libsigrok/hardware/hantek-dso/api.c

977 lines
25 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <sys/time.h>
#include <inttypes.h>
#include <glib.h>
#include <libusb.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "dso.h"
/* Max time in ms before we want to check on USB events */
/* TODO tune this properly */
#define TICK 1
#define NUM_TIMEBASE 10
#define NUM_VDIV 8
static const int32_t scanopts[] = {
SR_CONF_CONN,
};
static const int32_t devopts[] = {
SR_CONF_OSCILLOSCOPE,
SR_CONF_LIMIT_FRAMES,
SR_CONF_CONTINUOUS,
SR_CONF_TIMEBASE,
SR_CONF_BUFFERSIZE,
SR_CONF_TRIGGER_SOURCE,
SR_CONF_TRIGGER_SLOPE,
SR_CONF_HORIZ_TRIGGERPOS,
SR_CONF_FILTER,
SR_CONF_VDIV,
SR_CONF_COUPLING,
SR_CONF_NUM_TIMEBASE,
SR_CONF_NUM_VDIV,
};
static const char *channel_names[] = {
"CH1", "CH2",
NULL,
};
static const uint64_t buffersizes_32k[] = {
10240, 32768,
};
static const uint64_t buffersizes_512k[] = {
10240, 524288,
};
static const uint64_t buffersizes_14k[] = {
10240, 14336,
};
static const struct dso_profile dev_profiles[] = {
{ 0x04b4, 0x2090, 0x04b5, 0x2090,
"Hantek", "DSO-2090",
buffersizes_32k,
FIRMWARE_DIR "/hantek-dso-2090.fw" },
{ 0x04b4, 0x2150, 0x04b5, 0x2150,
"Hantek", "DSO-2150",
buffersizes_32k,
FIRMWARE_DIR "/hantek-dso-2150.fw" },
{ 0x04b4, 0x2250, 0x04b5, 0x2250,
"Hantek", "DSO-2250",
buffersizes_512k,
FIRMWARE_DIR "/hantek-dso-2250.fw" },
{ 0x04b4, 0x5200, 0x04b5, 0x5200,
"Hantek", "DSO-5200",
buffersizes_14k,
FIRMWARE_DIR "/hantek-dso-5200.fw" },
{ 0x04b4, 0x520a, 0x04b5, 0x520a,
"Hantek", "DSO-5200A",
buffersizes_512k,
FIRMWARE_DIR "/hantek-dso-5200A.fw" },
{ 0, 0, 0, 0, 0, 0, 0, 0 },
};
static const uint64_t timebases[][2] = {
/* microseconds */
{ 10, 1000000 },
{ 20, 1000000 },
{ 40, 1000000 },
{ 100, 1000000 },
{ 200, 1000000 },
{ 400, 1000000 },
/* milliseconds */
{ 1, 1000 },
{ 2, 1000 },
{ 4, 1000 },
{ 10, 1000 },
{ 20, 1000 },
{ 40, 1000 },
{ 100, 1000 },
{ 200, 1000 },
{ 400, 1000 },
};
static const uint64_t vdivs[][2] = {
/* millivolts */
{ 10, 1000 },
{ 20, 1000 },
{ 50, 1000 },
{ 100, 1000 },
{ 200, 1000 },
{ 500, 1000 },
/* volts */
{ 1, 1 },
{ 2, 1 },
{ 5, 1 },
};
static const char *trigger_sources[] = {
"CH1",
"CH2",
"EXT",
/* TODO: forced */
};
static const char *filter_targets[] = {
"CH1",
"CH2",
/* TODO: "TRIGGER", */
};
static const char *coupling[] = {
"AC",
"DC",
"GND",
};
SR_PRIV struct sr_dev_driver hantek_dso_driver_info;
static struct sr_dev_driver *di = &hantek_dso_driver_info;
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
static struct sr_dev_inst *dso_dev_new(int index, const struct dso_profile *prof)
{
struct sr_dev_inst *sdi;
struct sr_channel *ch;
struct drv_context *drvc;
struct dev_context *devc;
int i;
sdi = sr_dev_inst_new(index, SR_ST_INITIALIZING,
prof->vendor, prof->model, NULL);
if (!sdi)
return NULL;
sdi->driver = di;
/*
* Add only the real channels -- EXT isn't a source of data, only
* a trigger source internal to the device.
*/
for (i = 0; channel_names[i]; i++) {
if (!(ch = sr_channel_new(i, SR_CHANNEL_ANALOG, TRUE,
channel_names[i])))
return NULL;
sdi->channels = g_slist_append(sdi->channels, ch);
}
if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) {
sr_err("Device context malloc failed.");
return NULL;
}
devc->profile = prof;
devc->dev_state = IDLE;
devc->timebase = DEFAULT_TIMEBASE;
devc->ch1_enabled = TRUE;
devc->ch2_enabled = TRUE;
devc->voltage_ch1 = DEFAULT_VOLTAGE;
devc->voltage_ch2 = DEFAULT_VOLTAGE;
devc->coupling_ch1 = DEFAULT_COUPLING;
devc->coupling_ch2 = DEFAULT_COUPLING;
devc->voffset_ch1 = DEFAULT_VERT_OFFSET;
devc->voffset_ch2 = DEFAULT_VERT_OFFSET;
devc->voffset_trigger = DEFAULT_VERT_TRIGGERPOS;
devc->framesize = DEFAULT_FRAMESIZE;
devc->triggerslope = SLOPE_POSITIVE;
devc->triggersource = g_strdup(DEFAULT_TRIGGER_SOURCE);
devc->triggerposition = DEFAULT_HORIZ_TRIGGERPOS;
sdi->priv = devc;
drvc = di->priv;
drvc->instances = g_slist_append(drvc->instances, sdi);
return sdi;
}
static int configure_channels(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_channel *ch;
const GSList *l;
int p;
devc = sdi->priv;
g_slist_free(devc->enabled_channels);
devc->ch1_enabled = devc->ch2_enabled = FALSE;
for (l = sdi->channels, p = 0; l; l = l->next, p++) {
ch = l->data;
if (p == 0)
devc->ch1_enabled = ch->enabled;
else
devc->ch2_enabled = ch->enabled;
if (ch->enabled)
devc->enabled_channels = g_slist_append(devc->enabled_channels, ch);
}
return SR_OK;
}
static void clear_dev_context(void *priv)
{
struct dev_context *devc;
devc = priv;
g_free(devc->triggersource);
g_slist_free(devc->enabled_channels);
}
static int dev_clear(void)
{
return std_dev_clear(di, clear_dev_context);
}
static int init(struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
static GSList *scan(GSList *options)
{
struct drv_context *drvc;
struct dev_context *devc;
struct sr_dev_inst *sdi;
struct sr_usb_dev_inst *usb;
struct sr_config *src;
const struct dso_profile *prof;
GSList *l, *devices, *conn_devices;
struct libusb_device_descriptor des;
libusb_device **devlist;
int devcnt, ret, i, j;
const char *conn;
drvc = di->priv;
devcnt = 0;
devices = 0;
conn = NULL;
for (l = options; l; l = l->next) {
src = l->data;
if (src->key == SR_CONF_CONN) {
conn = g_variant_get_string(src->data, NULL);
break;
}
}
if (conn)
conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
else
conn_devices = NULL;
/* Find all Hantek DSO devices and upload firmware to all of them. */
libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
for (i = 0; devlist[i]; i++) {
if (conn) {
usb = NULL;
for (l = conn_devices; l; l = l->next) {
usb = l->data;
if (usb->bus == libusb_get_bus_number(devlist[i])
&& usb->address == libusb_get_device_address(devlist[i]))
break;
}
if (!l)
/* This device matched none of the ones that
* matched the conn specification. */
continue;
}
if ((ret = libusb_get_device_descriptor(devlist[i], &des))) {
sr_err("Failed to get device descriptor: %s.",
libusb_error_name(ret));
continue;
}
prof = NULL;
for (j = 0; dev_profiles[j].orig_vid; j++) {
if (des.idVendor == dev_profiles[j].orig_vid
&& des.idProduct == dev_profiles[j].orig_pid) {
/* Device matches the pre-firmware profile. */
prof = &dev_profiles[j];
sr_dbg("Found a %s %s.", prof->vendor, prof->model);
sdi = dso_dev_new(devcnt, prof);
devices = g_slist_append(devices, sdi);
devc = sdi->priv;
if (ezusb_upload_firmware(devlist[i], USB_CONFIGURATION,
prof->firmware) == SR_OK)
/* Remember when the firmware on this device was updated */
devc->fw_updated = g_get_monotonic_time();
else
sr_err("Firmware upload failed for "
"device %d.", devcnt);
/* Dummy USB address of 0xff will get overwritten later. */
sdi->conn = sr_usb_dev_inst_new(
libusb_get_bus_number(devlist[i]), 0xff, NULL);
devcnt++;
break;
} else if (des.idVendor == dev_profiles[j].fw_vid
&& des.idProduct == dev_profiles[j].fw_pid) {
/* Device matches the post-firmware profile. */
prof = &dev_profiles[j];
sr_dbg("Found a %s %s.", prof->vendor, prof->model);
sdi = dso_dev_new(devcnt, prof);
sdi->status = SR_ST_INACTIVE;
devices = g_slist_append(devices, sdi);
devc = sdi->priv;
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new(
libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), NULL);
devcnt++;
break;
}
}
if (!prof)
/* not a supported VID/PID */
continue;
}
libusb_free_device_list(devlist, 1);
return devices;
}
static GSList *dev_list(void)
{
return ((struct drv_context *)(di->priv))->instances;
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
int64_t timediff_us, timediff_ms;
int err;
devc = sdi->priv;
usb = sdi->conn;
/*
* If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS
* for the FX2 to renumerate.
*/
err = SR_ERR;
if (devc->fw_updated > 0) {
sr_info("Waiting for device to reset.");
/* Takes >= 300ms for the FX2 to be gone from the USB bus. */
g_usleep(300 * 1000);
timediff_ms = 0;
while (timediff_ms < MAX_RENUM_DELAY_MS) {
if ((err = dso_open(sdi)) == SR_OK)
break;
g_usleep(100 * 1000);
timediff_us = g_get_monotonic_time() - devc->fw_updated;
timediff_ms = timediff_us / 1000;
sr_spew("Waited %" PRIi64 " ms.", timediff_ms);
}
sr_info("Device came back after %d ms.", timediff_ms);
} else {
err = dso_open(sdi);
}
if (err != SR_OK) {
sr_err("Unable to open device.");
return SR_ERR;
}
err = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
if (err != 0) {
sr_err("Unable to claim interface: %s.",
libusb_error_name(err));
return SR_ERR;
}
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
dso_close(sdi);
return SR_OK;
}
static int cleanup(void)
{
return dev_clear();
}
static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct sr_usb_dev_inst *usb;
char str[128];
(void)cg;
switch (id) {
case SR_CONF_CONN:
if (!sdi || !sdi->conn)
return SR_ERR_ARG;
usb = sdi->conn;
if (usb->address == 255)
/* Device still needs to re-enumerate after firmware
* upload, so we don't know its (future) address. */
return SR_ERR;
snprintf(str, 128, "%d.%d", usb->bus, usb->address);
*data = g_variant_new_string(str);
break;
case SR_CONF_NUM_TIMEBASE:
*data = g_variant_new_int32(NUM_TIMEBASE);
break;
case SR_CONF_NUM_VDIV:
*data = g_variant_new_int32(NUM_VDIV);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
double tmp_double;
uint64_t tmp_u64, p, q;
int tmp_int, ret;
unsigned int i;
const char *tmp_str;
char **targets;
(void)cg;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
ret = SR_OK;
devc = sdi->priv;
switch (id) {
case SR_CONF_LIMIT_FRAMES:
devc->limit_frames = g_variant_get_uint64(data);
break;
case SR_CONF_TRIGGER_SLOPE:
tmp_str = g_variant_get_string(data, NULL);
if (!tmp_str || !(tmp_str[0] == 'f' || tmp_str[0] == 'r'))
return SR_ERR_ARG;
devc->triggerslope = (tmp_str[0] == 'r')
? SLOPE_POSITIVE : SLOPE_NEGATIVE;
break;
case SR_CONF_HORIZ_TRIGGERPOS:
tmp_double = g_variant_get_double(data);
if (tmp_double < 0.0 || tmp_double > 1.0) {
sr_err("Trigger position should be between 0.0 and 1.0.");
ret = SR_ERR_ARG;
} else
devc->triggerposition = tmp_double;
break;
case SR_CONF_BUFFERSIZE:
tmp_u64 = g_variant_get_uint64(data);
for (i = 0; i < 2; i++) {
if (devc->profile->buffersizes[i] == tmp_u64) {
devc->framesize = tmp_u64;
break;
}
}
if (i == 2)
ret = SR_ERR_ARG;
break;
case SR_CONF_TIMEBASE:
g_variant_get(data, "(tt)", &p, &q);
tmp_int = -1;
for (i = 0; i < ARRAY_SIZE(timebases); i++) {
if (timebases[i][0] == p && timebases[i][1] == q) {
tmp_int = i;
break;
}
}
if (tmp_int >= 0)
devc->timebase = tmp_int;
else
ret = SR_ERR_ARG;
break;
case SR_CONF_TRIGGER_SOURCE:
tmp_str = g_variant_get_string(data, NULL);
for (i = 0; trigger_sources[i]; i++) {
if (!strcmp(tmp_str, trigger_sources[i])) {
devc->triggersource = g_strdup(tmp_str);
break;
}
}
if (trigger_sources[i] == 0)
ret = SR_ERR_ARG;
break;
case SR_CONF_FILTER:
tmp_str = g_variant_get_string(data, NULL);
devc->filter_ch1 = devc->filter_ch2 = devc->filter_trigger = 0;
targets = g_strsplit(tmp_str, ",", 0);
for (i = 0; targets[i]; i++) {
if (targets[i] == '\0')
/* Empty filter string can be used to clear them all. */
;
else if (!strcmp(targets[i], "CH1"))
devc->filter_ch1 = TRUE;
else if (!strcmp(targets[i], "CH2"))
devc->filter_ch2 = TRUE;
else if (!strcmp(targets[i], "TRIGGER"))
devc->filter_trigger = TRUE;
else {
sr_err("Invalid filter target %s.", targets[i]);
ret = SR_ERR_ARG;
}
}
g_strfreev(targets);
break;
case SR_CONF_VDIV:
/* TODO: Not supporting vdiv per channel yet. */
g_variant_get(data, "(tt)", &p, &q);
tmp_int = -1;
for (i = 0; i < ARRAY_SIZE(vdivs); i++) {
if (vdivs[i][0] == p && vdivs[i][1] == q) {
tmp_int = i;
break;
}
}
if (tmp_int >= 0) {
devc->voltage_ch1 = tmp_int;
devc->voltage_ch2 = tmp_int;
} else
ret = SR_ERR_ARG;
break;
case SR_CONF_COUPLING:
tmp_str = g_variant_get_string(data, NULL);
/* TODO: Not supporting coupling per channel yet. */
for (i = 0; coupling[i]; i++) {
if (!strcmp(tmp_str, coupling[i])) {
devc->coupling_ch1 = i;
devc->coupling_ch2 = i;
break;
}
}
if (coupling[i] == 0)
ret = SR_ERR_ARG;
break;
default:
ret = SR_ERR_NA;
break;
}
return ret;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
GVariant *tuple, *rational[2];
GVariantBuilder gvb;
unsigned int i;
(void)cg;
switch (key) {
case SR_CONF_SCAN_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
scanopts, ARRAY_SIZE(scanopts), sizeof(int32_t));
break;
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
devopts, ARRAY_SIZE(devopts), sizeof(int32_t));
break;
case SR_CONF_BUFFERSIZE:
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT64,
devc->profile->buffersizes, 2, sizeof(uint64_t));
break;
case SR_CONF_COUPLING:
*data = g_variant_new_strv(coupling, ARRAY_SIZE(coupling));
break;
case SR_CONF_VDIV:
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
for (i = 0; i < ARRAY_SIZE(vdivs); i++) {
rational[0] = g_variant_new_uint64(vdivs[i][0]);
rational[1] = g_variant_new_uint64(vdivs[i][1]);
tuple = g_variant_new_tuple(rational, 2);
g_variant_builder_add_value(&gvb, tuple);
}
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_FILTER:
*data = g_variant_new_strv(filter_targets,
ARRAY_SIZE(filter_targets));
break;
case SR_CONF_TIMEBASE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
for (i = 0; i < ARRAY_SIZE(timebases); i++) {
rational[0] = g_variant_new_uint64(timebases[i][0]);
rational[1] = g_variant_new_uint64(timebases[i][1]);
tuple = g_variant_new_tuple(rational, 2);
g_variant_builder_add_value(&gvb, tuple);
}
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TRIGGER_SOURCE:
*data = g_variant_new_strv(trigger_sources,
ARRAY_SIZE(trigger_sources));
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static void send_chunk(struct sr_dev_inst *sdi, unsigned char *buf,
int num_samples)
{
struct sr_datafeed_packet packet;
struct sr_datafeed_analog analog;
struct dev_context *devc;
float ch1, ch2, range;
int num_channels, data_offset, i;
devc = sdi->priv;
num_channels = (devc->ch1_enabled && devc->ch2_enabled) ? 2 : 1;
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
/* TODO: support for 5xxx series 9-bit samples */
analog.channels = devc->enabled_channels;
analog.num_samples = num_samples;
analog.mq = SR_MQ_VOLTAGE;
analog.unit = SR_UNIT_VOLT;
/* TODO: Check malloc return value. */
analog.data = g_try_malloc(analog.num_samples * sizeof(float) * num_channels);
data_offset = 0;
for (i = 0; i < analog.num_samples; i++) {
/*
* The device always sends data for both channels. If a channel
* is disabled, it contains a copy of the enabled channel's
* data. However, we only send the requested channels to
* the bus.
*
* Voltage values are encoded as a value 0-255 (0-512 on the
* DSO-5200*), where the value is a point in the range
* represented by the vdiv setting. There are 8 vertical divs,
* so e.g. 500mV/div represents 4V peak-to-peak where 0 = -2V
* and 255 = +2V.
*/
/* TODO: Support for DSO-5xxx series 9-bit samples. */
if (devc->ch1_enabled) {
range = ((float)vdivs[devc->voltage_ch1][0] / vdivs[devc->voltage_ch1][1]) * 8;
ch1 = range / 255 * *(buf + i * 2 + 1);
/* Value is centered around 0V. */
ch1 -= range / 2;
analog.data[data_offset++] = ch1;
}
if (devc->ch2_enabled) {
range = ((float)vdivs[devc->voltage_ch2][0] / vdivs[devc->voltage_ch2][1]) * 8;
ch2 = range / 255 * *(buf + i * 2);
ch2 -= range / 2;
analog.data[data_offset++] = ch2;
}
}
sr_session_send(devc->cb_data, &packet);
}
/*
* Called by libusb (as triggered by handle_event()) when a transfer comes in.
* Only channel data comes in asynchronously, and all transfers for this are
* queued up beforehand, so this just needs to chuck the incoming data onto
* the libsigrok session bus.
*/
static void receive_transfer(struct libusb_transfer *transfer)
{
struct sr_datafeed_packet packet;
struct sr_dev_inst *sdi;
struct dev_context *devc;
int num_samples, pre;
sdi = transfer->user_data;
devc = sdi->priv;
sr_spew("receive_transfer(): status %d received %d bytes.",
transfer->status, transfer->actual_length);
if (transfer->actual_length == 0)
/* Nothing to send to the bus. */
return;
num_samples = transfer->actual_length / 2;
sr_spew("Got %d-%d/%d samples in frame.", devc->samp_received + 1,
devc->samp_received + num_samples, devc->framesize);
/*
* The device always sends a full frame, but the beginning of the frame
* doesn't represent the trigger point. The offset at which the trigger
* happened came in with the capture state, so we need to start sending
* from there up the session bus. The samples in the frame buffer
* before that trigger point came after the end of the device's frame
* buffer was reached, and it wrapped around to overwrite up until the
* trigger point.
*/
if (devc->samp_received < devc->trigger_offset) {
/* Trigger point not yet reached. */
if (devc->samp_received + num_samples < devc->trigger_offset) {
/* The entire chunk is before the trigger point. */
memcpy(devc->framebuf + devc->samp_buffered * 2,
transfer->buffer, num_samples * 2);
devc->samp_buffered += num_samples;
} else {
/*
* This chunk hits or overruns the trigger point.
* Store the part before the trigger fired, and
* send the rest up to the session bus.
*/
pre = devc->trigger_offset - devc->samp_received;
memcpy(devc->framebuf + devc->samp_buffered * 2,
transfer->buffer, pre * 2);
devc->samp_buffered += pre;
/* The rest of this chunk starts with the trigger point. */
sr_dbg("Reached trigger point, %d samples buffered.",
devc->samp_buffered);
/* Avoid the corner case where the chunk ended at
* exactly the trigger point. */
if (num_samples > pre)
send_chunk(sdi, transfer->buffer + pre * 2,
num_samples - pre);
}
} else {
/* Already past the trigger point, just send it all out. */
send_chunk(sdi, transfer->buffer,
num_samples);
}
devc->samp_received += num_samples;
/* Everything in this transfer was either copied to the buffer or
* sent to the session bus. */
g_free(transfer->buffer);
libusb_free_transfer(transfer);
if (devc->samp_received >= devc->framesize) {
/* That was the last chunk in this frame. Send the buffered
* pre-trigger samples out now, in one big chunk. */
sr_dbg("End of frame, sending %d pre-trigger buffered samples.",
devc->samp_buffered);
send_chunk(sdi, devc->framebuf, devc->samp_buffered);
/* Mark the end of this frame. */
packet.type = SR_DF_FRAME_END;
sr_session_send(devc->cb_data, &packet);
if (devc->limit_frames && ++devc->num_frames == devc->limit_frames) {
/* Terminate session */
devc->dev_state = STOPPING;
} else {
devc->dev_state = NEW_CAPTURE;
}
}
}
static int handle_event(int fd, int revents, void *cb_data)
{
const struct sr_dev_inst *sdi;
struct sr_datafeed_packet packet;
struct timeval tv;
struct dev_context *devc;
struct drv_context *drvc = di->priv;
int num_channels;
uint32_t trigger_offset;
uint8_t capturestate;
(void)fd;
(void)revents;
sdi = cb_data;
devc = sdi->priv;
if (devc->dev_state == STOPPING) {
/* We've been told to wind up the acquisition. */
sr_dbg("Stopping acquisition.");
/*
* TODO: Doesn't really cancel pending transfers so they might
* come in after SR_DF_END is sent.
*/
usb_source_remove(drvc->sr_ctx);
packet.type = SR_DF_END;
sr_session_send(sdi, &packet);
devc->dev_state = IDLE;
return TRUE;
}
/* Always handle pending libusb events. */
tv.tv_sec = tv.tv_usec = 0;
libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
/* TODO: ugh */
if (devc->dev_state == NEW_CAPTURE) {
if (dso_capture_start(sdi) != SR_OK)
return TRUE;
if (dso_enable_trigger(sdi) != SR_OK)
return TRUE;
// if (dso_force_trigger(sdi) != SR_OK)
// return TRUE;
sr_dbg("Successfully requested next chunk.");
devc->dev_state = CAPTURE;
return TRUE;
}
if (devc->dev_state != CAPTURE)
return TRUE;
if ((dso_get_capturestate(sdi, &capturestate, &trigger_offset)) != SR_OK)
return TRUE;
sr_dbg("Capturestate %d.", capturestate);
sr_dbg("Trigger offset 0x%.6x.", trigger_offset);
switch (capturestate) {
case CAPTURE_EMPTY:
if (++devc->capture_empty_count >= MAX_CAPTURE_EMPTY) {
devc->capture_empty_count = 0;
if (dso_capture_start(sdi) != SR_OK)
break;
if (dso_enable_trigger(sdi) != SR_OK)
break;
// if (dso_force_trigger(sdi) != SR_OK)
// break;
sr_dbg("Successfully requested next chunk.");
}
break;
case CAPTURE_FILLING:
/* No data yet. */
break;
case CAPTURE_READY_8BIT:
/* Remember where in the captured frame the trigger is. */
devc->trigger_offset = trigger_offset;
num_channels = (devc->ch1_enabled && devc->ch2_enabled) ? 2 : 1;
/* TODO: Check malloc return value. */
devc->framebuf = g_try_malloc(devc->framesize * num_channels * 2);
devc->samp_buffered = devc->samp_received = 0;
/* Tell the scope to send us the first frame. */
if (dso_get_channeldata(sdi, receive_transfer) != SR_OK)
break;
/*
* Don't hit the state machine again until we're done fetching
* the data we just told the scope to send.
*/
devc->dev_state = FETCH_DATA;
/* Tell the frontend a new frame is on the way. */
packet.type = SR_DF_FRAME_BEGIN;
sr_session_send(sdi, &packet);
break;
case CAPTURE_READY_9BIT:
/* TODO */
sr_err("Not yet supported.");
break;
case CAPTURE_TIMEOUT:
/* Doesn't matter, we'll try again next time. */
break;
default:
sr_dbg("Unknown capture state: %d.", capturestate);
break;
}
return TRUE;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
struct drv_context *drvc = di->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
devc->cb_data = cb_data;
if (configure_channels(sdi) != SR_OK) {
sr_err("Failed to configure channels.");
return SR_ERR;
}
if (dso_init(sdi) != SR_OK)
return SR_ERR;
if (dso_capture_start(sdi) != SR_OK)
return SR_ERR;
devc->dev_state = CAPTURE;
usb_source_add(drvc->sr_ctx, TICK, handle_event, (void *)sdi);
/* Send header packet to the session bus. */
std_session_send_df_header(cb_data, LOG_PREFIX);
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
(void)cb_data;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
devc = sdi->priv;
devc->dev_state = STOPPING;
return SR_OK;
}
SR_PRIV struct sr_dev_driver hantek_dso_driver_info = {
.name = "hantek-dso",
.longname = "Hantek DSO",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};