libsigrok/hardware/genericdmm/api.c

636 lines
14 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2012 Uwe Hermann <uwe@hermann-uwe.de>
* Copyright (C) 2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "genericdmm.h"
extern SR_PRIV struct dmmchip dmmchip_fs9922;
static struct sr_hwopt victor_70c_vidpid[] = {
{ SR_HWOPT_CONN, "1244.d237" },
{ 0, NULL }
};
static struct dev_profile dev_profiles[] = {
{ "victor-70c", "Victor", "70C", &dmmchip_fs9922,
DMM_TRANSPORT_USBHID, victor_70c_vidpid
},
{ "mastech-va18b", "Mastech", "VA18B", NULL, DMM_TRANSPORT_SERIAL, NULL},
{ NULL, NULL, NULL, NULL, 0, NULL }
};
static const int hwcaps[] = {
SR_HWCAP_MULTIMETER,
SR_HWCAP_LIMIT_SAMPLES,
SR_HWCAP_LIMIT_MSEC,
SR_HWCAP_CONTINUOUS,
SR_HWCAP_MODEL,
SR_HWCAP_CONN,
SR_HWCAP_SERIALCOMM,
0,
};
static const char *probe_names[] = {
"Probe",
NULL,
};
/* TODO need a way to keep these local to the static library */
SR_PRIV GSList *genericdmm_dev_insts = NULL;
SR_PRIV libusb_context *genericdmm_usb_context = NULL;
static int hw_init(void)
{
if (libusb_init(&genericdmm_usb_context) != 0) {
sr_err("genericdmm: Failed to initialize USB.");
return SR_ERR;
}
return SR_OK;
}
static int hw_scan(void)
{
struct sr_dev_inst *sdi;
struct context *ctx;
int devcnt = 0;
if (!(ctx = g_try_malloc0(sizeof(struct context)))) {
sr_err("genericdmm: ctx malloc failed.");
return 0;
}
devcnt = g_slist_length(genericdmm_dev_insts);
if (!(sdi = sr_dev_inst_new(devcnt, SR_ST_ACTIVE, "Generic DMM",
NULL, NULL))) {
sr_err("genericdmm: sr_dev_inst_new returned NULL.");
return 0;
}
sdi->priv = ctx;
genericdmm_dev_insts = g_slist_append(genericdmm_dev_insts, sdi);
/* Always initialized just one device instance. */
return 0;
}
static int hw_dev_open(int dev_index)
{
struct sr_dev_inst *sdi;
struct context *ctx;
if (!(sdi = sr_dev_inst_get(genericdmm_dev_insts, dev_index))) {
sr_err("genericdmm: sdi was NULL.");
return SR_ERR_BUG;
}
if (!(ctx = sdi->priv)) {
sr_err("genericdmm: sdi->priv was NULL.");
return SR_ERR_BUG;
}
sr_dbg("genericdmm: Opening serial port '%s'.", ctx->serial->port);
switch (ctx->profile->transport) {
case DMM_TRANSPORT_USBHID:
/* TODO */
break;
case DMM_TRANSPORT_SERIAL:
/* TODO: O_NONBLOCK? */
ctx->serial->fd = serial_open(ctx->serial->port, O_RDWR | O_NONBLOCK);
if (ctx->serial->fd == -1) {
sr_err("genericdmm: Couldn't open serial port '%s'.",
ctx->serial->port);
return SR_ERR;
}
// serial_set_params(ctx->serial->fd, 2400, 8, 0, 1, 2);
break;
default:
sr_err("No transport set.");
}
return SR_OK;
}
static int hw_dev_close(int dev_index)
{
struct sr_dev_inst *sdi;
struct context *ctx;
if (!(sdi = sr_dev_inst_get(genericdmm_dev_insts, dev_index))) {
sr_err("genericdmm: %s: sdi was NULL.", __func__);
return SR_ERR_BUG;
}
if (!(ctx = sdi->priv)) {
sr_err("genericdmm: %s: sdi->priv was NULL.", __func__);
return SR_ERR_BUG;
}
/* TODO: Check for != NULL. */
switch (ctx->profile->transport) {
case DMM_TRANSPORT_USBHID:
/* TODO */
break;
case DMM_TRANSPORT_SERIAL:
if (ctx->serial && ctx->serial->fd != -1) {
serial_close(ctx->serial->fd);
ctx->serial->fd = -1;
sdi->status = SR_ST_INACTIVE;
}
break;
}
return SR_OK;
}
static int hw_cleanup(void)
{
GSList *l;
struct sr_dev_inst *sdi;
struct context *ctx;
/* Properly close and free all devices. */
for (l = genericdmm_dev_insts; l; l = l->next) {
if (!(sdi = l->data)) {
/* Log error, but continue cleaning up the rest. */
sr_err("genericdmm: sdi was NULL, continuing.");
continue;
}
if (!(ctx = sdi->priv)) {
/* Log error, but continue cleaning up the rest. */
sr_err("genericdmm: sdi->priv was NULL, continuing.");
continue;
}
if (ctx->profile) {
switch (ctx->profile->transport) {
case DMM_TRANSPORT_USBHID:
/* TODO */
break;
case DMM_TRANSPORT_SERIAL:
if (ctx->serial && ctx->serial->fd != -1)
serial_close(ctx->serial->fd);
sr_serial_dev_inst_free(ctx->serial);
break;
}
}
sr_dev_inst_free(sdi);
}
g_slist_free(genericdmm_dev_insts);
genericdmm_dev_insts = NULL;
if (genericdmm_usb_context)
libusb_exit(genericdmm_usb_context);
return SR_OK;
}
static const void *hw_dev_info_get(int dev_index, int dev_info_id)
{
struct sr_dev_inst *sdi;
struct context *ctx;
const void *info;
if (!(sdi = sr_dev_inst_get(genericdmm_dev_insts, dev_index))) {
sr_err("genericdmm: sdi was NULL.");
return NULL;
}
if (!(ctx = sdi->priv)) {
sr_err("genericdmm: sdi->priv was NULL.");
return NULL;
}
sr_spew("genericdmm: dev_index %d, dev_info_id %d.",
dev_index, dev_info_id);
switch (dev_info_id) {
case SR_DI_INST:
info = sdi;
sr_spew("genericdmm: Returning sdi.");
break;
case SR_DI_NUM_PROBES:
info = GINT_TO_POINTER(1);
sr_spew("genericdmm: Returning number of probes: 1.");
break;
case SR_DI_PROBE_NAMES:
info = probe_names;
sr_spew("genericdmm: Returning probenames.");
break;
case SR_DI_CUR_SAMPLERATE:
/* TODO get rid of this */
info = NULL;
sr_spew("genericdmm: Returning samplerate: 0.");
break;
default:
/* Unknown device info ID. */
sr_err("genericdmm: Unknown device info ID: %d.", dev_info_id);
info = NULL;
break;
}
return info;
}
static int hw_dev_status_get(int dev_index)
{
struct sr_dev_inst *sdi;
if (!(sdi = sr_dev_inst_get(genericdmm_dev_insts, dev_index))) {
sr_err("genericdmm: sdi was NULL, device not found.");
return SR_ST_NOT_FOUND;
}
sr_dbg("genericdmm: Returning status: %d.", sdi->status);
return sdi->status;
}
static const int *hw_hwcap_get_all(void)
{
sr_spew("genericdmm: Returning list of device capabilities.");
return hwcaps;
}
static int parse_conn_vidpid(struct sr_dev_inst *sdi, const char *conn)
{
struct context *ctx;
libusb_device **devlist;
struct libusb_device_descriptor des;
GRegex *reg;
GMatchInfo *match;
int vid, pid, found, err, i;
char *vidstr, *pidstr;
found = FALSE;
reg = g_regex_new(DMM_CONN_USB_VIDPID, 0, 0, NULL);
if (g_regex_match(reg, conn, 0, &match)) {
/* Extract VID. */
if (!(vidstr = g_match_info_fetch(match, 0))) {
sr_err("failed to fetch VID from regex");
goto err;
}
vid = strtoul(vidstr, NULL, 16);
g_free(vidstr);
if (vid > 0xffff) {
sr_err("invalid VID");
goto err;
}
/* Extract PID. */
if (!(pidstr = g_match_info_fetch(match, 0))) {
sr_err("failed to fetch PID from regex");
goto err;
}
pid = strtoul(pidstr, NULL, 16);
g_free(pidstr);
if (pid > 0xffff) {
sr_err("invalid PID");
goto err;
}
/* Looks like a valid VID:PID, but is it connected? */
libusb_get_device_list(genericdmm_usb_context, &devlist);
for (i = 0; devlist[i]; i++) {
if ((err = libusb_get_device_descriptor(devlist[i], &des))) {
sr_err("genericdmm: failed to get device descriptor: %d", err);
goto err;
}
if (des.idVendor == vid && des.idProduct == pid) {
ctx = sdi->priv;
ctx->usb = sr_usb_dev_inst_new(
libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), NULL);
found = TRUE;
break;
}
}
libusb_free_device_list(devlist, 1);
}
err:
if (match)
g_match_info_unref(match);
g_regex_unref(reg);
return found;
}
static int parse_conn_busaddr(struct sr_dev_inst *sdi, const char *conn)
{
struct context *ctx;
libusb_device **devlist;
struct libusb_device_descriptor des;
GRegex *reg;
GMatchInfo *match;
int bus, addr, found, err, i;
char *busstr, *addrstr;
found = FALSE;
reg = g_regex_new(DMM_CONN_USB_BUSADDR, 0, 0, NULL);
if (g_regex_match(reg, conn, 0, &match)) {
/* Extract bus. */
if (!(busstr = g_match_info_fetch(match, 0))) {
sr_err("failed to fetch bus from regex");
goto err;
}
bus = strtoul(busstr, NULL, 16);
g_free(busstr);
if (bus > 64) {
sr_err("invalid bus");
goto err;
}
/* Extract address. */
if (!(addrstr = g_match_info_fetch(match, 0))) {
sr_err("failed to fetch address from regex");
goto err;
}
addr = strtoul(addrstr, NULL, 16);
g_free(addrstr);
if (addr > 127) {
sr_err("invalid address");
goto err;
}
/* Looks like a valid bus/address, but is it connected? */
libusb_get_device_list(genericdmm_usb_context, &devlist);
for (i = 0; devlist[i]; i++) {
if ((err = libusb_get_device_descriptor(devlist[i], &des))) {
sr_err("genericdmm: failed to get device descriptor: %d", err);
goto err;
}
if (libusb_get_bus_number(devlist[i]) == bus
&& libusb_get_device_address(devlist[i]) == addr) {
ctx = sdi->priv;
ctx->usb = sr_usb_dev_inst_new(bus, addr, NULL);
found = TRUE;
break;
}
}
libusb_free_device_list(devlist, 1);
}
err:
if (match)
g_match_info_unref(match);
g_regex_unref(reg);
return found;
}
static int parse_conn_serial(struct sr_dev_inst *sdi, const char *conn)
{
int found;
found = FALSE;
/* TODO */
return found;
}
static int parse_conn(struct sr_dev_inst *sdi, const char *conn)
{
if (parse_conn_vidpid(sdi, conn))
return SR_OK;
if (parse_conn_busaddr(sdi, conn))
return SR_OK;
if (parse_conn_serial(sdi, conn))
return SR_OK;
sr_err("Invalid connection specification");
return SR_ERR;
}
static int parse_serialcomm(struct sr_dev_inst *sdi, const char *conn)
{
/* TODO */
/* set ctx->serial_* */
return SR_OK;
}
static int hw_dev_config_set(int dev_index, int hwcap, const void *value)
{
struct sr_dev_inst *sdi;
struct context *ctx;
int i;
if (!(sdi = sr_dev_inst_get(genericdmm_dev_insts, dev_index))) {
sr_err("genericdmm: sdi was NULL.");
return SR_ERR_BUG;
}
if (!(ctx = sdi->priv)) {
sr_err("genericdmm: sdi->priv was NULL.");
return SR_ERR_BUG;
}
sr_spew("genericdmm: dev_index %d, hwcap %d.", dev_index, hwcap);
switch (hwcap) {
case SR_HWCAP_LIMIT_MSEC:
if (*(const uint64_t *)value == 0) {
sr_err("genericdmm: LIMIT_MSEC can't be 0.");
return SR_ERR;
}
ctx->limit_msec = *(const uint64_t *)value;
sr_dbg("genericdmm: Setting LIMIT_MSEC to %" PRIu64 ".",
ctx->limit_msec);
break;
case SR_HWCAP_LIMIT_SAMPLES:
ctx->limit_samples = *(const uint64_t *)value;
sr_dbg("genericdmm: Setting LIMIT_SAMPLES to %" PRIu64 ".",
ctx->limit_samples);
break;
case SR_HWCAP_MODEL:
for (i = 0; dev_profiles[i].model; i++) {
if (!strcasecmp(dev_profiles[i].model, value)) {
ctx->profile = &dev_profiles[i];
/* Frontends access these fields directly, so we
* need to copy them over. */
sdi->vendor = g_strdup(dev_profiles[i].vendor);
sdi->model = g_strdup(dev_profiles[i].model);
/* This is the first time we actually know which
* DMM chip we're talking to, so let's init
* anything specific to it now */
if (ctx->profile->chip->init)
if (ctx->profile->chip->init(ctx) != SR_OK)
return SR_ERR;
break;
}
}
if (!ctx->profile) {
sr_err("unknown model %s", value);
return SR_ERR;
}
break;
case SR_HWCAP_CONN:
if (parse_conn(sdi, value) != SR_OK)
return SR_ERR_ARG;
break;
case SR_HWCAP_SERIALCOMM:
if (parse_serialcomm(sdi, value) != SR_OK)
return SR_ERR_ARG;
break;
default:
sr_err("genericdmm: Unknown capability: %d.", hwcap);
return SR_ERR;
break;
}
return SR_OK;
}
static int receive_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi;
struct context *ctx;
if (!(sdi = cb_data))
return FALSE;
if (!(ctx = sdi->priv))
return FALSE;
if (revents != G_IO_IN) {
sr_err("genericdmm: No data?");
return FALSE;
}
switch (ctx->profile->transport) {
case DMM_TRANSPORT_USBHID:
/* TODO */
break;
case DMM_TRANSPORT_SERIAL:
/* TODO */
break;
}
return TRUE;
}
static int hw_dev_acquisition_start(int dev_index, void *cb_data)
{
struct sr_datafeed_packet packet;
struct sr_datafeed_header header;
struct sr_datafeed_meta_analog meta;
struct sr_dev_inst *sdi;
struct context *ctx;
if (!(sdi = sr_dev_inst_get(genericdmm_dev_insts, dev_index))) {
sr_err("genericdmm: sdi was NULL.");
return SR_ERR_BUG;
}
if (!(ctx = sdi->priv)) {
sr_err("genericdmm: sdi->priv was NULL.");
return SR_ERR_BUG;
}
sr_dbg("genericdmm: Starting acquisition.");
ctx->cb_data = cb_data;
/* Send header packet to the session bus. */
sr_dbg("genericdmm: Sending SR_DF_HEADER.");
packet.type = SR_DF_HEADER;
packet.payload = (uint8_t *)&header;
header.feed_version = 1;
gettimeofday(&header.starttime, NULL);
sr_session_send(ctx->cb_data, &packet);
/* Send metadata about the SR_DF_ANALOG packets to come. */
sr_dbg("genericdmm: Sending SR_DF_META_ANALOG.");
packet.type = SR_DF_META_ANALOG;
packet.payload = &meta;
meta.num_probes = 1;
sr_session_send(ctx->cb_data, &packet);
/* Hook up a proxy handler to receive data from the device. */
switch (ctx->profile->transport) {
case DMM_TRANSPORT_USBHID:
/* TODO libusb FD setup */
break;
case DMM_TRANSPORT_SERIAL:
/* TODO serial FD setup */
// sr_source_add(ctx->serial->fd, G_IO_IN, -1, receive_data, sdi);
break;
}
return SR_OK;
}
static int hw_dev_acquisition_stop(int dev_index, void *cb_data)
{
struct sr_datafeed_packet packet;
/* Avoid compiler warnings. */
(void)dev_index;
sr_dbg("genericdmm: Stopping acquisition.");
/* Send end packet to the session bus. */
sr_dbg("genericdmm: Sending SR_DF_END.");
packet.type = SR_DF_END;
sr_session_send(cb_data, &packet);
return SR_OK;
}
SR_PRIV struct sr_dev_driver genericdmm_driver_info = {
.name = "genericdmm",
.longname = "Generic DMM",
.api_version = 1,
.init = hw_init,
.cleanup = hw_cleanup,
.scan = hw_scan,
.dev_open = hw_dev_open,
.dev_close = hw_dev_close,
.dev_info_get = hw_dev_info_get,
.dev_status_get = hw_dev_status_get,
.hwcap_get_all = hw_hwcap_get_all,
.dev_config_set = hw_dev_config_set,
.dev_acquisition_start = hw_dev_acquisition_start,
.dev_acquisition_stop = hw_dev_acquisition_stop,
};