug("ols: got metadata key 0x%.2x value '%s'", key, tmp_str->str);
switch (token) {
case 0x01:
/* Device name */
devicename = g_string_append(devicename, tmp_str->str);
break;
case 0x02:
/* FPGA firmware version */
if (version->len)
g_string_append(version, ", ");
g_string_append(version, "FPGA version ");
g_string_append(version, tmp_str->str);
break;
case 0x03:
/* Ancillary version */
if (version->len)
g_string_append(version, ", ");
g_string_append(version, "Ancillary version ");
g_string_append(version, tmp_str->str);
break;
default:
g_message("ols: unknown token 0x%.2x: '%s'", token, tmp_str->str);
break;
}
g_string_free(tmp_str, TRUE);
break;
case 1:
/* 32-bit unsigned integer */
if (serial_read(fd, &tmp_int, 4) != 4)
break;
tmp_int = reverse32(tmp_int);
g_debug("ols: got metadata key 0x%.2x value 0x%.8x", key, tmp_int);
switch (token) {
case 0x00:
/* Number of usable probes */
ols->num_probes = tmp_int;
break;
case 0x01:
/* Amount of sample memory available (bytes) */
ols->max_samples = tmp_int;
break;
case 0x02:
/* Amount of dynamic memory available (bytes) */
/* what is this for? */
break;
case 0x03:
/* Maximum sample rate (hz) */
ols->max_samplerate = tmp_int;
break;
case 0x04:
/* protocol version */
ols->protocol_version = tmp_int;
break;
default:
g_message("ols: unknown token 0x%.2x: 0x%.8x", token, tmp_int);
break;
}
break;
case 2:
/* 8-bit unsigned integer */
if (serial_read(fd, &tmp_c, 1) != 1)
break;
g_debug("ols: got metadata key 0x%.2x value 0x%.2x", key, tmp_c);
switch (token) {
case 0x00:
/* Number of usable probes */
ols->num_probes = tmp_c;
break;
case 0x01:
/* protocol version */
ols->protocol_version = tmp_c;
break;
default:
g_message("ols: unknown token 0x%.2x: 0x%.2x", token, tmp_c);
break;
}
break;
default:
/* unknown type */
break;
}
}
sdi->model = devicename->str;
sdi->version = version->str;
g_string_free(devicename, FALSE);
g_string_free(version, FALSE);
return sdi;
}
static int hw_init(const char *deviceinfo)
{
struct sr_device_instance *sdi;
struct ols_device *ols;
GSList *ports, *l;
GPollFD *fds, probefd;
int devcnt, final_devcnt, num_ports, fd, ret, i;
char buf[8], **device_names, **serial_params;
if (deviceinfo)
ports = g_slist_append(NULL, strdup(deviceinfo));
else
/* No specific device given, so scan all serial ports. */
ports = list_serial_ports();
num_ports = g_slist_length(ports);
fds = calloc(1, num_ports * sizeof(GPollFD));
device_names = malloc(num_ports * sizeof(char *));
serial_params = malloc(num_ports * sizeof(char *));
devcnt = 0;
for (l = ports; l; l = l->next) {
/* The discovery procedure is like this: first send the Reset
* command (0x00) 5 times, since the device could be anywhere
* in a 5-byte command. Then send the ID command (0x02).
* If the device responds with 4 bytes ("OLS1" or "SLA1"), we
* have a match.
*
* Since it may take the device a while to respond at 115Kb/s,
* we do all the sending first, then wait for all of them to
* respond with g_poll().
*/
g_message("ols: probing %s...", (char *)l->data);
fd = serial_open(l->data, O_RDWR | O_NONBLOCK);
if (fd != -1) {
serial_params[devcnt] = serial_backup_params(fd);
serial_set_params(fd, 115200, 8, 0, 1, 2);
ret = SR_OK;
for (i = 0; i < 5; i++) {
if ((ret = send_shortcommand(fd,
CMD_RESET)) != SR_OK) {
/* Serial port is not writable. */
break;
}
}
if (ret != SR_OK) {
serial_restore_params(fd,
serial_params[devcnt]);
serial_close(fd);
continue;
}
send_shortcommand(fd, CMD_ID);
fds[devcnt].fd = fd;
fds[devcnt].events = G_IO_IN;
device_names[devcnt] = strdup(l->data);
devcnt++;
}
free(l->data);
}
/* 2ms isn't enough for reliable transfer with pl2303, let's try 10 */
usleep(10000);
final_devcnt = 0;
g_poll(fds, devcnt, 1);
for (i = 0; i < devcnt; i++) {
if (fds[i].revents != G_IO_IN)
continue;
if (serial_read(fds[i].fd, buf, 4) != 4)
continue;
if (strncmp(buf, "1SLO", 4) && strncmp(buf, "1ALS", 4))
continue;
/* definitely using the OLS protocol, check if it supports
* the metadata command
*/
send_shortcommand(fds[i].fd, CMD_METADATA);
probefd.fd = fds[i].fd;
probefd.events = G_IO_IN;
if (g_poll(&probefd, 1, 10) > 0) {
/* got metadata */
sdi = get_metadata(fds[i].fd);
sdi->index = final_devcnt;
} else {
/* not an OLS -- some other board that uses the sump protocol */
sdi = sr_device_instance_new(final_devcnt, SR_ST_INACTIVE,
"Sump", "Logic Analyzer", "v1.0");
ols = ols_device_new();
ols->num_probes = 32;
sdi->priv = ols;
}
sdi->serial = sr_serial_device_instance_new(device_names[i], -1);
device_instances = g_slist_append(device_instances, sdi);
final_devcnt++;
serial_close(fds[i].fd);
fds[i].fd = 0;
}
/* clean up after all the probing */
for (i = 0; i < devcnt; i++) {
if (fds[i].fd != 0) {
serial_restore_params(fds[i].fd, serial_params[i]);
serial_close(fds[i].fd);
}
free(serial_params[i]);
free(device_names[i]);
}
free(fds);
free(device_names);
free(serial_params);
g_slist_free(ports);
return final_devcnt;
}
static int hw_opendev(int device_index)
{
struct sr_device_instance *sdi;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return SR_ERR;
sdi->serial->fd = serial_open(sdi->serial->port, O_RDWR);
if (sdi->serial->fd == -1)
return SR_ERR;
sdi->status = SR_ST_ACTIVE;
return SR_OK;
}
static void hw_closedev(int device_index)
{
struct sr_device_instance *sdi;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return;
if (sdi->serial->fd != -1) {
serial_close(sdi->serial->fd);
sdi->serial->fd = -1;
sdi->status = SR_ST_INACTIVE;
}
}
static void hw_cleanup(void)
{
GSList *l;
struct sr_device_instance *sdi;
/* Properly close all devices. */
for (l = device_instances; l; l = l->next) {
sdi = l->data;
if (sdi->serial->fd != -1)
serial_close(sdi->serial->fd);
sr_device_instance_free(sdi);
}
g_slist_free(device_instances);
device_instances = NULL;
}
static void *hw_get_device_info(int device_index, int device_info_id)
{
struct sr_device_instance *sdi;
struct ols_device *ols;
void *info;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return NULL;
ols = sdi->priv;
info = NULL;
switch (device_info_id) {
case SR_DI_INSTANCE:
info = sdi;
break;
case SR_DI_NUM_PROBES:
info = GINT_TO_POINTER(NUM_PROBES);
break;
case SR_DI_SAMPLERATES:
info = &samplerates;
break;
case SR_DI_TRIGGER_TYPES:
info = (char *)TRIGGER_TYPES;
break;
case SR_DI_CUR_SAMPLERATE:
info = &ols->cur_samplerate;
break;
}
return info;
}
static int hw_get_status(int device_index)
{
struct sr_device_instance *sdi;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return SR_ST_NOT_FOUND;
return sdi->status;
}
static int *hw_get_capabilities(void)
{
return capabilities;
}
static int set_configuration_samplerate(struct sr_device_instance *sdi,
uint64_t samplerate)
{
struct ols_device *ols;
ols = sdi->priv;
if (ols->max_samplerate) {
if (samplerate > ols->max_samplerate)
return SR_ERR_SAMPLERATE;
} else if (samplerate < samplerates.low || samplerate > samplerates.high)
return SR_ERR_SAMPLERATE;
ols->cur_samplerate = samplerate;
if (samplerate > CLOCK_RATE) {
ols->flag_reg |= FLAG_DEMUX;
ols->cur_samplerate_divider = (CLOCK_RATE * 2 / samplerate) - 1;
} else {
ols->flag_reg &= ~FLAG_DEMUX;
ols->cur_samplerate_divider = (CLOCK_RATE / samplerate) - 1;
}
return SR_OK;
}
static int hw_set_configuration(int device_index, int capability, void *value)
{
struct sr_device_instance *sdi;
struct ols_device *ols;
int ret;
uint64_t *tmp_u64;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return SR_ERR;
ols = sdi->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
switch (capability) {
case SR_HWCAP_SAMPLERATE:
tmp_u64 = value;
ret = set_configuration_samplerate(sdi, *tmp_u64);
break;
case SR_HWCAP_PROBECONFIG:
ret = configure_probes(ols, (GSList *) value);
break;
case SR_HWCAP_LIMIT_SAMPLES:
tmp_u64 = value;
if (*tmp_u64 < MIN_NUM_SAMPLES)
return SR_ERR;
ols->limit_samples = *tmp_u64;
g_message("ols: sample limit %" PRIu64, ols->limit_samples);
ret = SR_OK;
break;
case SR_HWCAP_CAPTURE_RATIO:
tmp_u64 = value;
ols->capture_ratio = *tmp_u64;
if (ols->capture_ratio < 0 || ols->capture_ratio > 100) {
ols->capture_ratio = 0;
ret = SR_ERR;
} else
ret = SR_OK;
break;
default:
ret = SR_ERR;
}
return ret;
}
static int receive_data(int fd, int revents, void *user_data)
{
struct sr_datafeed_packet packet;
struct sr_device_instance *sdi;
struct ols_device *ols;
GSList *l;
int count, buflen, num_channels, offset, i, j;
unsigned char byte, *buffer;
/* find this device's ols_device struct by its fd */
ols = NULL;
for (l = device_instances; l; l = l->next) {
sdi = l->data;
if (sdi->serial->fd == fd) {
ols = sdi->priv;
break;
}
}
if (!ols)
/* shouldn't happen */
return TRUE;
if (ols->num_transfers++ == 0) {
/*
* First time round, means the device started sending data,
* and will not stop until done. If it stops sending for
* longer than it takes to send a byte, that means it's
* finished. We'll double that to 30ms to be sure...
*/
sr_source_remove(fd);
sr_source_add(fd, G_IO_IN, 30, receive_data, user_data);
ols->raw_sample_buf = malloc(ols->limit_samples * 4);
/* fill with 1010... for debugging */
memset(ols->raw_sample_buf, 0x82, ols->limit_samples * 4);
}
num_channels = 0;
for (i = 0x20; i > 0x02; i /= 2) {
if ((ols->flag_reg & i) == 0)
num_channels++;
}
if (revents == G_IO_IN
&& ols->num_transfers / num_channels <= ols->limit_samples) {
if (serial_read(fd, &byte, 1) != 1)
return FALSE;
ols->sample[ols->num_bytes++] = byte;
g_debug("ols: received byte 0x%.2x", byte);
if (ols->num_bytes == num_channels) {
/* Got a full sample. */
g_debug("ols: received sample 0x%.*x", ols->num_bytes * 2, (int) *ols->sample);
if (ols->flag_reg & FLAG_RLE) {
/*
* In RLE mode -1 should never come in as a
* sample, because bit 31 is the "count" flag.
* TODO: Endianness may be wrong here, could be
* sample[3].
*/
if (ols->sample[0] & 0x80
&& !(ols->last_sample[0] & 0x80)) {
count = (int)(*ols->sample) & 0x7fffffff;
buffer = g_malloc(count);
buflen = 0;
for (i = 0; i < count; i++) {
memcpy(buffer + buflen, ols->last_sample, 4);
buflen += 4;
}
} else {
/*
* Just a single sample, next sample
* will probably be a count referring
* to this -- but this one is still a
* part of the stream.
*/
buffer = ols->sample;
buflen = 4;
}
} else {
/* No compression. */
buffer = ols->sample;
buflen = 4;
}
if (num_channels < 4) {
/*
* Some channel groups may have been turned
* off, to speed up transfer between the
* hardware and the PC. Expand that here before
* submitting it over the session bus --
* whatever is listening on the bus will be
* expecting a full 32-bit sample, based on
* the number of probes.
*/
j = 0;
memset(ols->tmp_sample, 0, 4);
for (i = 0; i < 4; i++) {
if (((ols->flag_reg >> 2) & (1 << i)) == 0) {
/*
* This channel group was
* enabled, copy from received
* sample.
*/
ols->tmp_sample[i] = ols->sample[j++];
}
}
memcpy(ols->sample, ols->tmp_sample, 4);
g_debug("ols: full sample 0x%.8x", (int) *ols->sample);
}
/* the OLS sends its sample buffer backwards.
* store it in reverse order here, so we can dump
* this on the session bus later.
*/
offset = (ols->limit_samples - ols->num_transfers / num_channels) * 4;
memcpy(ols->raw_sample_buf + offset, ols->sample, 4);
if (buffer == ols->sample)
memcpy(ols->last_sample, buffer, num_channels);
else
g_free(buffer);
memset(ols->sample, 0, 4);
ols->num_bytes = 0;
}
} else {
/*
* This is the main loop telling us a timeout was reached, or
* we've acquired all the samples we asked for -- we're done.
* Send the (properly-ordered) buffer to the frontend.
*/
if (ols->trigger_at != -1) {
/* a trigger was set up, so we need to tell the frontend
* about it.
*/
if (ols->trigger_at > 0) {
/* there are pre-trigger samples, send those first */
packet.type = SR_DF_LOGIC;
packet.length = ols->trigger_at * 4;
packet.unitsize = 4;
packet.payload = ols->raw_sample_buf;
sr_session_bus(user_data, &packet);
}
packet.type = SR_DF_TRIGGER;
packet.length = 0;
sr_session_bus(user_data, &packet);
packet.type = SR_DF_LOGIC;
packet.length = (ols->limit_samples * 4) - (ols->trigger_at * 4);
packet.unitsize = 4;
packet.payload = ols->raw_sample_buf + ols->trigger_at * 4;
sr_session_bus(user_data, &packet);
} else {
packet.type = SR_DF_LOGIC;
packet.length = ols->limit_samples * 4;
packet.unitsize = 4;
packet.payload = ols->raw_sample_buf;
sr_session_bus(user_data, &packet);
}
free(ols->raw_sample_buf);
serial_flush(fd);
serial_close(fd);
packet.type = SR_DF_END;
packet.length = 0;
sr_session_bus(user_data, &packet);
}
return TRUE;
}
static int hw_start_acquisition(int device_index, gpointer session_device_id)
{
struct sr_datafeed_packet *packet;
struct sr_datafeed_header *header;
struct sr_device_instance *sdi;
struct ols_device *ols;
uint32_t trigger_config[4];
uint32_t data;
uint16_t readcount, delaycount;
uint8_t changrp_mask;
int i;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return SR_ERR;
ols = sdi->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
readcount = ols->limit_samples / 4;
memset(trigger_config, 0, 16);
trigger_config[ols->num_stages - 1] |= 0x08;
if (ols->trigger_mask[0]) {
delaycount = readcount * (1 - ols->capture_ratio / 100.0);
ols->trigger_at = (readcount - delaycount) * 4 - ols->num_stages;
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_0,
reverse32(ols->trigger_mask[0])) != SR_OK)
return SR_ERR;
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_0,
reverse32(ols->trigger_value[0])) != SR_OK)
return SR_ERR;
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_0,
trigger_config[0]) != SR_OK)
return SR_ERR;
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_1,
reverse32(ols->trigger_mask[1])) != SR_OK)
return SR_ERR;
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_1,
reverse32(ols->trigger_value[1])) != SR_OK)
return SR_ERR;
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_1,
trigger_config[1]) != SR_OK)
return SR_ERR;
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_2,
reverse32(ols->trigger_mask[2])) != SR_OK)
return SR_ERR;
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_2,
reverse32(ols->trigger_value[2])) != SR_OK)
return SR_ERR;
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_2,
trigger_config[2]) != SR_OK)
return SR_ERR;
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_3,
reverse32(ols->trigger_mask[3])) != SR_OK)
return SR_ERR;
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_3,
reverse32(ols->trigger_value[3])) != SR_OK)
return SR_ERR;
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_3,
trigger_config[3]) != SR_OK)
return SR_ERR;
} else {
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_0,
ols->trigger_mask[0]) != SR_OK)
return SR_ERR;
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_0,
ols->trigger_value[0]) != SR_OK)
return SR_ERR;
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_0,
0x00000008) != SR_OK)
return SR_ERR;
delaycount = readcount;
}
g_message("ols: setting samplerate to %" PRIu64 " Hz (divider %u, demux %s)",
ols->cur_samplerate, ols->cur_samplerate_divider,
ols->flag_reg & FLAG_DEMUX ? "on" : "off");
if (send_longcommand(sdi->serial->fd, CMD_SET_DIVIDER,
reverse32(ols->cur_samplerate_divider)) != SR_OK)
return SR_ERR;
/* Send sample limit and pre/post-trigger capture ratio. */
data = ((readcount - 1) & 0xffff) << 16;
data |= (delaycount - 1) & 0xffff;
if (send_longcommand(sdi->serial->fd, CMD_CAPTURE_SIZE, reverse16(data)) != SR_OK)
return SR_ERR;
/*
* Enable/disable channel groups in the flag register according to the
* probe mask.
*/
changrp_mask = 0;
for (i = 0; i < 4; i++) {
if (ols->probe_mask & (0xff << (i * 8)))
changrp_mask |= (1 << i);
}
/* The flag register wants them here, and 1 means "disable channel". */
ols->flag_reg |= ~(changrp_mask << 2) & 0x3c;
ols->flag_reg |= FLAG_FILTER;
data = ols->flag_reg << 24;
if (send_longcommand(sdi->serial->fd, CMD_SET_FLAGS, data) != SR_OK)
return SR_ERR;
/* Start acquisition on the device. */
if (send_shortcommand(sdi->serial->fd, CMD_RUN) != SR_OK)
return SR_ERR;
sr_source_add(sdi->serial->fd, G_IO_IN, -1, receive_data,
session_device_id);
/* Send header packet to the session bus. */
packet = g_malloc(sizeof(struct sr_datafeed_packet));
header = g_malloc(sizeof(struct sr_datafeed_header));
if (!packet || !header)
return SR_ERR;
packet->type = SR_DF_HEADER;
packet->length = sizeof(struct sr_datafeed_header);
packet->payload = (unsigned char *)header;
header->feed_version = 1;
gettimeofday(&header->starttime, NULL);
header->samplerate = ols->cur_samplerate;
header->protocol_id = SR_PROTO_RAW;
header->num_logic_probes = NUM_PROBES;
header->num_analog_probes = 0;
sr_session_bus(session_device_id, packet);
g_free(header);
g_free(packet);
return SR_OK;
}
static void hw_stop_acquisition(int device_index, gpointer session_device_id)
{
struct sr_datafeed_packet packet;
/* Avoid compiler warnings. */
device_index = device_index;
packet.type = SR_DF_END;
packet.length = 0;
sr_session_bus(session_device_id, &packet);
}
struct sr_device_plugin ols_plugin_info = {
"ols",
"Openbench Logic Sniffer",
1,
hw_init,
hw_cleanup,
hw_opendev,
hw_closedev,
hw_get_device_info,
hw_get_status,
hw_get_capabilities,
hw_set_configuration,
hw_start_acquisition,
hw_stop_acquisition,
};