libsigrok/hardware/zeroplus-logic-cube/zeroplus.c

578 lines
14 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2010 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <inttypes.h>
#include <glib.h>
#include <libusb.h>
#include <sigrok.h>
#include "analyzer.h"
#define USB_VENDOR 0x0c12
#define USB_VENDOR_NAME "Zeroplus"
#define USB_MODEL_NAME "Logic Cube"
#define USB_MODEL_VERSION ""
#define USB_INTERFACE 0
#define USB_CONFIGURATION 1
#define NUM_TRIGGER_STAGES 4
#define TRIGGER_TYPES "01"
#define PACKET_SIZE 2048 /* ?? */
typedef struct {
unsigned short pid;
char model_name[64];
unsigned int channels;
unsigned int sample_depth; /* In Ksamples/channel */
unsigned int max_sampling_freq;
} model_t;
/*
* Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
* same 128K sample depth.
*/
model_t zeroplus_models[] = {
{0x7009, "LAP-C(16064)", 16, 64, 100},
{0x700A, "LAP-C(16128)", 16, 128, 200},
{0x700B, "LAP-C(32128)", 32, 128, 200},
{0x700C, "LAP-C(321000)", 32, 1024, 200},
{0x700D, "LAP-C(322000)", 32, 2048, 200},
{0x700E, "LAP-C(16032)", 16, 32, 100},
{0x7016, "LAP-C(162000)", 16, 2048, 200},
};
static int capabilities[] = {
SR_HWCAP_LOGIC_ANALYZER,
SR_HWCAP_SAMPLERATE,
SR_HWCAP_PROBECONFIG,
SR_HWCAP_CAPTURE_RATIO,
/* These are really implemented in the driver, not the hardware. */
SR_HWCAP_LIMIT_SAMPLES,
0,
};
/* List of struct sr_device_instance, maintained by opendev()/closedev(). */
static GSList *device_instances = NULL;
static libusb_context *usb_context = NULL;
/*
* The hardware supports more samplerates than these, but these are the
* options hardcoded into the vendor's Windows GUI.
*/
/*
* TODO: We shouldn't support 150MHz and 200MHz on devices that don't go up
* that high.
*/
static uint64_t supported_samplerates[] = {
100,
500,
KHZ(1),
KHZ(5),
KHZ(25),
KHZ(50),
KHZ(100),
KHZ(200),
KHZ(400),
KHZ(800),
MHZ(1),
MHZ(10),
MHZ(25),
MHZ(50),
MHZ(80),
MHZ(100),
MHZ(150),
MHZ(200),
0,
};
static struct sr_samplerates samplerates = {
0, 0, 0,
supported_samplerates,
};
/* TODO: All of these should go in a device-specific struct. */
static uint64_t cur_samplerate = 0;
static uint64_t limit_samples = 0;
int num_channels = 32; /* TODO: This isn't initialized before it's needed :( */
uint64_t memory_size = 0;
static uint8_t probe_mask = 0;
static uint8_t trigger_mask[NUM_TRIGGER_STAGES] = { 0 };
static uint8_t trigger_value[NUM_TRIGGER_STAGES] = { 0 };
// static uint8_t trigger_buffer[NUM_TRIGGER_STAGES] = { 0 };
static int hw_set_configuration(int device_index, int capability, void *value);
static unsigned int get_memory_size(int type)
{
if (type == MEMORY_SIZE_8K)
return 8 * 1024;
else if (type == MEMORY_SIZE_64K)
return 64 * 1024;
else if (type == MEMORY_SIZE_128K)
return 128 * 1024;
else if (type == MEMORY_SIZE_512K)
return 512 * 1024;
else
return 0;
}
static int opendev4(struct sr_device_instance **sdi, libusb_device *dev,
struct libusb_device_descriptor *des)
{
unsigned int i;
int err;
if ((err = libusb_get_device_descriptor(dev, des))) {
g_warning("failed to get device descriptor: %d", err);
return -1;
}
if (des->idVendor != USB_VENDOR)
return 0;
if (libusb_get_bus_number(dev) == (*sdi)->usb->bus
&& libusb_get_device_address(dev) == (*sdi)->usb->address) {
for (i = 0; i < ARRAY_SIZE(zeroplus_models); i++) {
if (!(des->idProduct == zeroplus_models[i].pid))
continue;
g_message("Found PID=%04X (%s)", des->idProduct,
zeroplus_models[i].model_name);
num_channels = zeroplus_models[i].channels;
memory_size = zeroplus_models[i].sample_depth * 1024;
break;
}
if (num_channels == 0) {
g_warning("Unknown ZeroPlus device %04X",
des->idProduct);
return -2;
}
/* Found it. */
if (!(err = libusb_open(dev, &((*sdi)->usb->devhdl)))) {
(*sdi)->status = SR_ST_ACTIVE;
g_message("opened device %d on %d.%d interface %d",
(*sdi)->index, (*sdi)->usb->bus,
(*sdi)->usb->address, USB_INTERFACE);
} else {
g_warning("failed to open device: %d", err);
*sdi = NULL;
}
}
return 0;
}
struct sr_device_instance *zp_open_device(int device_index)
{
struct sr_device_instance *sdi;
libusb_device **devlist;
struct libusb_device_descriptor des;
int err, i;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return NULL;
libusb_get_device_list(usb_context, &devlist);
if (sdi->status == SR_ST_INACTIVE) {
/* Find the device by vendor, product, bus and address. */
libusb_get_device_list(usb_context, &devlist);
for (i = 0; devlist[i]; i++) {
/* TODO: Error handling. */
err = opendev4(&sdi, devlist[i], &des);
}
} else {
/* Status must be SR_ST_ACTIVE, i.e. already in use... */
sdi = NULL;
}
libusb_free_device_list(devlist, 1);
if (sdi && sdi->status != SR_ST_ACTIVE)
sdi = NULL;
return sdi;
}
static void close_device(struct sr_device_instance *sdi)
{
if (!sdi->usb->devhdl)
return;
g_message("closing device %d on %d.%d interface %d", sdi->index,
sdi->usb->bus, sdi->usb->address, USB_INTERFACE);
libusb_release_interface(sdi->usb->devhdl, USB_INTERFACE);
libusb_close(sdi->usb->devhdl);
sdi->usb->devhdl = NULL;
sdi->status = SR_ST_INACTIVE;
}
static int configure_probes(GSList *probes)
{
struct sr_probe *probe;
GSList *l;
int probe_bit, stage, i;
char *tc;
probe_mask = 0;
for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
trigger_mask[i] = 0;
trigger_value[i] = 0;
}
stage = -1;
for (l = probes; l; l = l->next) {
probe = (struct sr_probe *)l->data;
if (probe->enabled == FALSE)
continue;
probe_bit = 1 << (probe->index - 1);
probe_mask |= probe_bit;
if (probe->trigger) {
stage = 0;
for (tc = probe->trigger; *tc; tc++) {
trigger_mask[stage] |= probe_bit;
if (*tc == '1')
trigger_value[stage] |= probe_bit;
stage++;
if (stage > NUM_TRIGGER_STAGES)
return SR_ERR;
}
}
}
return SR_OK;
}
/*
* API callbacks
*/
static int hw_init(char *deviceinfo)
{
struct sr_device_instance *sdi;
struct libusb_device_descriptor des;
libusb_device **devlist;
int err, devcnt, i;
/* Avoid compiler warnings. */
deviceinfo = deviceinfo;
if (libusb_init(&usb_context) != 0) {
g_warning("Failed to initialize USB.");
return 0;
}
/* Find all ZeroPlus analyzers and add them to device list. */
devcnt = 0;
libusb_get_device_list(usb_context, &devlist);
for (i = 0; devlist[i]; i++) {
err = libusb_get_device_descriptor(devlist[i], &des);
if (err != 0) {
g_warning("failed to get device descriptor: %d", err);
continue;
}
if (des.idVendor == USB_VENDOR) {
/*
* Definitely a Zeroplus.
* TODO: Any way to detect specific model/version in
* the zeroplus range?
*/
sdi = sr_device_instance_new(devcnt,
SR_ST_INACTIVE, USB_VENDOR_NAME,
USB_MODEL_NAME, USB_MODEL_VERSION);
if (!sdi)
return 0;
device_instances =
g_slist_append(device_instances, sdi);
sdi->usb = sr_usb_device_instance_new(
libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), NULL);
devcnt++;
}
}
libusb_free_device_list(devlist, 1);
return devcnt;
}
static int hw_opendev(int device_index)
{
struct sr_device_instance *sdi;
int err;
if (!(sdi = zp_open_device(device_index))) {
g_warning("unable to open device");
return SR_ERR;
}
err = libusb_claim_interface(sdi->usb->devhdl, USB_INTERFACE);
if (err != 0) {
g_warning("Unable to claim interface: %d", err);
return SR_ERR;
}
analyzer_reset(sdi->usb->devhdl);
analyzer_initialize(sdi->usb->devhdl);
analyzer_set_memory_size(MEMORY_SIZE_512K);
// analyzer_set_freq(g_freq, g_freq_scale);
analyzer_set_trigger_count(1);
// analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
// * get_memory_size(g_memory_size)) / 100) >> 2);
analyzer_set_ramsize_trigger_address(
(100 * get_memory_size(MEMORY_SIZE_512K) / 100) >> 2);
#if 0
if (g_double_mode == 1)
analyzer_set_compression(COMPRESSION_DOUBLE);
else if (g_compression == 1)
analyzer_set_compression(COMPRESSION_ENABLE);
else
#endif
analyzer_set_compression(COMPRESSION_NONE);
if (cur_samplerate == 0) {
/* Samplerate hasn't been set. Default to the slowest one. */
if (hw_set_configuration(device_index, SR_HWCAP_SAMPLERATE,
&samplerates.low) == SR_ERR)
return SR_ERR;
}
return SR_OK;
}
static void hw_closedev(int device_index)
{
struct sr_device_instance *sdi;
if ((sdi = sr_get_device_instance(device_instances, device_index)))
close_device(sdi);
}
static void hw_cleanup(void)
{
GSList *l;
/* Properly close all devices... */
for (l = device_instances; l; l = l->next)
close_device((struct sr_device_instance *)l->data);
/* ...and free all their memory. */
for (l = device_instances; l; l = l->next)
g_free(l->data);
g_slist_free(device_instances);
device_instances = NULL;
if (usb_context)
libusb_exit(usb_context);
usb_context = NULL;
}
static void *hw_get_device_info(int device_index, int device_info_id)
{
struct sr_device_instance *sdi;
void *info = NULL;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return NULL;
switch (device_info_id) {
case SR_DI_INSTANCE:
info = sdi;
break;
case SR_DI_NUM_PROBES:
info = GINT_TO_POINTER(num_channels);
break;
case SR_DI_SAMPLERATES:
info = &samplerates;
break;
case SR_DI_TRIGGER_TYPES:
info = TRIGGER_TYPES;
break;
case SR_DI_CUR_SAMPLERATE:
info = &cur_samplerate;
break;
}
return info;
}
static int hw_get_status(int device_index)
{
struct sr_device_instance *sdi;
sdi = sr_get_device_instance(device_instances, device_index);
if (sdi)
return sdi->status;
else
return SR_ST_NOT_FOUND;
}
static int *hw_get_capabilities(void)
{
return capabilities;
}
/* TODO: This will set the same samplerate for all devices. */
static int set_configuration_samplerate(uint64_t samplerate)
{
g_message("%s(%" PRIu64 ")", __FUNCTION__, samplerate);
if (samplerate > MHZ(1))
analyzer_set_freq(samplerate / MHZ(1), FREQ_SCALE_MHZ);
else if (samplerate > KHZ(1))
analyzer_set_freq(samplerate / KHZ(1), FREQ_SCALE_KHZ);
else
analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
cur_samplerate = samplerate;
return SR_OK;
}
static int hw_set_configuration(int device_index, int capability, void *value)
{
struct sr_device_instance *sdi;
uint64_t *tmp_u64;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return SR_ERR;
switch (capability) {
case SR_HWCAP_SAMPLERATE:
tmp_u64 = value;
return set_configuration_samplerate(*tmp_u64);
case SR_HWCAP_PROBECONFIG:
return configure_probes((GSList *) value);
case SR_HWCAP_LIMIT_SAMPLES:
tmp_u64 = value;
limit_samples = *tmp_u64;
return SR_OK;
default:
return SR_ERR;
}
}
static int hw_start_acquisition(int device_index, gpointer session_device_id)
{
struct sr_device_instance *sdi;
struct sr_datafeed_packet packet;
struct sr_datafeed_header header;
int res;
unsigned int packet_num;
unsigned char *buf;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return SR_ERR;
/* push configured settings to device */
analyzer_configure(sdi->usb->devhdl);
analyzer_start(sdi->usb->devhdl);
g_message("Waiting for data");
analyzer_wait_data(sdi->usb->devhdl);
g_message("Stop address = 0x%x",
analyzer_get_stop_address(sdi->usb->devhdl));
g_message("Now address = 0x%x",
analyzer_get_now_address(sdi->usb->devhdl));
g_message("Trigger address = 0x%x",
analyzer_get_trigger_address(sdi->usb->devhdl));
packet.type = SR_DF_HEADER;
packet.length = sizeof(struct sr_datafeed_header);
packet.payload = (unsigned char *)&header;
header.feed_version = 1;
gettimeofday(&header.starttime, NULL);
header.samplerate = cur_samplerate;
header.protocol_id = SR_PROTO_RAW;
header.num_logic_probes = num_channels;
header.num_analog_probes = 0;
sr_session_bus(session_device_id, &packet);
buf = g_malloc(PACKET_SIZE);
if (!buf)
return SR_ERR;
analyzer_read_start(sdi->usb->devhdl);
/* Send the incoming transfer to the session bus. */
for (packet_num = 0; packet_num < (memory_size * 4 / PACKET_SIZE);
packet_num++) {
res = analyzer_read_data(sdi->usb->devhdl, buf, PACKET_SIZE);
#if 0
g_message("Tried to read %llx bytes, actually read %x bytes",
PACKET_SIZE, res);
#endif
packet.type = SR_DF_LOGIC;
packet.length = PACKET_SIZE;
packet.unitsize = 4;
packet.payload = buf;
sr_session_bus(session_device_id, &packet);
}
analyzer_read_stop(sdi->usb->devhdl);
g_free(buf);
packet.type = SR_DF_END;
sr_session_bus(session_device_id, &packet);
return SR_OK;
}
/* This stops acquisition on ALL devices, ignoring device_index. */
static void hw_stop_acquisition(int device_index, gpointer session_device_id)
{
struct sr_datafeed_packet packet;
struct sr_device_instance *sdi;
packet.type = SR_DF_END;
sr_session_bus(session_device_id, &packet);
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return; /* TODO: Cry? */
analyzer_reset(sdi->usb->devhdl);
/* TODO: Need to cancel and free any queued up transfers. */
}
struct sr_device_plugin zeroplus_logic_cube_plugin_info = {
"zeroplus-logic-cube",
"Zeroplus Logic Cube LAP-C series",
1,
hw_init,
hw_cleanup,
hw_opendev,
hw_closedev,
hw_get_device_info,
hw_get_status,
hw_get_capabilities,
hw_set_configuration,
hw_start_acquisition,
hw_stop_acquisition,
};