libsigrok/hardware/rigol-ds/protocol.c

721 lines
20 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2012 Martin Ling <martin-git@earth.li>
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
* Copyright (C) 2013 Mathias Grimmberger <mgri@zaphod.sax.de>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <stdarg.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <math.h>
#include <ctype.h>
#include <time.h>
#include <glib.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "protocol.h"
/*
* This is a unified protocol driver for the DS1000 and DS2000 series.
*
* DS1000 support tested with a Rigol DS1102D.
*
* DS2000 support tested with a Rigol DS2072 using firmware version 01.01.00.02.
*
* The Rigol DS2000 series scopes try to adhere to the IEEE 488.2 (I think)
* standard. If you want to read it - it costs real money...
*
* Every response from the scope has a linefeed appended because the
* standard says so. In principle this could be ignored because sending the
* next command clears the output queue of the scope. This driver tries to
* avoid doing that because it may cause an error being generated inside the
* scope and who knows what bugs the firmware has WRT this.
*
* Waveform data is transferred in a format called "arbitrary block program
* data" specified in IEEE 488.2. See Agilents programming manuals for their
* 2000/3000 series scopes for a nice description.
*
* Each data block from the scope has a header, e.g. "#900000001400".
* The '#' marks the start of a block.
* Next is one ASCII decimal digit between 1 and 9, this gives the number of
* ASCII decimal digits following.
* Last are the ASCII decimal digits giving the number of bytes (not
* samples!) in the block.
*
* After this header as many data bytes as indicated follow.
*
* Each data block has a trailing linefeed too.
*/
static int parse_int(const char *str, int *ret)
{
char *e;
long tmp;
errno = 0;
tmp = strtol(str, &e, 10);
if (e == str || *e != '\0') {
sr_dbg("Failed to parse integer: '%s'", str);
return SR_ERR;
}
if (errno) {
sr_dbg("Failed to parse integer: '%s', numerical overflow", str);
return SR_ERR;
}
if (tmp > INT_MAX || tmp < INT_MIN) {
sr_dbg("Failed to parse integer: '%s', value to large/small", str);
return SR_ERR;
}
*ret = (int)tmp;
return SR_OK;
}
/* Set the next event to wait for in rigol_ds_receive */
static void rigol_ds_set_wait_event(struct dev_context *devc, enum wait_events event)
{
if (event == WAIT_STOP)
devc->wait_status = 2;
else
devc->wait_status = 1;
devc->wait_event = event;
}
/*
* Waiting for a event will return a timeout after 2 to 3 seconds in order
* to not block the application.
*/
static int rigol_ds_event_wait(const struct sr_dev_inst *sdi, char status1, char status2)
{
char *buf;
struct dev_context *devc;
time_t start;
if (!(devc = sdi->priv))
return SR_ERR;
start = time(NULL);
/*
* Trigger status may return:
* "TD" or "T'D" - triggered
* "AUTO" - autotriggered
* "RUN" - running
* "WAIT" - waiting for trigger
* "STOP" - stopped
*/
if (devc->wait_status == 1) {
do {
if (time(NULL) - start >= 3) {
sr_dbg("Timeout waiting for trigger");
return SR_ERR_TIMEOUT;
}
if (sr_scpi_get_string(sdi->conn, ":TRIG:STAT?", &buf) != SR_OK)
return SR_ERR;
} while (buf[0] == status1 || buf[0] == status2);
devc->wait_status = 2;
}
if (devc->wait_status == 2) {
do {
if (time(NULL) - start >= 3) {
sr_dbg("Timeout waiting for trigger");
return SR_ERR_TIMEOUT;
}
if (sr_scpi_get_string(sdi->conn, ":TRIG:STAT?", &buf) != SR_OK)
return SR_ERR;
} while (buf[0] != status1 && buf[0] != status2);
rigol_ds_set_wait_event(devc, WAIT_NONE);
}
return SR_OK;
}
/*
* For live capture we need to wait for a new trigger event to ensure that
* sample data is not returned twice.
*
* Unfortunately this will never really work because for sufficiently fast
* timebases and trigger rates it just can't catch the status changes.
*
* What would be needed is a trigger event register with autoreset like the
* Agilents have. The Rigols don't seem to have anything like this.
*
* The workaround is to only wait for the trigger when the timebase is slow
* enough. Of course this means that for faster timebases sample data can be
* returned multiple times, this effect is mitigated somewhat by sleeping
* for about one sweep time in that case.
*/
static int rigol_ds_trigger_wait(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
long s;
if (!(devc = sdi->priv))
return SR_ERR;
/*
* If timebase < 50 msecs/DIV just sleep about one sweep time except
* for really fast sweeps.
*/
if (devc->timebase < 0.0499) {
if (devc->timebase > 0.99e-6) {
/*
* Timebase * num hor. divs * 85(%) * 1e6(usecs) / 100
* -> 85 percent of sweep time
*/
s = (devc->timebase * devc->model->num_horizontal_divs
* 85e6) / 100L;
sr_spew("Sleeping for %ld usecs instead of trigger-wait", s);
g_usleep(s);
}
rigol_ds_set_wait_event(devc, WAIT_NONE);
return SR_OK;
} else {
return rigol_ds_event_wait(sdi, 'T', 'A');
}
}
/* Wait for scope to got to "Stop" in single shot mode */
static int rigol_ds_stop_wait(const struct sr_dev_inst *sdi)
{
return rigol_ds_event_wait(sdi, 'S', 'S');
}
/* Check that a single shot acquisition actually succeeded on the DS2000 */
static int rigol_ds_check_stop(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_probe *probe;
int tmp;
if (!(devc = sdi->priv))
return SR_ERR;
probe = devc->channel_entry->data;
if (sr_scpi_send(sdi->conn, ":WAV:SOUR CHAN%d",
probe->index + 1) != SR_OK)
return SR_ERR;
/* Check that the number of samples will be accepted */
if (sr_scpi_send(sdi->conn, ":WAV:POIN %d;*OPC", devc->analog_frame_size) != SR_OK)
return SR_ERR;
if (sr_scpi_get_int(sdi->conn, "*ESR?", &tmp) != SR_OK)
return SR_ERR;
/*
* If we get an "Execution error" the scope went from "Single" to
* "Stop" without actually triggering. There is no waveform
* displayed and trying to download one will fail - the scope thinks
* it has 1400 samples (like display memory) and the driver thinks
* it has a different number of samples.
*
* In that case just try to capture something again. Might still
* fail in interesting ways.
*
* Ain't firmware fun?
*/
if (tmp & 0x10) {
sr_warn("Single shot acquisition failed, retrying...");
/* Sleep a bit, otherwise the single shot will often fail */
g_usleep(500000);
sr_scpi_send(sdi->conn, ":SING");
rigol_ds_set_wait_event(devc, WAIT_STOP);
return SR_ERR;
}
return SR_OK;
}
/* Wait for enough data becoming available in scope output buffer */
static int rigol_ds_block_wait(const struct sr_dev_inst *sdi)
{
char *buf;
struct dev_context *devc;
time_t start;
int len;
if (!(devc = sdi->priv))
return SR_ERR;
start = time(NULL);
do {
if (time(NULL) - start >= 3) {
sr_dbg("Timeout waiting for data block");
return SR_ERR_TIMEOUT;
}
/*
* The scope copies data really slowly from sample
* memory to its output buffer, so try not to bother
* it too much with SCPI requests but don't wait too
* long for short sample frame sizes.
*/
g_usleep(devc->analog_frame_size < 15000 ? 100000 : 1000000);
/* "READ,nnnn" (still working) or "IDLE,nnnn" (finished) */
if (sr_scpi_get_string(sdi->conn, ":WAV:STAT?", &buf) != SR_OK)
return SR_ERR;
if (parse_int(buf + 5, &len) != SR_OK)
return SR_ERR;
} while (buf[0] == 'R' && len < 1000000);
rigol_ds_set_wait_event(devc, WAIT_NONE);
return SR_OK;
}
/* Start capturing a new frameset */
SR_PRIV int rigol_ds_capture_start(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
if (!(devc = sdi->priv))
return SR_ERR;
sr_dbg("Starting data capture for frameset %lu of %lu",
devc->num_frames + 1, devc->limit_frames);
if (sr_scpi_send(sdi->conn, ":WAV:FORM BYTE") != SR_OK)
return SR_ERR;
if (devc->data_source == DATA_SOURCE_LIVE) {
if (sr_scpi_send(sdi->conn, ":WAV:MODE NORM") != SR_OK)
return SR_ERR;
rigol_ds_set_wait_event(devc, WAIT_TRIGGER);
} else {
if (sr_scpi_send(sdi->conn, ":WAV:MODE RAW") != SR_OK)
return SR_ERR;
if (sr_scpi_send(sdi->conn, ":SING", devc->analog_frame_size) != SR_OK)
return SR_ERR;
rigol_ds_set_wait_event(devc, WAIT_STOP);
}
return SR_OK;
}
/* Start reading data from the current channel */
SR_PRIV int rigol_ds_channel_start(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_probe *probe;
if (!(devc = sdi->priv))
return SR_ERR;
probe = devc->channel_entry->data;
sr_dbg("Starting reading data from channel %d", probe->index + 1);
if (devc->model->series < RIGOL_DS1000Z) {
if (probe->type == SR_PROBE_LOGIC) {
if (sr_scpi_send(sdi->conn, ":WAV:DATA? DIG") != SR_OK)
return SR_ERR;
} else {
if (sr_scpi_send(sdi->conn, ":WAV:DATA? CHAN%d",
probe->index + 1) != SR_OK)
return SR_ERR;
}
} else {
if (sr_scpi_send(sdi->conn, ":WAV:SOUR CHAN%d",
probe->index + 1) != SR_OK)
return SR_ERR;
if (devc->data_source != DATA_SOURCE_LIVE) {
if (sr_scpi_send(sdi->conn, ":WAV:RES") != SR_OK)
return SR_ERR;
if (sr_scpi_send(sdi->conn, ":WAV:BEG") != SR_OK)
return SR_ERR;
rigol_ds_set_wait_event(devc, WAIT_BLOCK);
} else
rigol_ds_set_wait_event(devc, WAIT_NONE);
}
devc->num_channel_bytes = 0;
devc->num_block_bytes = 0;
return SR_OK;
}
/* Read the header of a data block */
static int rigol_ds_read_header(struct sr_scpi_dev_inst *scpi)
{
char start[3], length[10];
int len, tmp;
/* Read the hashsign and length digit. */
tmp = sr_scpi_read_data(scpi, start, 2);
start[2] = '\0';
if (tmp != 2) {
sr_err("Failed to read first two bytes of data block header.");
return -1;
}
if (start[0] != '#' || !isdigit(start[1]) || start[1] == '0') {
sr_err("Received invalid data block header start '%s'.", start);
return -1;
}
len = atoi(start + 1);
/* Read the data length. */
tmp = sr_scpi_read_data(scpi, length, len);
length[len] = '\0';
if (tmp != len) {
sr_err("Failed to read %d bytes of data block length.", len);
return -1;
}
if (parse_int(length, &len) != SR_OK) {
sr_err("Received invalid data block length '%s'.", length);
return -1;
}
sr_dbg("Received data block header: %s%s -> block length %d", start, length, len);
return len;
}
SR_PRIV int rigol_ds_receive(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi;
struct sr_scpi_dev_inst *scpi;
struct dev_context *devc;
struct sr_datafeed_packet packet;
struct sr_datafeed_analog analog;
struct sr_datafeed_logic logic;
double vdiv, offset;
int len, i, vref;
struct sr_probe *probe;
gsize expected_data_bytes;
(void)fd;
if (!(sdi = cb_data))
return TRUE;
if (!(devc = sdi->priv))
return TRUE;
scpi = sdi->conn;
if (revents == G_IO_IN || revents == 0) {
if (devc->model->series >= RIGOL_DS1000Z) {
switch(devc->wait_event) {
case WAIT_NONE:
break;
case WAIT_TRIGGER:
if (rigol_ds_trigger_wait(sdi) != SR_OK)
return TRUE;
if (rigol_ds_channel_start(sdi) != SR_OK)
return TRUE;
break;
case WAIT_BLOCK:
if (rigol_ds_block_wait(sdi) != SR_OK)
return TRUE;
break;
case WAIT_STOP:
if (rigol_ds_stop_wait(sdi) != SR_OK)
return TRUE;
if (rigol_ds_check_stop(sdi) != SR_OK)
return TRUE;
if (rigol_ds_channel_start(sdi) != SR_OK)
return TRUE;
return TRUE;
default:
sr_err("BUG: Unknown event target encountered");
}
}
probe = devc->channel_entry->data;
expected_data_bytes = probe->type == SR_PROBE_ANALOG ?
devc->analog_frame_size : devc->digital_frame_size;
if (devc->num_block_bytes == 0 &&
devc->model->series >= RIGOL_DS1000Z) {
if (sr_scpi_send(sdi->conn, ":WAV:DATA?") != SR_OK)
return TRUE;
}
if (devc->num_block_bytes == 0) {
if (sr_scpi_read_begin(scpi) != SR_OK)
return TRUE;
if (devc->protocol == PROTOCOL_IEEE488_2) {
sr_dbg("New block header expected");
len = rigol_ds_read_header(scpi);
if (len == -1)
return TRUE;
/* At slow timebases in live capture the DS2072
* sometimes returns "short" data blocks, with
* apparently no way to get the rest of the data.
* Discard these, the complete data block will
* appear eventually.
*/
if (devc->data_source == DATA_SOURCE_LIVE
&& (unsigned)len < expected_data_bytes) {
sr_dbg("Discarding short data block");
sr_scpi_read_data(scpi, (char *)devc->buffer, len + 1);
return TRUE;
}
devc->num_block_bytes = len;
} else {
devc->num_block_bytes = expected_data_bytes;
}
devc->num_block_read = 0;
}
len = devc->num_block_bytes - devc->num_block_read;
len = sr_scpi_read_data(scpi, (char *)devc->buffer,
len < ACQ_BUFFER_SIZE ? len : ACQ_BUFFER_SIZE);
sr_dbg("Received %d bytes.", len);
if (len == -1)
return TRUE;
devc->num_block_read += len;
if (probe->type == SR_PROBE_ANALOG) {
vref = devc->vert_reference[probe->index];
vdiv = devc->vdiv[probe->index] / 25.6;
offset = devc->vert_offset[probe->index];
if (devc->model->series >= RIGOL_DS1000Z)
for (i = 0; i < len; i++)
devc->data[i] = ((int)devc->buffer[i] - vref) * vdiv - offset;
else
for (i = 0; i < len; i++)
devc->data[i] = (128 - devc->buffer[i]) * vdiv - offset;
analog.probes = g_slist_append(NULL, probe);
analog.num_samples = len;
analog.data = devc->data;
analog.mq = SR_MQ_VOLTAGE;
analog.unit = SR_UNIT_VOLT;
analog.mqflags = 0;
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
sr_session_send(cb_data, &packet);
g_slist_free(analog.probes);
} else {
logic.length = len;
logic.unitsize = 2;
logic.data = devc->buffer;
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
sr_session_send(cb_data, &packet);
}
if (devc->num_block_read == devc->num_block_bytes) {
sr_dbg("Block has been completed");
if (devc->model->series >= RIGOL_DS1000Z) {
/* Discard the terminating linefeed */
sr_scpi_read_data(scpi, (char *)devc->buffer, 1);
}
if (devc->protocol == PROTOCOL_IEEE488_2) {
/* Prepare for possible next block */
devc->num_block_bytes = 0;
if (devc->data_source != DATA_SOURCE_LIVE)
rigol_ds_set_wait_event(devc, WAIT_BLOCK);
}
if (!sr_scpi_read_complete(scpi)) {
sr_err("Read should have been completed");
sdi->driver->dev_acquisition_stop(sdi, cb_data);
return TRUE;
}
devc->num_block_read = 0;
} else {
sr_dbg("%d of %d block bytes read", devc->num_block_read, devc->num_block_bytes);
}
devc->num_channel_bytes += len;
if (devc->num_channel_bytes < expected_data_bytes)
/* Don't have the full data for this channel yet, re-run. */
return TRUE;
/* End of data for this channel. */
if (devc->model->series >= RIGOL_DS1000Z) {
/* Signal end of data download to scope */
if (devc->data_source != DATA_SOURCE_LIVE)
/*
* This causes a query error, without it switching
* to the next channel causes an error. Fun with
* firmware...
*/
sr_scpi_send(sdi->conn, ":WAV:END");
}
if (probe->type == SR_PROBE_ANALOG
&& devc->channel_entry->next != NULL) {
/* We got the frame for this analog channel, but
* there's another analog channel. */
devc->channel_entry = devc->channel_entry->next;
rigol_ds_channel_start(sdi);
} else {
/* Done with all analog channels in this frame. */
if (devc->enabled_digital_probes
&& devc->channel_entry != devc->enabled_digital_probes) {
/* Now we need to get the digital data. */
devc->channel_entry = devc->enabled_digital_probes;
rigol_ds_channel_start(sdi);
} else {
/* Done with this frame. */
packet.type = SR_DF_FRAME_END;
sr_session_send(cb_data, &packet);
if (++devc->num_frames == devc->limit_frames) {
/* Last frame, stop capture. */
sdi->driver->dev_acquisition_stop(sdi, cb_data);
} else {
/* Get the next frame, starting with the first analog channel. */
if (devc->enabled_analog_probes)
devc->channel_entry = devc->enabled_analog_probes;
else
devc->channel_entry = devc->enabled_digital_probes;
if (devc->model->series < RIGOL_DS1000Z)
rigol_ds_channel_start(sdi);
else
rigol_ds_capture_start(sdi);
/* Start of next frame. */
packet.type = SR_DF_FRAME_BEGIN;
sr_session_send(cb_data, &packet);
}
}
}
}
return TRUE;
}
SR_PRIV int rigol_ds_get_dev_cfg(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
char *t_s, *cmd;
unsigned int i;
int res;
devc = sdi->priv;
/* Analog channel state. */
for (i = 0; i < devc->model->analog_channels; i++) {
cmd = g_strdup_printf(":CHAN%d:DISP?", i + 1);
res = sr_scpi_get_string(sdi->conn, cmd, &t_s);
g_free(cmd);
if (res != SR_OK)
return SR_ERR;
devc->analog_channels[i] = !strcmp(t_s, "ON") || !strcmp(t_s, "1");
}
sr_dbg("Current analog channel state:");
for (i = 0; i < devc->model->analog_channels; i++)
sr_dbg("CH%d %s", i + 1, devc->analog_channels[i] ? "on" : "off");
/* Digital channel state. */
if (devc->model->has_digital) {
if (sr_scpi_get_string(sdi->conn, ":LA:DISP?", &t_s) != SR_OK)
return SR_ERR;
devc->la_enabled = !strcmp(t_s, "ON") ? TRUE : FALSE;
sr_dbg("Logic analyzer %s, current digital channel state:",
devc->la_enabled ? "enabled" : "disabled");
for (i = 0; i < 16; i++) {
cmd = g_strdup_printf(":DIG%d:TURN?", i);
res = sr_scpi_get_string(sdi->conn, cmd, &t_s);
g_free(cmd);
if (res != SR_OK)
return SR_ERR;
devc->digital_channels[i] = !strcmp(t_s, "ON") ? TRUE : FALSE;
g_free(t_s);
sr_dbg("D%d: %s", i, devc->digital_channels[i] ? "on" : "off");
}
}
/* Timebase. */
if (sr_scpi_get_float(sdi->conn, ":TIM:SCAL?", &devc->timebase) != SR_OK)
return SR_ERR;
sr_dbg("Current timebase %g", devc->timebase);
/* Vertical gain. */
for (i = 0; i < devc->model->analog_channels; i++) {
cmd = g_strdup_printf(":CHAN%d:SCAL?", i + 1);
res = sr_scpi_get_float(sdi->conn, cmd, &devc->vdiv[i]);
g_free(cmd);
if (res != SR_OK)
return SR_ERR;
}
sr_dbg("Current vertical gain:");
for (i = 0; i < devc->model->analog_channels; i++)
sr_dbg("CH%d %g", i + 1, devc->vdiv[i]);
sr_dbg("Current vertical reference:");
if (devc->model->series >= RIGOL_DS1000Z) {
/* Vertical reference - not certain if this is the place to read it. */
for (i = 0; i < devc->model->analog_channels; i++) {
if (sr_scpi_send(sdi->conn, ":WAV:SOUR CHAN%d", i + 1) != SR_OK)
return SR_ERR;
if (sr_scpi_get_int(sdi->conn, ":WAV:YREF?", &devc->vert_reference[i]) != SR_OK)
return SR_ERR;
sr_dbg("CH%d %d", i + 1, devc->vert_reference[i]);
}
}
/* Vertical offset. */
for (i = 0; i < devc->model->analog_channels; i++) {
cmd = g_strdup_printf(":CHAN%d:OFFS?", i + 1);
res = sr_scpi_get_float(sdi->conn, cmd, &devc->vert_offset[i]);
g_free(cmd);
if (res != SR_OK)
return SR_ERR;
}
sr_dbg("Current vertical offset:");
for (i = 0; i < devc->model->analog_channels; i++)
sr_dbg("CH%d %g", i + 1, devc->vert_offset[i]);
/* Coupling. */
for (i = 0; i < devc->model->analog_channels; i++) {
cmd = g_strdup_printf(":CHAN%d:COUP?", i + 1);
res = sr_scpi_get_string(sdi->conn, cmd, &devc->coupling[i]);
g_free(cmd);
if (res != SR_OK)
return SR_ERR;
}
sr_dbg("Current coupling:");
for (i = 0; i < devc->model->analog_channels; i++)
sr_dbg("CH%d %s", i + 1, devc->coupling[i]);
/* Trigger source. */
if (sr_scpi_get_string(sdi->conn, ":TRIG:EDGE:SOUR?", &devc->trigger_source) != SR_OK)
return SR_ERR;
sr_dbg("Current trigger source %s", devc->trigger_source);
/* Horizontal trigger position. */
if (sr_scpi_get_float(sdi->conn, ":TIM:OFFS?", &devc->horiz_triggerpos) != SR_OK)
return SR_ERR;
sr_dbg("Current horizontal trigger position %g", devc->horiz_triggerpos);
/* Trigger slope. */
if (sr_scpi_get_string(sdi->conn, ":TRIG:EDGE:SLOP?", &devc->trigger_slope) != SR_OK)
return SR_ERR;
sr_dbg("Current trigger slope %s", devc->trigger_slope);
return SR_OK;
}