libsigrok/hardware/openbench-logic-sniffer/protocol.c

508 lines
13 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "protocol.h"
extern SR_PRIV struct sr_dev_driver ols_driver_info;
static struct sr_dev_driver *di = &ols_driver_info;
SR_PRIV int send_shortcommand(struct sr_serial_dev_inst *serial,
uint8_t command)
{
char buf[1];
sr_dbg("Sending cmd 0x%.2x.", command);
buf[0] = command;
if (serial_write(serial, buf, 1) != 1)
return SR_ERR;
return SR_OK;
}
SR_PRIV int send_longcommand(struct sr_serial_dev_inst *serial,
uint8_t command, uint32_t data)
{
char buf[5];
sr_dbg("Sending cmd 0x%.2x data 0x%.8x.", command, data);
buf[0] = command;
buf[1] = (data & 0xff000000) >> 24;
buf[2] = (data & 0xff0000) >> 16;
buf[3] = (data & 0xff00) >> 8;
buf[4] = data & 0xff;
if (serial_write(serial, buf, 5) != 5)
return SR_ERR;
return SR_OK;
}
SR_PRIV int ols_configure_probes(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
const struct sr_probe *probe;
const GSList *l;
int probe_bit, stage, i;
char *tc;
devc = sdi->priv;
devc->probe_mask = 0;
for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
devc->trigger_mask[i] = 0;
devc->trigger_value[i] = 0;
}
devc->num_stages = 0;
for (l = sdi->probes; l; l = l->next) {
probe = (const struct sr_probe *)l->data;
if (!probe->enabled)
continue;
/*
* Set up the probe mask for later configuration into the
* flag register.
*/
probe_bit = 1 << (probe->index);
devc->probe_mask |= probe_bit;
if (!probe->trigger)
continue;
/* Configure trigger mask and value. */
stage = 0;
for (tc = probe->trigger; tc && *tc; tc++) {
devc->trigger_mask[stage] |= probe_bit;
if (*tc == '1')
devc->trigger_value[stage] |= probe_bit;
stage++;
if (stage > 3)
/*
* TODO: Only supporting parallel mode, with
* up to 4 stages.
*/
return SR_ERR;
}
if (stage > devc->num_stages)
devc->num_stages = stage;
}
return SR_OK;
}
SR_PRIV uint32_t reverse16(uint32_t in)
{
uint32_t out;
out = (in & 0xff) << 8;
out |= (in & 0xff00) >> 8;
out |= (in & 0xff0000) << 8;
out |= (in & 0xff000000) >> 8;
return out;
}
SR_PRIV uint32_t reverse32(uint32_t in)
{
uint32_t out;
out = (in & 0xff) << 24;
out |= (in & 0xff00) << 8;
out |= (in & 0xff0000) >> 8;
out |= (in & 0xff000000) >> 24;
return out;
}
SR_PRIV struct dev_context *ols_dev_new(void)
{
struct dev_context *devc;
if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) {
sr_err("Device context malloc failed.");
return NULL;
}
devc->trigger_at = -1;
devc->probe_mask = 0xffffffff;
devc->cur_samplerate = SR_KHZ(200);
devc->serial = NULL;
return devc;
}
SR_PRIV struct sr_dev_inst *get_metadata(struct sr_serial_dev_inst *serial)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct sr_probe *probe;
uint32_t tmp_int, ui;
uint8_t key, type, token;
GString *tmp_str, *devname, *version;
guchar tmp_c;
sdi = sr_dev_inst_new(0, SR_ST_INACTIVE, NULL, NULL, NULL);
sdi->driver = di;
devc = ols_dev_new();
sdi->priv = devc;
devname = g_string_new("");
version = g_string_new("");
key = 0xff;
while (key) {
if (serial_read(serial, &key, 1) != 1 || key == 0x00)
break;
type = key >> 5;
token = key & 0x1f;
switch (type) {
case 0:
/* NULL-terminated string */
tmp_str = g_string_new("");
while (serial_read(serial, &tmp_c, 1) == 1 && tmp_c != '\0')
g_string_append_c(tmp_str, tmp_c);
sr_dbg("Got metadata key 0x%.2x value '%s'.",
key, tmp_str->str);
switch (token) {
case 0x01:
/* Device name */
devname = g_string_append(devname, tmp_str->str);
break;
case 0x02:
/* FPGA firmware version */
if (version->len)
g_string_append(version, ", ");
g_string_append(version, "FPGA version ");
g_string_append(version, tmp_str->str);
break;
case 0x03:
/* Ancillary version */
if (version->len)
g_string_append(version, ", ");
g_string_append(version, "Ancillary version ");
g_string_append(version, tmp_str->str);
break;
default:
sr_info("ols: unknown token 0x%.2x: '%s'",
token, tmp_str->str);
break;
}
g_string_free(tmp_str, TRUE);
break;
case 1:
/* 32-bit unsigned integer */
if (serial_read(serial, &tmp_int, 4) != 4)
break;
tmp_int = reverse32(tmp_int);
sr_dbg("Got metadata key 0x%.2x value 0x%.8x.",
key, tmp_int);
switch (token) {
case 0x00:
/* Number of usable probes */
for (ui = 0; ui < tmp_int; ui++) {
if (!(probe = sr_probe_new(ui, SR_PROBE_LOGIC, TRUE,
ols_probe_names[ui])))
return 0;
sdi->probes = g_slist_append(sdi->probes, probe);
}
break;
case 0x01:
/* Amount of sample memory available (bytes) */
devc->max_samples = tmp_int;
break;
case 0x02:
/* Amount of dynamic memory available (bytes) */
/* what is this for? */
break;
case 0x03:
/* Maximum sample rate (hz) */
devc->max_samplerate = tmp_int;
break;
case 0x04:
/* protocol version */
devc->protocol_version = tmp_int;
break;
default:
sr_info("Unknown token 0x%.2x: 0x%.8x.",
token, tmp_int);
break;
}
break;
case 2:
/* 8-bit unsigned integer */
if (serial_read(serial, &tmp_c, 1) != 1)
break;
sr_dbg("Got metadata key 0x%.2x value 0x%.2x.",
key, tmp_c);
switch (token) {
case 0x00:
/* Number of usable probes */
for (ui = 0; ui < tmp_c; ui++) {
if (!(probe = sr_probe_new(ui, SR_PROBE_LOGIC, TRUE,
ols_probe_names[ui])))
return 0;
sdi->probes = g_slist_append(sdi->probes, probe);
}
break;
case 0x01:
/* protocol version */
devc->protocol_version = tmp_c;
break;
default:
sr_info("Unknown token 0x%.2x: 0x%.2x.",
token, tmp_c);
break;
}
break;
default:
/* unknown type */
break;
}
}
sdi->model = devname->str;
sdi->version = version->str;
g_string_free(devname, FALSE);
g_string_free(version, FALSE);
return sdi;
}
SR_PRIV int ols_set_samplerate(const struct sr_dev_inst *sdi,
const uint64_t samplerate)
{
struct dev_context *devc;
devc = sdi->priv;
if (devc->max_samplerate && samplerate > devc->max_samplerate)
return SR_ERR_SAMPLERATE;
if (samplerate > CLOCK_RATE) {
devc->flag_reg |= FLAG_DEMUX;
devc->cur_samplerate_divider = (CLOCK_RATE * 2 / samplerate) - 1;
} else {
devc->flag_reg &= ~FLAG_DEMUX;
devc->cur_samplerate_divider = (CLOCK_RATE / samplerate) - 1;
}
/* Calculate actual samplerate used and complain if it is different
* from the requested.
*/
devc->cur_samplerate = CLOCK_RATE / (devc->cur_samplerate_divider + 1);
if (devc->flag_reg & FLAG_DEMUX)
devc->cur_samplerate *= 2;
if (devc->cur_samplerate != samplerate)
sr_info("Can't match samplerate %" PRIu64 ", using %"
PRIu64 ".", samplerate, devc->cur_samplerate);
return SR_OK;
}
SR_PRIV void abort_acquisition(const struct sr_dev_inst *sdi)
{
struct sr_datafeed_packet packet;
struct dev_context *devc;
devc = sdi->priv;
sr_source_remove(devc->serial->fd);
/* Terminate session */
packet.type = SR_DF_END;
sr_session_send(sdi, &packet);
}
SR_PRIV int ols_receive_data(int fd, int revents, void *cb_data)
{
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct sr_dev_inst *sdi;
struct drv_context *drvc;
struct dev_context *devc;
GSList *l;
int num_channels, offset, i, j;
unsigned char byte;
drvc = di->priv;
/* Find this device's devc struct by its fd. */
devc = NULL;
for (l = drvc->instances; l; l = l->next) {
sdi = l->data;
devc = sdi->priv;
if (devc->serial->fd == fd)
break;
devc = NULL;
}
if (!devc)
/* Shouldn't happen. */
return TRUE;
if (devc->num_transfers++ == 0) {
/*
* First time round, means the device started sending data,
* and will not stop until done. If it stops sending for
* longer than it takes to send a byte, that means it's
* finished. We'll double that to 30ms to be sure...
*/
sr_source_remove(fd);
sr_source_add(fd, G_IO_IN, 30, ols_receive_data, cb_data);
devc->raw_sample_buf = g_try_malloc(devc->limit_samples * 4);
if (!devc->raw_sample_buf) {
sr_err("Sample buffer malloc failed.");
return FALSE;
}
/* fill with 1010... for debugging */
memset(devc->raw_sample_buf, 0x82, devc->limit_samples * 4);
}
num_channels = 0;
for (i = 0x20; i > 0x02; i /= 2) {
if ((devc->flag_reg & i) == 0)
num_channels++;
}
if (revents == G_IO_IN) {
if (serial_read(devc->serial, &byte, 1) != 1)
return FALSE;
/* Ignore it if we've read enough. */
if (devc->num_samples >= devc->limit_samples)
return TRUE;
devc->sample[devc->num_bytes++] = byte;
sr_dbg("Received byte 0x%.2x.", byte);
if (devc->num_bytes == num_channels) {
/* Got a full sample. */
sr_dbg("Received sample 0x%.*x.",
devc->num_bytes * 2, *(int *)devc->sample);
if (devc->flag_reg & FLAG_RLE) {
/*
* In RLE mode -1 should never come in as a
* sample, because bit 31 is the "count" flag.
*/
if (devc->sample[devc->num_bytes - 1] & 0x80) {
devc->sample[devc->num_bytes - 1] &= 0x7f;
/*
* FIXME: This will only work on
* little-endian systems.
*/
devc->rle_count = *(int *)(devc->sample);
sr_dbg("RLE count: %d.", devc->rle_count);
devc->num_bytes = 0;
return TRUE;
}
}
devc->num_samples += devc->rle_count + 1;
if (devc->num_samples > devc->limit_samples) {
/* Save us from overrunning the buffer. */
devc->rle_count -= devc->num_samples - devc->limit_samples;
devc->num_samples = devc->limit_samples;
}
if (num_channels < 4) {
/*
* Some channel groups may have been turned
* off, to speed up transfer between the
* hardware and the PC. Expand that here before
* submitting it over the session bus --
* whatever is listening on the bus will be
* expecting a full 32-bit sample, based on
* the number of probes.
*/
j = 0;
memset(devc->tmp_sample, 0, 4);
for (i = 0; i < 4; i++) {
if (((devc->flag_reg >> 2) & (1 << i)) == 0) {
/*
* This channel group was
* enabled, copy from received
* sample.
*/
devc->tmp_sample[i] = devc->sample[j++];
}
}
memcpy(devc->sample, devc->tmp_sample, 4);
sr_dbg("Full sample: 0x%.8x.", *(int *)devc->sample);
}
/* the OLS sends its sample buffer backwards.
* store it in reverse order here, so we can dump
* this on the session bus later.
*/
offset = (devc->limit_samples - devc->num_samples) * 4;
for (i = 0; i <= devc->rle_count; i++) {
memcpy(devc->raw_sample_buf + offset + (i * 4),
devc->sample, 4);
}
memset(devc->sample, 0, 4);
devc->num_bytes = 0;
devc->rle_count = 0;
}
} else {
/*
* This is the main loop telling us a timeout was reached, or
* we've acquired all the samples we asked for -- we're done.
* Send the (properly-ordered) buffer to the frontend.
*/
if (devc->trigger_at != -1) {
/* a trigger was set up, so we need to tell the frontend
* about it.
*/
if (devc->trigger_at > 0) {
/* there are pre-trigger samples, send those first */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = devc->trigger_at * 4;
logic.unitsize = 4;
logic.data = devc->raw_sample_buf +
(devc->limit_samples - devc->num_samples) * 4;
sr_session_send(cb_data, &packet);
}
/* send the trigger */
packet.type = SR_DF_TRIGGER;
sr_session_send(cb_data, &packet);
/* send post-trigger samples */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = (devc->num_samples * 4) - (devc->trigger_at * 4);
logic.unitsize = 4;
logic.data = devc->raw_sample_buf + devc->trigger_at * 4 +
(devc->limit_samples - devc->num_samples) * 4;
sr_session_send(cb_data, &packet);
} else {
/* no trigger was used */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = devc->num_samples * 4;
logic.unitsize = 4;
logic.data = devc->raw_sample_buf +
(devc->limit_samples - devc->num_samples) * 4;
sr_session_send(cb_data, &packet);
}
g_free(devc->raw_sample_buf);
serial_flush(devc->serial);
abort_acquisition(sdi);
serial_close(devc->serial);
}
return TRUE;
}