libsigrok/hardware/hameg-hmo/api.c

937 lines
20 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 poljar (Damir Jelić) <poljarinho@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <glib/gstdio.h>
#include "protocol.h"
#define SERIALCOMM "115200/8n1/flow=1"
static const int32_t hwopts[] = {
SR_CONF_CONN,
SR_CONF_SERIALCOMM,
};
struct usb_id_info {
uint16_t vendor_id;
uint16_t product_id;
} usb_id_info;
static struct usb_id_info ho_models[] = {
{
.vendor_id = 0x0403,
.product_id = 0xed72, /* HO720 */
},
{
.vendor_id = 0x0403,
.product_id = 0xed73, /* HO730 */
},
};
static int init(struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
/**
* Find USB serial devices via the USB vendor ID and product ID.
*
* @param vendor_id vendor ID of the USB device.
* @param product_id product ID of the USB device.
*
* @return A GSList of strings containing the path of the serial device or null
* if no serial device is found. The returned list must be freed by the caller.
*/
static GSList *auto_find_usb(unsigned long vendor_id,
unsigned long product_id)
{
#ifdef __linux__
const gchar *usb_dev;
const char device_tree[] = "/sys/bus/usb/devices/";
GDir *devices_dir;
GSList *l = NULL;
GSList *tty_devices;
GSList *matched_paths;
l = NULL;
tty_devices = NULL;
matched_paths = NULL;
if (!(devices_dir = g_dir_open(device_tree, 0, NULL)))
return NULL;
/*
* Find potential candidates using the vendor ID and product ID
* and store them in matched_paths
*/
while ((usb_dev = g_dir_read_name(devices_dir))) {
FILE *fd;
char tmp[5];
gchar *vendor_path;
gchar *product_path;
unsigned long read_vendor_id;
unsigned long read_product_id;
vendor_path = g_strconcat(device_tree,
usb_dev, "/idVendor", NULL);
product_path = g_strconcat(device_tree,
usb_dev, "/idProduct", NULL);
if (!g_file_test(vendor_path, G_FILE_TEST_EXISTS) ||
!g_file_test(product_path, G_FILE_TEST_EXISTS))
goto skip_device;
if ((fd = g_fopen(vendor_path, "r")) == NULL)
goto skip_device;
if (fgets(tmp, sizeof(tmp), fd) == NULL) {
fclose(fd);
goto skip_device;
}
read_vendor_id = strtoul(tmp, NULL, 16);
fclose(fd);
if ((fd = g_fopen(product_path, "r")) == NULL)
goto skip_device;
if (fgets(tmp, sizeof(tmp), fd) == NULL) {
fclose(fd);
goto skip_device;
}
read_product_id = strtoul(tmp, NULL, 16);
fclose(fd);
if (vendor_id == read_vendor_id &&
product_id == read_product_id) {
gchar *path_copy;
path_copy = g_strdup(usb_dev);
matched_paths = g_slist_prepend(matched_paths,
path_copy);
}
skip_device:
g_free(vendor_path);
g_free(product_path);
}
g_dir_close(devices_dir);
/* For every matched device try to find a ttyUSBX subfolder */
for (l = matched_paths; l; l = l->next) {
const char *file;
GDir *device_dir;
gchar *prefix;
gchar *subdir_path;
gchar *device_path;
subdir_path = NULL;
device_path = g_strconcat(device_tree, l->data, NULL);
if (!(device_dir = g_dir_open(device_path, 0, NULL))) {
g_free(device_path);
continue;
}
prefix = g_strconcat(l->data, ":", NULL);
while ((file = g_dir_read_name(device_dir))) {
if (g_str_has_prefix(file, prefix)) {
subdir_path = g_strconcat(device_path,
"/", file,
NULL);
break;
}
}
g_dir_close(device_dir);
g_free(prefix);
g_free(device_path);
if (subdir_path) {
if (!(device_dir = g_dir_open(subdir_path, 0, NULL))) {
g_free(subdir_path);
continue;
}
g_free(subdir_path);
while ((file = g_dir_read_name(device_dir))) {
if (g_str_has_prefix(file, "ttyUSB")) {
gchar *tty_path;
tty_path = g_strconcat("/dev/",
file, NULL);
sr_dbg("Found USB device %04x:%04x attached to %s",
vendor_id, product_id, tty_path);
tty_devices = g_slist_prepend(tty_devices,
tty_path);
break;
}
}
g_dir_close(device_dir);
}
}
g_slist_free_full(matched_paths, g_free);
return tty_devices;
#else
return NULL;
#endif
}
static GSList *scan(GSList *options)
{
GSList *devices;
struct drv_context *drvc;
struct sr_dev_inst *sdi;
const char *serial_device;
const char *serial_options;
serial_device = NULL;
serial_options = SERIALCOMM;
sdi = NULL;
devices = NULL;
drvc = di->priv;
drvc->instances = NULL;
if (sr_serial_extract_options(options, &serial_device,
&serial_options) == SR_OK) {
sdi = hameg_probe_serial_device(serial_device, serial_options);
if (sdi != NULL) {
devices = g_slist_append(devices, sdi);
drvc->instances = g_slist_append(drvc->instances, sdi);
}
} else {
GSList *l;
GSList *tty_devices;
unsigned int i;
tty_devices = NULL;
for (i = 0; i < ARRAY_SIZE(ho_models); i++) {
if ((l = auto_find_usb(ho_models[i].vendor_id,
ho_models[i].product_id)) == NULL)
continue;
tty_devices = g_slist_concat(tty_devices, l);
}
for (l = tty_devices; l; l = l->next) {
sdi = hameg_probe_serial_device(l->data, serial_options);
if (sdi != NULL) {
devices = g_slist_append(devices, sdi);
drvc->instances = g_slist_append(drvc->instances, sdi);
}
}
g_slist_free_full(tty_devices, g_free);
}
return devices;
}
static GSList *dev_list(void)
{
return ((struct drv_context *)(di->priv))->instances;
}
static void clear_helper(void *priv)
{
unsigned int i;
struct dev_context *devc;
struct scope_config *model;
devc = priv;
model = devc->model_config;
scope_state_free(devc->model_state);
for (i = 0; i < model->analog_channels; ++i) {
g_slist_free(devc->analog_groups[i].probes);
}
for (i = 0; i < model->digital_pods; ++i) {
g_slist_free(devc->digital_groups[i].probes);
g_free(devc->digital_groups[i].name);
}
g_free(devc->analog_groups);
g_free(devc->digital_groups);
g_free(devc);
}
static int dev_clear(void)
{
return std_dev_clear(di, clear_helper);
}
static int dev_open(struct sr_dev_inst *sdi)
{
if (sdi->status != SR_ST_ACTIVE &&
serial_open(sdi->conn, SERIAL_RDWR | SERIAL_NONBLOCK) != SR_OK)
return SR_ERR;
if (scope_state_get(sdi) != SR_OK)
return SR_ERR;
sdi->status = SR_ST_ACTIVE;
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
if (sdi->status == SR_ST_INACTIVE)
return SR_OK;
serial_close(sdi->conn);
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int cleanup(void)
{
dev_clear();
return SR_OK;
}
static int check_probe_group(struct dev_context *devc,
const struct sr_probe_group *probe_group)
{
unsigned int i;
struct scope_config *model;
model = devc->model_config;
if (!probe_group)
return PG_NONE;
for (i = 0; i < model->analog_channels; ++i)
if (probe_group == &devc->analog_groups[i])
return PG_ANALOG;
for (i = 0; i < model->digital_pods; ++i)
if (probe_group == &devc->digital_groups[i])
return PG_DIGITAL;
sr_err("Invalid probe group specified.");
return PG_INVALID;
}
static int config_get(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
int ret;
int pg_type;
unsigned int i;
struct dev_context *devc;
struct scope_config *model;
if (!sdi || !(devc = sdi->priv))
return SR_ERR_ARG;
if ((pg_type = check_probe_group(devc, probe_group)) == PG_INVALID)
return SR_ERR;
ret = SR_ERR_NA;
model = devc->model_config;
switch (key) {
case SR_CONF_NUM_TIMEBASE:
*data = g_variant_new_int32(model->num_xdivs);
ret = SR_OK;
break;
case SR_CONF_NUM_VDIV:
if (pg_type == PG_NONE) {
sr_err("No probe group specified.");
return SR_ERR_PROBE_GROUP;
} else if (pg_type == PG_ANALOG) {
for (i = 0; i < model->analog_channels; ++i) {
if (probe_group == &devc->analog_groups[i]) {
*data = g_variant_new_int32(model->num_ydivs);
ret = SR_OK;
break;
}
}
} else {
ret = SR_ERR_NA;
}
break;
default:
ret = SR_ERR_NA;
}
return ret;
}
static GVariant *build_tuples(const uint64_t (*array)[][2], unsigned int n)
{
unsigned int i;
GVariant *rational[2];
GVariantBuilder gvb;
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
for (i = 0; i < n; i++) {
rational[0] = g_variant_new_uint64((*array)[i][0]);
rational[1] = g_variant_new_uint64((*array)[i][1]);
/* FIXME valgrind reports a memory leak here */
g_variant_builder_add_value(&gvb, g_variant_new_tuple(rational, 2));
}
return g_variant_builder_end(&gvb);
}
static int config_set(int key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
int ret;
int pg_type;
unsigned int i;
char command[MAX_COMMAND_SIZE];
struct dev_context *devc;
struct scope_config *model;
struct scope_state *state;
if (!sdi || !(devc = sdi->priv))
return SR_ERR_ARG;
if ((pg_type = check_probe_group(devc, probe_group)) == PG_INVALID)
return SR_ERR;
model = devc->model_config;
state = devc->model_state;
ret = SR_ERR_NA;
switch (key) {
case SR_CONF_LIMIT_FRAMES:
devc->frame_limit = g_variant_get_uint64(data);
ret = SR_OK;
break;
case SR_CONF_TRIGGER_SOURCE:
{
const char *tmp;
tmp = g_variant_get_string(data, NULL);
for (i = 0; (*model->trigger_sources)[i]; i++) {
if (!g_strcmp0(tmp, (*model->trigger_sources)[i])) {
state->trigger_source = i;
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_TRIGGER_SOURCE],
(*model->trigger_sources)[i]);
ret = sr_scpi_send(sdi->conn, command);
break;
}
}
}
break;
case SR_CONF_VDIV:
{
unsigned int j;
uint64_t p, q;
if (pg_type == PG_NONE) {
sr_err("No probe group specified.");
return SR_ERR_PROBE_GROUP;
}
g_variant_get(data, "(tt)", &p, &q);
for (i = 0; i < model->num_vdivs; i++) {
if (p == (*model->vdivs)[i][0] &&
q == (*model->vdivs)[i][1]){
for (j = 1; j <= model->analog_channels; ++j) {
if (probe_group == &devc->analog_groups[j - 1]) {
state->analog_channels[j-1].vdiv = (float) p / q;
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_VERTICAL_DIV],
j, state->analog_channels[j-1].vdiv);
if (sr_scpi_send(sdi->conn, command) != SR_OK ||
sr_scpi_get_opc(sdi->conn) != SR_OK)
return SR_ERR;
break;
}
}
ret = SR_OK;
break;
}
}
}
break;
case SR_CONF_TIMEBASE:
{
uint64_t p, q;
g_variant_get(data, "(tt)", &p, &q);
for (i = 0; i < model->num_timebases; i++) {
if (p == (*model->timebases)[i][0] &&
q == (*model->timebases)[i][1]){
state->timebase = (float) p / q;
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_TIMEBASE],
state->timebase);
ret = sr_scpi_send(sdi->conn, command);
break;
}
}
}
break;
case SR_CONF_HORIZ_TRIGGERPOS:
{
double tmp;
tmp = g_variant_get_double(data);
if (tmp < 0.0 || tmp > 1.0)
return SR_ERR;
state->horiz_triggerpos = -(tmp - 0.5) * state->timebase * model->num_xdivs;
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_HORIZ_TRIGGERPOS],
state->horiz_triggerpos);
ret = sr_scpi_send(sdi->conn, command);
}
break;
case SR_CONF_TRIGGER_SLOPE:
{
uint64_t tmp;
tmp = g_variant_get_uint64(data);
if (tmp != 0 && tmp != 1)
return SR_ERR;
state->trigger_slope = tmp;
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_TRIGGER_SLOPE],
tmp ? "POS" : "NEG");
ret = sr_scpi_send(sdi->conn, command);
}
break;
case SR_CONF_COUPLING:
{
unsigned int j;
const char *tmp;
if (pg_type == PG_NONE) {
sr_err("No probe group specified.");
return SR_ERR_PROBE_GROUP;
}
tmp = g_variant_get_string(data, NULL);
for (i = 0; (*model->coupling_options)[i]; i++) {
if (!strcmp(tmp, (*model->coupling_options)[i])) {
for (j = 1; j <= model->analog_channels; ++j) {
if (probe_group == &devc->analog_groups[j - 1]) {
state->analog_channels[j-1].coupling = i;
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_COUPLING],
j, tmp);
if (sr_scpi_send(sdi->conn, command) != SR_OK ||
sr_scpi_get_opc(sdi->conn) != SR_OK)
return SR_ERR;
break;
}
}
ret = SR_OK;
break;
}
}
}
break;
default:
ret = SR_ERR_NA;
break;
}
if (ret == SR_OK)
ret = sr_scpi_get_opc(sdi->conn);
return ret;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
{
int pg_type;
struct dev_context *devc;
struct scope_config *model;
if (!sdi || !(devc = sdi->priv))
return SR_ERR_ARG;
if ((pg_type = check_probe_group(devc, probe_group)) == PG_INVALID)
return SR_ERR;
model = devc->model_config;
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
if (pg_type == PG_NONE) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
model->hw_caps,
model->num_hwcaps,
sizeof(int32_t));
} else if (pg_type == PG_ANALOG) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
model->analog_hwcaps,
model->num_analog_hwcaps,
sizeof(int32_t));
} else {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
NULL, 0, sizeof(int32_t));
}
break;
case SR_CONF_COUPLING:
if (pg_type == PG_NONE)
return SR_ERR_PROBE_GROUP;
*data = g_variant_new_strv(*model->coupling_options,
g_strv_length((char **) *model->coupling_options));
break;
case SR_CONF_TRIGGER_SOURCE:
*data = g_variant_new_strv(*model->trigger_sources,
g_strv_length((char **) *model->trigger_sources));
break;
case SR_CONF_TIMEBASE:
*data = build_tuples(model->timebases, model->num_timebases);
break;
case SR_CONF_VDIV:
if (pg_type == PG_NONE)
return SR_ERR_PROBE_GROUP;
*data = build_tuples(model->vdivs, model->num_vdivs);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
SR_PRIV int hmo_request_data(const struct sr_dev_inst *sdi)
{
char command[MAX_COMMAND_SIZE];
struct sr_probe *probe;
struct dev_context *devc;
struct scope_config *model;
devc = sdi->priv;
model = devc->model_config;
probe = devc->current_probe->data;
switch (probe->type) {
case SR_PROBE_ANALOG:
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_GET_ANALOG_DATA],
probe->index + 1);
break;
case SR_PROBE_LOGIC:
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_GET_DIG_DATA],
probe->index < 8 ? 1 : 2);
break;
default:
sr_err("Invalid probe type");
break;
}
return sr_scpi_send(sdi->conn, command);
}
static int hmo_check_probes(GSList *probes)
{
GSList *l;
gboolean enabled_pod1;
gboolean enabled_pod2;
gboolean enabled_chan3;
gboolean enabled_chan4;
struct sr_probe *probe;
enabled_pod1 = FALSE;
enabled_pod2 = FALSE;
enabled_chan3 = FALSE;
enabled_chan4 = FALSE;
for (l = probes; l; l = l->next) {
probe = l->data;
switch (probe->type) {
case SR_PROBE_ANALOG:
if (probe->index == 2)
enabled_chan3 = TRUE;
else if (probe->index == 3)
enabled_chan4 = TRUE;
break;
case SR_PROBE_LOGIC:
if (probe->index < 8)
enabled_pod1 = TRUE;
else
enabled_pod2 = TRUE;
break;
default:
return SR_ERR;
}
}
if ((enabled_pod1 && enabled_chan3) ||
(enabled_pod2 && enabled_chan4))
return SR_ERR;
return SR_OK;
}
static int hmo_setup_probes(const struct sr_dev_inst *sdi)
{
GSList *l;
unsigned int i;
gboolean *pod_enabled;
char command[MAX_COMMAND_SIZE];
struct scope_state *state;
struct scope_config *model;
struct sr_probe *probe;
struct dev_context *devc;
struct sr_serial_dev_inst *serial;
devc = sdi->priv;
serial = sdi->conn;
state = devc->model_state;
model = devc->model_config;
pod_enabled = g_try_malloc0(sizeof(gboolean) * model->digital_pods);
for (l = sdi->probes; l; l = l->next) {
probe = l->data;
switch (probe->type) {
case SR_PROBE_ANALOG:
{
if (probe->enabled != state->analog_channels[probe->index].state) {
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_ANALOG_CHAN_STATE],
probe->index + 1, probe->enabled);
if (sr_scpi_send(serial, command) != SR_OK)
return SR_ERR;
state->analog_channels[probe->index].state = probe->enabled;
}
}
break;
case SR_PROBE_LOGIC:
{
/*
* A digital POD needs to be enabled for every group of
* 8 probes.
*/
if (probe->enabled)
pod_enabled[probe->index < 8 ? 0 : 1] = TRUE;
if (probe->enabled != state->digital_channels[probe->index]) {
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_DIG_CHAN_STATE],
probe->index, probe->enabled);
if (sr_scpi_send(serial, command) != SR_OK)
return SR_ERR;
state->digital_channels[probe->index] = probe->enabled;
}
}
break;
default:
return SR_ERR;
}
}
for (i = 1; i <= model->digital_pods; ++i) {
if (state->digital_pods[i-1] != pod_enabled[i-1]) {
g_snprintf(command, sizeof(command),
(*model->scpi_dialect)[SCPI_CMD_SET_DIG_POD_STATE],
i, pod_enabled[i-1]);
if (sr_scpi_send(serial, command) != SR_OK)
return SR_ERR;
state->digital_pods[i-1] = pod_enabled[i-1];
}
}
g_free(pod_enabled);
return SR_OK;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
GSList *l;
gboolean digital_added;
struct sr_probe *probe;
struct dev_context *devc;
struct sr_serial_dev_inst *serial;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
serial = sdi->conn;
devc = sdi->priv;
digital_added = FALSE;
for (l = sdi->probes; l; l = l->next) {
probe = l->data;
if (probe->enabled) {
/* Only add a single digital probe */
if (probe->type != SR_PROBE_LOGIC || !digital_added) {
devc->enabled_probes = g_slist_append(devc->enabled_probes,
probe);
if (probe->type == SR_PROBE_LOGIC)
digital_added = TRUE;
}
}
}
if (!devc->enabled_probes)
return SR_ERR;
if (hmo_check_probes(devc->enabled_probes) != SR_OK) {
sr_err("Invalid probe configuration specified!");
return SR_ERR_NA;
}
if (hmo_setup_probes(sdi) != SR_OK) {
sr_err("Failed to setup probe configuration!");
return SR_ERR;
}
sr_source_add(serial->fd, G_IO_IN, 50, hameg_hmo_receive_data, (void *)sdi);
/* Send header packet to the session bus. */
std_session_send_df_header(cb_data, LOG_PREFIX);
devc->current_probe = devc->enabled_probes;
return hmo_request_data(sdi);
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
struct sr_serial_dev_inst *serial;
(void)cb_data;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
g_slist_free(devc->enabled_probes);
devc->enabled_probes = NULL;
serial = sdi->conn;
sr_source_remove(serial->fd);
return SR_OK;
}
SR_PRIV struct sr_dev_driver hameg_hmo_driver_info = {
.name = "hameg-hmo",
.longname = "Hameg HMO scope driver",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};