libsigrok/hardware/link-mso19/link-mso19.c

796 lines
18 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2011 Daniel Ribeiro <drwyrm@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/time.h>
#include <inttypes.h>
#include <glib.h>
#include <libudev.h>
#include <sigrok.h>
#include <arpa/inet.h>
#include <sigrok-internal.h>
#include "config.h"
#include "link-mso19.h"
#define USB_VENDOR "3195"
#define USB_PRODUCT "f190"
static int capabilities[] = {
SR_HWCAP_LOGIC_ANALYZER,
// SR_HWCAP_OSCILLOSCOPE,
// SR_HWCAP_PAT_GENERATOR,
SR_HWCAP_SAMPLERATE,
// SR_HWCAP_CAPTURE_RATIO,
SR_HWCAP_LIMIT_SAMPLES,
0,
};
static uint64_t supported_samplerates[] = {
SR_HZ(100),
SR_HZ(200),
SR_HZ(500),
SR_KHZ(1),
SR_KHZ(2),
SR_KHZ(5),
SR_KHZ(10),
SR_KHZ(20),
SR_KHZ(50),
SR_KHZ(100),
SR_KHZ(200),
SR_KHZ(500),
SR_MHZ(1),
SR_MHZ(2),
SR_MHZ(5),
SR_MHZ(10),
SR_MHZ(20),
SR_MHZ(50),
SR_MHZ(100),
SR_MHZ(200),
0,
};
static struct sr_samplerates samplerates = {
SR_HZ(100),
SR_MHZ(200),
SR_HZ(0),
supported_samplerates,
};
static GSList *device_instances = NULL;
static int mso_send_control_message(struct sr_device_instance *sdi,
uint16_t payload[], int n)
{
int fd = sdi->serial->fd;
int i, w, ret, s = n * 2 + sizeof(mso_head) + sizeof(mso_foot);
char *p, *buf;
ret = SR_ERR;
if (fd < 0)
goto ret;
if (!(buf = g_try_malloc(s))) {
sr_err("mso19: %s: buf malloc failed", __func__);
ret = SR_ERR_MALLOC;
goto ret;
}
p = buf;
memcpy(p, mso_head, sizeof(mso_head));
p += sizeof(mso_head);
for (i = 0; i < n; i++) {
*(uint16_t *) p = htons(payload[i]);
p += 2;
}
memcpy(p, mso_foot, sizeof(mso_foot));
w = 0;
while (w < s) {
ret = serial_write(fd, buf + w, s - w);
if (ret < 0) {
ret = SR_ERR;
goto free;
}
w += ret;
}
ret = SR_OK;
free:
g_free(buf);
ret:
return ret;
}
static int mso_reset_adc(struct sr_device_instance *sdi)
{
struct mso *mso = sdi->priv;
uint16_t ops[2];
ops[0] = mso_trans(REG_CTL, (mso->ctlbase | BIT_CTL_RESETADC));
ops[1] = mso_trans(REG_CTL, mso->ctlbase);
mso->ctlbase |= BIT_CTL_ADC_UNKNOWN4;
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_reset_fsm(struct sr_device_instance *sdi)
{
struct mso *mso = sdi->priv;
uint16_t ops[1];
mso->ctlbase |= BIT_CTL_RESETFSM;
ops[0] = mso_trans(REG_CTL, mso->ctlbase);
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_toggle_led(struct sr_device_instance *sdi, int state)
{
struct mso *mso = sdi->priv;
uint16_t ops[1];
mso->ctlbase &= BIT_CTL_LED;
if (state)
mso->ctlbase |= BIT_CTL_LED;
ops[0] = mso_trans(REG_CTL, mso->ctlbase);
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_check_trigger(struct sr_device_instance *sdi,
uint8_t *info)
{
uint16_t ops[] = { mso_trans(REG_TRIGGER, 0) };
char buf[1];
int ret;
ret = mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
if (info == NULL || ret != SR_OK)
return ret;
buf[0] = 0;
if (serial_read(sdi->serial->fd, buf, 1) != 1) /* FIXME: Need timeout */
ret = SR_ERR;
*info = buf[0];
return ret;
}
static int mso_read_buffer(struct sr_device_instance *sdi)
{
uint16_t ops[] = { mso_trans(REG_BUFFER, 0) };
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_arm(struct sr_device_instance *sdi)
{
struct mso *mso = sdi->priv;
uint16_t ops[] = {
mso_trans(REG_CTL, mso->ctlbase | BIT_CTL_RESETFSM),
mso_trans(REG_CTL, mso->ctlbase | BIT_CTL_ARM),
mso_trans(REG_CTL, mso->ctlbase),
};
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_force_capture(struct sr_device_instance *sdi)
{
struct mso *mso = sdi->priv;
uint16_t ops[] = {
mso_trans(REG_CTL, mso->ctlbase | 8),
mso_trans(REG_CTL, mso->ctlbase),
};
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_dac_out(struct sr_device_instance *sdi, uint16_t val)
{
struct mso *mso = sdi->priv;
uint16_t ops[] = {
mso_trans(REG_DAC1, (val >> 8) & 0xff),
mso_trans(REG_DAC2, val & 0xff),
mso_trans(REG_CTL, mso->ctlbase | BIT_CTL_RESETADC),
};
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_clkrate_out(struct sr_device_instance *sdi, uint16_t val)
{
uint16_t ops[] = {
mso_trans(REG_CLKRATE1, (val >> 8) & 0xff),
mso_trans(REG_CLKRATE2, val & 0xff),
};
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_configure_rate(struct sr_device_instance *sdi,
uint32_t rate)
{
struct mso *mso = sdi->priv;
unsigned int i;
int ret = SR_ERR;
for (i = 0; i < ARRAY_SIZE(rate_map); i++) {
if (rate_map[i].rate == rate) {
mso->slowmode = rate_map[i].slowmode;
ret = mso_clkrate_out(sdi, rate_map[i].val);
if (ret == SR_OK)
mso->cur_rate = rate;
return ret;
}
}
return ret;
}
static inline uint16_t mso_calc_raw_from_mv(struct mso *mso)
{
return (uint16_t) (0x200 -
((mso->dso_trigger_voltage / mso->dso_probe_attn) /
mso->vbit));
}
static int mso_configure_trigger(struct sr_device_instance *sdi)
{
struct mso *mso = sdi->priv;
uint16_t ops[16];
uint16_t dso_trigger = mso_calc_raw_from_mv(mso);
dso_trigger &= 0x3ff;
if ((!mso->trigger_slope && mso->trigger_chan == 1) ||
(mso->trigger_slope &&
(mso->trigger_chan == 0 ||
mso->trigger_chan == 2 ||
mso->trigger_chan == 3)))
dso_trigger |= 0x400;
switch (mso->trigger_chan) {
case 1:
dso_trigger |= 0xe000;
case 2:
dso_trigger |= 0x4000;
break;
case 3:
dso_trigger |= 0x2000;
break;
case 4:
dso_trigger |= 0xa000;
break;
case 5:
dso_trigger |= 0x8000;
break;
default:
case 0:
break;
}
switch (mso->trigger_outsrc) {
case 1:
dso_trigger |= 0x800;
break;
case 2:
dso_trigger |= 0x1000;
break;
case 3:
dso_trigger |= 0x1800;
break;
}
ops[0] = mso_trans(5, mso->la_trigger);
ops[1] = mso_trans(6, mso->la_trigger_mask);
ops[2] = mso_trans(3, dso_trigger & 0xff);
ops[3] = mso_trans(4, (dso_trigger >> 8) & 0xff);
ops[4] = mso_trans(11,
mso->dso_trigger_width / SR_HZ_TO_NS(mso->cur_rate));
ops[5] = mso_trans(15, (2 | mso->slowmode));
/* FIXME SPI/I2C Triggers */
ops[6] = mso_trans(0, 0);
ops[7] = mso_trans(1, 0);
ops[8] = mso_trans(2, 0);
ops[9] = mso_trans(3, 0);
ops[10] = mso_trans(4, 0xff);
ops[11] = mso_trans(5, 0xff);
ops[12] = mso_trans(6, 0xff);
ops[13] = mso_trans(7, 0xff);
ops[14] = mso_trans(8, mso->trigger_spimode);
ops[15] = mso_trans(15, mso->slowmode);
return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
}
static int mso_configure_threshold_level(struct sr_device_instance *sdi)
{
struct mso *mso = sdi->priv;
return mso_dac_out(sdi, la_threshold_map[mso->la_threshold]);
}
static int mso_parse_serial(const char *iSerial, const char *iProduct,
struct mso *mso)
{
unsigned int u1, u2, u3, u4, u5, u6;
iProduct = iProduct;
/* FIXME: This code is in the original app, but I think its
* used only for the GUI */
/* if (strstr(iProduct, "REV_02") || strstr(iProduct, "REV_03"))
mso->num_sample_rates = 0x16;
else
mso->num_sample_rates = 0x10; */
/* parse iSerial */
if (iSerial[0] != '4' || sscanf(iSerial, "%5u%3u%3u%1u%1u%6u",
&u1, &u2, &u3, &u4, &u5, &u6) != 6)
return SR_ERR;
mso->hwmodel = u4;
mso->hwrev = u5;
mso->serial = u6;
mso->vbit = u1 / 10000;
if (mso->vbit == 0)
mso->vbit = 4.19195;
mso->dac_offset = u2;
if (mso->dac_offset == 0)
mso->dac_offset = 0x1ff;
mso->offset_range = u3;
if (mso->offset_range == 0)
mso->offset_range = 0x17d;
/*
* FIXME: There is more code on the original software to handle
* bigger iSerial strings, but as I can't test on my device
* I will not implement it yet
*/
return SR_OK;
}
static int hw_init(const char *deviceinfo)
{
struct sr_device_instance *sdi;
int devcnt = 0;
struct udev *udev;
struct udev_enumerate *enumerate;
struct udev_list_entry *devices, *dev_list_entry;
struct mso *mso;
deviceinfo = deviceinfo;
/* It's easier to map usb<->serial using udev */
/*
* FIXME: On windows we can get the same information from the
* registry, add an #ifdef here later
*/
udev = udev_new();
if (!udev) {
sr_warn("Failed to initialize udev.");
goto ret;
}
enumerate = udev_enumerate_new(udev);
udev_enumerate_add_match_subsystem(enumerate, "usb-serial");
udev_enumerate_scan_devices(enumerate);
devices = udev_enumerate_get_list_entry(enumerate);
udev_list_entry_foreach(dev_list_entry, devices) {
const char *syspath, *sysname, *idVendor, *idProduct,
*iSerial, *iProduct;
char path[32], manufacturer[32], product[32], hwrev[32];
struct udev_device *dev, *parent;
size_t s;
syspath = udev_list_entry_get_name(dev_list_entry);
dev = udev_device_new_from_syspath(udev, syspath);
sysname = udev_device_get_sysname(dev);
parent = udev_device_get_parent_with_subsystem_devtype(
dev, "usb", "usb_device");
if (!parent) {
sr_warn("Unable to find parent usb device for %s",
sysname);
continue;
}
idVendor = udev_device_get_sysattr_value(parent, "idVendor");
idProduct = udev_device_get_sysattr_value(parent, "idProduct");
if (strcmp(USB_VENDOR, idVendor)
|| strcmp(USB_PRODUCT, idProduct))
continue;
iSerial = udev_device_get_sysattr_value(parent, "serial");
iProduct = udev_device_get_sysattr_value(parent, "product");
snprintf(path, sizeof(path), "/dev/%s", sysname);
s = strcspn(iProduct, " ");
if (s > sizeof(product) ||
strlen(iProduct) - s > sizeof(manufacturer)) {
sr_warn("Could not parse iProduct: %s", iProduct);
continue;
}
strncpy(product, iProduct, s);
product[s] = 0;
strcpy(manufacturer, iProduct + s);
sprintf(hwrev, "r%d", mso->hwrev);
if (!(mso = g_try_malloc0(sizeof(struct mso)))) {
sr_err("mso19: %s: mso malloc failed", __func__);
continue; /* TODO: Errors handled correctly? */
}
if (mso_parse_serial(iSerial, iProduct, mso) != SR_OK) {
sr_warn("Invalid iSerial: %s", iSerial);
goto err_free_mso;
}
/* hardware initial state */
mso->ctlbase = 0;
sdi = sr_device_instance_new(devcnt, SR_ST_INITIALIZING,
manufacturer, product, hwrev);
if (!sdi) {
sr_warn("Unable to create device instance for %s",
sysname);
goto err_free_mso;
}
/* save a pointer to our private instance data */
sdi->priv = mso;
sdi->serial = sr_serial_device_instance_new(path, -1);
if (!sdi->serial)
goto err_device_instance_free;
device_instances = g_slist_append(device_instances, sdi);
devcnt++;
continue;
err_device_instance_free:
sr_device_instance_free(sdi);
err_free_mso:
free(mso);
}
udev_enumerate_unref(enumerate);
udev_unref(udev);
ret:
return devcnt;
}
static void hw_cleanup(void)
{
GSList *l;
struct sr_device_instance *sdi;
/* Properly close all devices. */
for (l = device_instances; l; l = l->next) {
sdi = l->data;
if (sdi->serial->fd != -1)
serial_close(sdi->serial->fd);
if (sdi->priv != NULL)
free(sdi->priv);
sr_device_instance_free(sdi);
}
g_slist_free(device_instances);
device_instances = NULL;
}
static int hw_opendev(int device_index)
{
struct sr_device_instance *sdi;
struct mso *mso;
int ret = SR_ERR;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return ret;
mso = sdi->priv;
sdi->serial->fd = serial_open(sdi->serial->port, O_RDWR);
if (sdi->serial->fd == -1)
return ret;
ret = serial_set_params(sdi->serial->fd, 460800, 8, 0, 1, 2);
if (ret != SR_OK)
return ret;
sdi->status = SR_ST_ACTIVE;
/* FIXME: discard serial buffer */
mso_check_trigger(sdi, &mso->trigger_state);
// sr_warn("trigger state: %c", mso->trigger_state);
ret = mso_reset_adc(sdi);
if (ret != SR_OK)
return ret;
mso_check_trigger(sdi, &mso->trigger_state);
// sr_warn("trigger state: %c", mso->trigger_state);
// ret = mso_reset_fsm(sdi);
// if (ret != SR_OK)
// return ret;
// return SR_ERR;
return SR_OK;
}
static int hw_closedev(int device_index)
{
struct sr_device_instance *sdi;
if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
sr_err("mso19: %s: sdi was NULL", __func__);
return SR_ERR; /* TODO: SR_ERR_ARG? */
}
/* TODO */
if (sdi->serial->fd != -1) {
serial_close(sdi->serial->fd);
sdi->serial->fd = -1;
sdi->status = SR_ST_INACTIVE;
}
return SR_OK;
}
static void *hw_get_device_info(int device_index, int device_info_id)
{
struct sr_device_instance *sdi;
struct mso *mso;
void *info = NULL;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return NULL;
mso = sdi->priv;
switch (device_info_id) {
case SR_DI_INSTANCE:
info = sdi;
break;
case SR_DI_NUM_PROBES: /* FIXME: How to report analog probe? */
info = GINT_TO_POINTER(8);
break;
case SR_DI_SAMPLERATES:
info = &samplerates;
break;
case SR_DI_TRIGGER_TYPES:
info = "01"; /* FIXME */
break;
case SR_DI_CUR_SAMPLERATE:
info = &mso->cur_rate;
break;
}
return info;
}
static int hw_get_status(int device_index)
{
struct sr_device_instance *sdi;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return SR_ST_NOT_FOUND;
return sdi->status;
}
static int *hw_get_capabilities(void)
{
return capabilities;
}
static int hw_set_configuration(int device_index, int capability, void *value)
{
struct sr_device_instance *sdi;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return SR_ERR;
switch (capability) {
case SR_HWCAP_SAMPLERATE:
return mso_configure_rate(sdi, *(uint64_t *) value);
case SR_HWCAP_PROBECONFIG:
case SR_HWCAP_LIMIT_SAMPLES:
default:
return SR_OK; /* FIXME */
}
}
#define MSO_TRIGGER_UNKNOWN '!'
#define MSO_TRIGGER_UNKNOWN1 '1'
#define MSO_TRIGGER_UNKNOWN2 '2'
#define MSO_TRIGGER_UNKNOWN3 '3'
#define MSO_TRIGGER_WAIT '4'
#define MSO_TRIGGER_FIRED '5'
#define MSO_TRIGGER_DATAREADY '6'
/* FIXME: Pass errors? */
static int receive_data(int fd, int revents, void *user_data)
{
struct sr_device_instance *sdi = user_data;
struct mso *mso = sdi->priv;
struct sr_datafeed_packet packet;
uint8_t in[1024], logic_out[1024];
double analog_out[1024];
size_t i, s;
revents = revents;
s = serial_read(fd, in, sizeof(in));
if (s <= 0)
return FALSE;
/* No samples */
if (mso->trigger_state != MSO_TRIGGER_DATAREADY) {
mso->trigger_state = in[0];
if (mso->trigger_state == MSO_TRIGGER_DATAREADY) {
mso_read_buffer(sdi);
mso->buffer_n = 0;
} else {
mso_check_trigger(sdi, NULL);
}
return FALSE;
}
/* the hardware always dumps 1024 samples, 24bits each */
if (mso->buffer_n < 3072) {
memcpy(mso->buffer + mso->buffer_n, in, s);
mso->buffer_n += s;
}
if (mso->buffer_n < 3072)
return FALSE;
/* do the conversion */
for (i = 0; i < 1024; i++) {
/* FIXME: Need to do conversion to mV */
analog_out[i] = (mso->buffer[i * 3] & 0x3f) |
((mso->buffer[i * 3 + 1] & 0xf) << 6);
logic_out[i] = ((mso->buffer[i * 3 + 1] & 0x30) >> 4) |
((mso->buffer[i * 3 + 2] & 0x3f) << 2);
}
packet.type = SR_DF_LOGIC;
packet.length = 1024;
packet.unitsize = 1;
packet.payload = logic_out;
sr_session_bus(mso->session_id, &packet);
packet.type = SR_DF_ANALOG;
packet.length = 1024;
packet.unitsize = sizeof(double);
packet.payload = analog_out;
sr_session_bus(mso->session_id, &packet);
packet.type = SR_DF_END;
sr_session_bus(mso->session_id, &packet);
return TRUE;
}
static int hw_start_acquisition(int device_index, gpointer session_device_id)
{
struct sr_device_instance *sdi;
struct mso *mso;
struct sr_datafeed_packet packet;
struct sr_datafeed_header header;
int ret = SR_ERR;
if (!(sdi = sr_get_device_instance(device_instances, device_index)))
return ret;
mso = sdi->priv;
/* FIXME: No need to do full reconfigure every time */
// ret = mso_reset_fsm(sdi);
// if (ret != SR_OK)
// return ret;
/* FIXME: ACDC Mode */
mso->ctlbase &= 0x7f;
// mso->ctlbase |= mso->acdcmode;
ret = mso_configure_rate(sdi, mso->cur_rate);
if (ret != SR_OK)
return ret;
/* set dac offset */
ret = mso_dac_out(sdi, mso->dac_offset);
if (ret != SR_OK)
return ret;
ret = mso_configure_threshold_level(sdi);
if (ret != SR_OK)
return ret;
ret = mso_configure_trigger(sdi);
if (ret != SR_OK)
return ret;
/* FIXME: trigger_position */
/* END of config hardware part */
/* with trigger */
ret = mso_arm(sdi);
if (ret != SR_OK)
return ret;
/* without trigger */
// ret = mso_force_capture(sdi);
// if (ret != SR_OK)
// return ret;
mso_check_trigger(sdi, &mso->trigger_state);
ret = mso_check_trigger(sdi, NULL);
if (ret != SR_OK)
return ret;
mso->session_id = session_device_id;
sr_source_add(sdi->serial->fd, G_IO_IN, -1, receive_data, sdi);
packet.type = SR_DF_HEADER;
packet.length = sizeof(struct sr_datafeed_header);
packet.payload = (unsigned char *) &header;
header.feed_version = 1;
gettimeofday(&header.starttime, NULL);
header.samplerate = mso->cur_rate;
header.num_analog_probes = 1;
header.num_logic_probes = 8;
header.protocol_id = SR_PROTO_RAW;
sr_session_bus(session_device_id, &packet);
return ret;
}
/* FIXME */
static void hw_stop_acquisition(int device_index, gpointer session_device_id)
{
struct sr_datafeed_packet packet;
device_index = device_index;
packet.type = SR_DF_END;
sr_session_bus(session_device_id, &packet);
}
struct sr_device_plugin link_mso19_plugin_info = {
.name = "link-mso19",
.longname = "Link Instruments MSO-19",
.api_version = 1,
.init = hw_init,
.cleanup = hw_cleanup,
.opendev = hw_opendev,
.closedev = hw_closedev,
.get_device_info = hw_get_device_info,
.get_status = hw_get_status,
.get_capabilities = hw_get_capabilities,
.set_configuration = hw_set_configuration,
.start_acquisition = hw_start_acquisition,
.stop_acquisition = hw_stop_acquisition,
};