1555 lines
38 KiB
C
1555 lines
38 KiB
C
/*
|
|
* This file is part of the libsigrok project.
|
|
*
|
|
* Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
|
|
* Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
|
|
* Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* ASIX SIGMA/SIGMA2 logic analyzer driver
|
|
*/
|
|
|
|
#include <glib.h>
|
|
#include <glib/gstdio.h>
|
|
#include <ftdi.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include "libsigrok.h"
|
|
#include "libsigrok-internal.h"
|
|
#include "asix-sigma.h"
|
|
|
|
#define USB_VENDOR 0xa600
|
|
#define USB_PRODUCT 0xa000
|
|
#define USB_DESCRIPTION "ASIX SIGMA"
|
|
#define USB_VENDOR_NAME "ASIX"
|
|
#define USB_MODEL_NAME "SIGMA"
|
|
|
|
SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
|
|
static struct sr_dev_driver *di = &asix_sigma_driver_info;
|
|
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
|
|
|
|
/*
|
|
* The ASIX Sigma supports arbitrary integer frequency divider in
|
|
* the 50MHz mode. The divider is in range 1...256 , allowing for
|
|
* very precise sampling rate selection. This driver supports only
|
|
* a subset of the sampling rates.
|
|
*/
|
|
static const uint64_t samplerates[] = {
|
|
SR_KHZ(200), /* div=250 */
|
|
SR_KHZ(250), /* div=200 */
|
|
SR_KHZ(500), /* div=100 */
|
|
SR_MHZ(1), /* div=50 */
|
|
SR_MHZ(5), /* div=10 */
|
|
SR_MHZ(10), /* div=5 */
|
|
SR_MHZ(25), /* div=2 */
|
|
SR_MHZ(50), /* div=1 */
|
|
SR_MHZ(100), /* Special FW needed */
|
|
SR_MHZ(200), /* Special FW needed */
|
|
};
|
|
|
|
/*
|
|
* Channel numbers seem to go from 1-16, according to this image:
|
|
* http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
|
|
* (the cable has two additional GND pins, and a TI and TO pin)
|
|
*/
|
|
static const char *channel_names[] = {
|
|
"1", "2", "3", "4", "5", "6", "7", "8",
|
|
"9", "10", "11", "12", "13", "14", "15", "16",
|
|
};
|
|
|
|
static const int32_t hwcaps[] = {
|
|
SR_CONF_LOGIC_ANALYZER,
|
|
SR_CONF_SAMPLERATE,
|
|
SR_CONF_TRIGGER_MATCH,
|
|
SR_CONF_CAPTURE_RATIO,
|
|
SR_CONF_LIMIT_MSEC,
|
|
};
|
|
|
|
static const int32_t trigger_matches[] = {
|
|
SR_TRIGGER_ZERO,
|
|
SR_TRIGGER_ONE,
|
|
SR_TRIGGER_RISING,
|
|
SR_TRIGGER_FALLING,
|
|
};
|
|
|
|
static const char *sigma_firmware_files[] = {
|
|
/* 50 MHz, supports 8 bit fractions */
|
|
FIRMWARE_DIR "/asix-sigma-50.fw",
|
|
/* 100 MHz */
|
|
FIRMWARE_DIR "/asix-sigma-100.fw",
|
|
/* 200 MHz */
|
|
FIRMWARE_DIR "/asix-sigma-200.fw",
|
|
/* Synchronous clock from pin */
|
|
FIRMWARE_DIR "/asix-sigma-50sync.fw",
|
|
/* Frequency counter */
|
|
FIRMWARE_DIR "/asix-sigma-phasor.fw",
|
|
};
|
|
|
|
static int sigma_read(void *buf, size_t size, struct dev_context *devc)
|
|
{
|
|
int ret;
|
|
|
|
ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
|
|
if (ret < 0) {
|
|
sr_err("ftdi_read_data failed: %s",
|
|
ftdi_get_error_string(&devc->ftdic));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sigma_write(void *buf, size_t size, struct dev_context *devc)
|
|
{
|
|
int ret;
|
|
|
|
ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
|
|
if (ret < 0) {
|
|
sr_err("ftdi_write_data failed: %s",
|
|
ftdi_get_error_string(&devc->ftdic));
|
|
} else if ((size_t) ret != size) {
|
|
sr_err("ftdi_write_data did not complete write.");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
|
|
struct dev_context *devc)
|
|
{
|
|
size_t i;
|
|
uint8_t buf[len + 2];
|
|
int idx = 0;
|
|
|
|
buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
|
|
buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
|
|
buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
|
|
}
|
|
|
|
return sigma_write(buf, idx, devc);
|
|
}
|
|
|
|
static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
|
|
{
|
|
return sigma_write_register(reg, &value, 1, devc);
|
|
}
|
|
|
|
static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
|
|
struct dev_context *devc)
|
|
{
|
|
uint8_t buf[3];
|
|
|
|
buf[0] = REG_ADDR_LOW | (reg & 0xf);
|
|
buf[1] = REG_ADDR_HIGH | (reg >> 4);
|
|
buf[2] = REG_READ_ADDR;
|
|
|
|
sigma_write(buf, sizeof(buf), devc);
|
|
|
|
return sigma_read(data, len, devc);
|
|
}
|
|
|
|
static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
|
|
{
|
|
uint8_t value;
|
|
|
|
if (1 != sigma_read_register(reg, &value, 1, devc)) {
|
|
sr_err("sigma_get_register: 1 byte expected");
|
|
return 0;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
|
|
struct dev_context *devc)
|
|
{
|
|
uint8_t buf[] = {
|
|
REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
|
|
|
|
REG_READ_ADDR | NEXT_REG,
|
|
REG_READ_ADDR | NEXT_REG,
|
|
REG_READ_ADDR | NEXT_REG,
|
|
REG_READ_ADDR | NEXT_REG,
|
|
REG_READ_ADDR | NEXT_REG,
|
|
REG_READ_ADDR | NEXT_REG,
|
|
};
|
|
uint8_t result[6];
|
|
|
|
sigma_write(buf, sizeof(buf), devc);
|
|
|
|
sigma_read(result, sizeof(result), devc);
|
|
|
|
*triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
|
|
*stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
|
|
|
|
/* Not really sure why this must be done, but according to spec. */
|
|
if ((--*stoppos & 0x1ff) == 0x1ff)
|
|
stoppos -= 64;
|
|
|
|
if ((*--triggerpos & 0x1ff) == 0x1ff)
|
|
triggerpos -= 64;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
|
|
uint8_t *data, struct dev_context *devc)
|
|
{
|
|
size_t i;
|
|
uint8_t buf[4096];
|
|
int idx = 0;
|
|
|
|
/* Send the startchunk. Index start with 1. */
|
|
buf[0] = startchunk >> 8;
|
|
buf[1] = startchunk & 0xff;
|
|
sigma_write_register(WRITE_MEMROW, buf, 2, devc);
|
|
|
|
/* Read the DRAM. */
|
|
buf[idx++] = REG_DRAM_BLOCK;
|
|
buf[idx++] = REG_DRAM_WAIT_ACK;
|
|
|
|
for (i = 0; i < numchunks; ++i) {
|
|
/* Alternate bit to copy from DRAM to cache. */
|
|
if (i != (numchunks - 1))
|
|
buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
|
|
|
|
buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
|
|
|
|
if (i != (numchunks - 1))
|
|
buf[idx++] = REG_DRAM_WAIT_ACK;
|
|
}
|
|
|
|
sigma_write(buf, idx, devc);
|
|
|
|
return sigma_read(data, numchunks * CHUNK_SIZE, devc);
|
|
}
|
|
|
|
/* Upload trigger look-up tables to Sigma. */
|
|
static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
|
|
{
|
|
int i;
|
|
uint8_t tmp[2];
|
|
uint16_t bit;
|
|
|
|
/* Transpose the table and send to Sigma. */
|
|
for (i = 0; i < 16; ++i) {
|
|
bit = 1 << i;
|
|
|
|
tmp[0] = tmp[1] = 0;
|
|
|
|
if (lut->m2d[0] & bit)
|
|
tmp[0] |= 0x01;
|
|
if (lut->m2d[1] & bit)
|
|
tmp[0] |= 0x02;
|
|
if (lut->m2d[2] & bit)
|
|
tmp[0] |= 0x04;
|
|
if (lut->m2d[3] & bit)
|
|
tmp[0] |= 0x08;
|
|
|
|
if (lut->m3 & bit)
|
|
tmp[0] |= 0x10;
|
|
if (lut->m3s & bit)
|
|
tmp[0] |= 0x20;
|
|
if (lut->m4 & bit)
|
|
tmp[0] |= 0x40;
|
|
|
|
if (lut->m0d[0] & bit)
|
|
tmp[1] |= 0x01;
|
|
if (lut->m0d[1] & bit)
|
|
tmp[1] |= 0x02;
|
|
if (lut->m0d[2] & bit)
|
|
tmp[1] |= 0x04;
|
|
if (lut->m0d[3] & bit)
|
|
tmp[1] |= 0x08;
|
|
|
|
if (lut->m1d[0] & bit)
|
|
tmp[1] |= 0x10;
|
|
if (lut->m1d[1] & bit)
|
|
tmp[1] |= 0x20;
|
|
if (lut->m1d[2] & bit)
|
|
tmp[1] |= 0x40;
|
|
if (lut->m1d[3] & bit)
|
|
tmp[1] |= 0x80;
|
|
|
|
sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
|
|
devc);
|
|
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
|
|
}
|
|
|
|
/* Send the parameters */
|
|
sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
|
|
sizeof(lut->params), devc);
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static void clear_helper(void *priv)
|
|
{
|
|
struct dev_context *devc;
|
|
|
|
devc = priv;
|
|
|
|
ftdi_deinit(&devc->ftdic);
|
|
}
|
|
|
|
static int dev_clear(void)
|
|
{
|
|
return std_dev_clear(di, clear_helper);
|
|
}
|
|
|
|
static int init(struct sr_context *sr_ctx)
|
|
{
|
|
return std_init(sr_ctx, di, LOG_PREFIX);
|
|
}
|
|
|
|
static GSList *scan(GSList *options)
|
|
{
|
|
struct sr_dev_inst *sdi;
|
|
struct sr_channel *ch;
|
|
struct drv_context *drvc;
|
|
struct dev_context *devc;
|
|
GSList *devices;
|
|
struct ftdi_device_list *devlist;
|
|
char serial_txt[10];
|
|
uint32_t serial;
|
|
int ret;
|
|
unsigned int i;
|
|
|
|
(void)options;
|
|
|
|
drvc = di->priv;
|
|
|
|
devices = NULL;
|
|
|
|
if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
|
|
sr_err("%s: devc malloc failed", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
ftdi_init(&devc->ftdic);
|
|
|
|
/* Look for SIGMAs. */
|
|
|
|
if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
|
|
USB_VENDOR, USB_PRODUCT)) <= 0) {
|
|
if (ret < 0)
|
|
sr_err("ftdi_usb_find_all(): %d", ret);
|
|
goto free;
|
|
}
|
|
|
|
/* Make sure it's a version 1 or 2 SIGMA. */
|
|
ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
|
|
serial_txt, sizeof(serial_txt));
|
|
sscanf(serial_txt, "%x", &serial);
|
|
|
|
if (serial < 0xa6010000 || serial > 0xa602ffff) {
|
|
sr_err("Only SIGMA and SIGMA2 are supported "
|
|
"in this version of libsigrok.");
|
|
goto free;
|
|
}
|
|
|
|
sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
|
|
|
|
devc->cur_samplerate = samplerates[0];
|
|
devc->period_ps = 0;
|
|
devc->limit_msec = 0;
|
|
devc->cur_firmware = -1;
|
|
devc->num_channels = 0;
|
|
devc->samples_per_event = 0;
|
|
devc->capture_ratio = 50;
|
|
devc->use_triggers = 0;
|
|
|
|
/* Register SIGMA device. */
|
|
if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
|
|
USB_MODEL_NAME, NULL))) {
|
|
sr_err("%s: sdi was NULL", __func__);
|
|
goto free;
|
|
}
|
|
sdi->driver = di;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
|
|
ch = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE,
|
|
channel_names[i]);
|
|
if (!ch)
|
|
return NULL;
|
|
sdi->channels = g_slist_append(sdi->channels, ch);
|
|
}
|
|
|
|
devices = g_slist_append(devices, sdi);
|
|
drvc->instances = g_slist_append(drvc->instances, sdi);
|
|
sdi->priv = devc;
|
|
|
|
/* We will open the device again when we need it. */
|
|
ftdi_list_free(&devlist);
|
|
|
|
return devices;
|
|
|
|
free:
|
|
ftdi_deinit(&devc->ftdic);
|
|
g_free(devc);
|
|
return NULL;
|
|
}
|
|
|
|
static GSList *dev_list(void)
|
|
{
|
|
return ((struct drv_context *)(di->priv))->instances;
|
|
}
|
|
|
|
/*
|
|
* Configure the FPGA for bitbang mode.
|
|
* This sequence is documented in section 2. of the ASIX Sigma programming
|
|
* manual. This sequence is necessary to configure the FPGA in the Sigma
|
|
* into Bitbang mode, in which it can be programmed with the firmware.
|
|
*/
|
|
static int sigma_fpga_init_bitbang(struct dev_context *devc)
|
|
{
|
|
uint8_t suicide[] = {
|
|
0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
|
|
};
|
|
uint8_t init_array[] = {
|
|
0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
|
|
0x01, 0x01,
|
|
};
|
|
int i, ret, timeout = 10000;
|
|
uint8_t data;
|
|
|
|
/* Section 2. part 1), do the FPGA suicide. */
|
|
sigma_write(suicide, sizeof(suicide), devc);
|
|
sigma_write(suicide, sizeof(suicide), devc);
|
|
sigma_write(suicide, sizeof(suicide), devc);
|
|
sigma_write(suicide, sizeof(suicide), devc);
|
|
|
|
/* Section 2. part 2), do pulse on D1. */
|
|
sigma_write(init_array, sizeof(init_array), devc);
|
|
ftdi_usb_purge_buffers(&devc->ftdic);
|
|
|
|
/* Wait until the FPGA asserts D6/INIT_B. */
|
|
for (i = 0; i < timeout; i++) {
|
|
ret = sigma_read(&data, 1, devc);
|
|
if (ret < 0)
|
|
return ret;
|
|
/* Test if pin D6 got asserted. */
|
|
if (data & (1 << 5))
|
|
return 0;
|
|
/* The D6 was not asserted yet, wait a bit. */
|
|
usleep(10000);
|
|
}
|
|
|
|
return SR_ERR_TIMEOUT;
|
|
}
|
|
|
|
/*
|
|
* Configure the FPGA for logic-analyzer mode.
|
|
*/
|
|
static int sigma_fpga_init_la(struct dev_context *devc)
|
|
{
|
|
/* Initialize the logic analyzer mode. */
|
|
uint8_t logic_mode_start[] = {
|
|
REG_ADDR_LOW | (READ_ID & 0xf),
|
|
REG_ADDR_HIGH | (READ_ID >> 8),
|
|
REG_READ_ADDR, /* Read ID register. */
|
|
|
|
REG_ADDR_LOW | (WRITE_TEST & 0xf),
|
|
REG_DATA_LOW | 0x5,
|
|
REG_DATA_HIGH_WRITE | 0x5,
|
|
REG_READ_ADDR, /* Read scratch register. */
|
|
|
|
REG_DATA_LOW | 0xa,
|
|
REG_DATA_HIGH_WRITE | 0xa,
|
|
REG_READ_ADDR, /* Read scratch register. */
|
|
|
|
REG_ADDR_LOW | (WRITE_MODE & 0xf),
|
|
REG_DATA_LOW | 0x0,
|
|
REG_DATA_HIGH_WRITE | 0x8,
|
|
};
|
|
|
|
uint8_t result[3];
|
|
int ret;
|
|
|
|
/* Initialize the logic analyzer mode. */
|
|
sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
|
|
|
|
/* Expect a 3 byte reply since we issued three READ requests. */
|
|
ret = sigma_read(result, 3, devc);
|
|
if (ret != 3)
|
|
goto err;
|
|
|
|
if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
|
|
goto err;
|
|
|
|
return SR_OK;
|
|
err:
|
|
sr_err("Configuration failed. Invalid reply received.");
|
|
return SR_ERR;
|
|
}
|
|
|
|
/*
|
|
* Read the firmware from a file and transform it into a series of bitbang
|
|
* pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
|
|
* by the caller of this function.
|
|
*/
|
|
static int sigma_fw_2_bitbang(const char *filename,
|
|
uint8_t **bb_cmd, gsize *bb_cmd_size)
|
|
{
|
|
GMappedFile *file;
|
|
GError *error;
|
|
gsize i, file_size, bb_size;
|
|
gchar *firmware;
|
|
uint8_t *bb_stream, *bbs;
|
|
uint32_t imm;
|
|
int bit, v;
|
|
int ret = SR_OK;
|
|
|
|
/*
|
|
* Map the file and make the mapped buffer writable.
|
|
* NOTE: Using writable=TRUE does _NOT_ mean that file that is mapped
|
|
* will be modified. It will not be modified until someone uses
|
|
* g_file_set_contents() on it.
|
|
*/
|
|
error = NULL;
|
|
file = g_mapped_file_new(filename, TRUE, &error);
|
|
g_assert_no_error(error);
|
|
|
|
file_size = g_mapped_file_get_length(file);
|
|
firmware = g_mapped_file_get_contents(file);
|
|
g_assert(firmware);
|
|
|
|
/* Weird magic transformation below, I have no idea what it does. */
|
|
imm = 0x3f6df2ab;
|
|
for (i = 0; i < file_size; i++) {
|
|
imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
|
|
firmware[i] ^= imm & 0xff;
|
|
}
|
|
|
|
/*
|
|
* Now that the firmware is "transformed", we will transcribe the
|
|
* firmware blob into a sequence of toggles of the Dx wires. This
|
|
* sequence will be fed directly into the Sigma, which must be in
|
|
* the FPGA bitbang programming mode.
|
|
*/
|
|
|
|
/* Each bit of firmware is transcribed as two toggles of Dx wires. */
|
|
bb_size = file_size * 8 * 2;
|
|
bb_stream = (uint8_t *)g_try_malloc(bb_size);
|
|
if (!bb_stream) {
|
|
sr_err("%s: Failed to allocate bitbang stream", __func__);
|
|
ret = SR_ERR_MALLOC;
|
|
goto exit;
|
|
}
|
|
|
|
bbs = bb_stream;
|
|
for (i = 0; i < file_size; i++) {
|
|
for (bit = 7; bit >= 0; bit--) {
|
|
v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
|
|
*bbs++ = v | 0x01;
|
|
*bbs++ = v;
|
|
}
|
|
}
|
|
|
|
/* The transformation completed successfully, return the result. */
|
|
*bb_cmd = bb_stream;
|
|
*bb_cmd_size = bb_size;
|
|
|
|
exit:
|
|
g_mapped_file_unref(file);
|
|
return ret;
|
|
}
|
|
|
|
static int upload_firmware(int firmware_idx, struct dev_context *devc)
|
|
{
|
|
int ret;
|
|
unsigned char *buf;
|
|
unsigned char pins;
|
|
size_t buf_size;
|
|
const char *firmware = sigma_firmware_files[firmware_idx];
|
|
struct ftdi_context *ftdic = &devc->ftdic;
|
|
|
|
/* Make sure it's an ASIX SIGMA. */
|
|
ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
|
|
USB_DESCRIPTION, NULL);
|
|
if (ret < 0) {
|
|
sr_err("ftdi_usb_open failed: %s",
|
|
ftdi_get_error_string(ftdic));
|
|
return 0;
|
|
}
|
|
|
|
ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
|
|
if (ret < 0) {
|
|
sr_err("ftdi_set_bitmode failed: %s",
|
|
ftdi_get_error_string(ftdic));
|
|
return 0;
|
|
}
|
|
|
|
/* Four times the speed of sigmalogan - Works well. */
|
|
ret = ftdi_set_baudrate(ftdic, 750000);
|
|
if (ret < 0) {
|
|
sr_err("ftdi_set_baudrate failed: %s",
|
|
ftdi_get_error_string(ftdic));
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize the FPGA for firmware upload. */
|
|
ret = sigma_fpga_init_bitbang(devc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Prepare firmware. */
|
|
ret = sigma_fw_2_bitbang(firmware, &buf, &buf_size);
|
|
if (ret != SR_OK) {
|
|
sr_err("An error occured while reading the firmware: %s",
|
|
firmware);
|
|
return ret;
|
|
}
|
|
|
|
/* Upload firmare. */
|
|
sr_info("Uploading firmware file '%s'.", firmware);
|
|
sigma_write(buf, buf_size, devc);
|
|
|
|
g_free(buf);
|
|
|
|
ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
|
|
if (ret < 0) {
|
|
sr_err("ftdi_set_bitmode failed: %s",
|
|
ftdi_get_error_string(ftdic));
|
|
return SR_ERR;
|
|
}
|
|
|
|
ftdi_usb_purge_buffers(ftdic);
|
|
|
|
/* Discard garbage. */
|
|
while (sigma_read(&pins, 1, devc) == 1)
|
|
;
|
|
|
|
/* Initialize the FPGA for logic-analyzer mode. */
|
|
ret = sigma_fpga_init_la(devc);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
|
|
devc->cur_firmware = firmware_idx;
|
|
|
|
sr_info("Firmware uploaded.");
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int dev_open(struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc;
|
|
int ret;
|
|
|
|
devc = sdi->priv;
|
|
|
|
/* Make sure it's an ASIX SIGMA. */
|
|
if ((ret = ftdi_usb_open_desc(&devc->ftdic,
|
|
USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
|
|
|
|
sr_err("ftdi_usb_open failed: %s",
|
|
ftdi_get_error_string(&devc->ftdic));
|
|
|
|
return 0;
|
|
}
|
|
|
|
sdi->status = SR_ST_ACTIVE;
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
|
|
{
|
|
struct dev_context *devc;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
devc = sdi->priv;
|
|
ret = SR_OK;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
|
|
if (samplerates[i] == samplerate)
|
|
break;
|
|
}
|
|
if (samplerates[i] == 0)
|
|
return SR_ERR_SAMPLERATE;
|
|
|
|
if (samplerate <= SR_MHZ(50)) {
|
|
ret = upload_firmware(0, devc);
|
|
devc->num_channels = 16;
|
|
} else if (samplerate == SR_MHZ(100)) {
|
|
ret = upload_firmware(1, devc);
|
|
devc->num_channels = 8;
|
|
} else if (samplerate == SR_MHZ(200)) {
|
|
ret = upload_firmware(2, devc);
|
|
devc->num_channels = 4;
|
|
}
|
|
|
|
if (ret == SR_OK) {
|
|
devc->cur_samplerate = samplerate;
|
|
devc->period_ps = 1000000000000ULL / samplerate;
|
|
devc->samples_per_event = 16 / devc->num_channels;
|
|
devc->state.state = SIGMA_IDLE;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* In 100 and 200 MHz mode, only a single pin rising/falling can be
|
|
* set as trigger. In other modes, two rising/falling triggers can be set,
|
|
* in addition to value/mask trigger for any number of channels.
|
|
*
|
|
* The Sigma supports complex triggers using boolean expressions, but this
|
|
* has not been implemented yet.
|
|
*/
|
|
static int convert_trigger(const struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc;
|
|
struct sr_trigger *trigger;
|
|
struct sr_trigger_stage *stage;
|
|
struct sr_trigger_match *match;
|
|
const GSList *l, *m;
|
|
int channelbit, trigger_set;
|
|
|
|
devc = sdi->priv;
|
|
memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
|
|
if (!(trigger = sr_session_trigger_get(sdi->session)))
|
|
return SR_OK;
|
|
|
|
trigger_set = 0;
|
|
for (l = trigger->stages; l; l = l->next) {
|
|
stage = l->data;
|
|
for (m = stage->matches; m; m = m->next) {
|
|
match = m->data;
|
|
if (!match->channel->enabled)
|
|
/* Ignore disabled channels with a trigger. */
|
|
continue;
|
|
channelbit = 1 << (match->channel->index);
|
|
if (devc->cur_samplerate >= SR_MHZ(100)) {
|
|
/* Fast trigger support. */
|
|
if (trigger_set) {
|
|
sr_err("Only a single pin trigger is "
|
|
"supported in 100 and 200MHz mode.");
|
|
return SR_ERR;
|
|
}
|
|
if (match->match == SR_TRIGGER_FALLING)
|
|
devc->trigger.fallingmask |= channelbit;
|
|
else if (match->match == SR_TRIGGER_RISING)
|
|
devc->trigger.risingmask |= channelbit;
|
|
else {
|
|
sr_err("Only rising/falling trigger is "
|
|
"supported in 100 and 200MHz mode.");
|
|
return SR_ERR;
|
|
}
|
|
|
|
++trigger_set;
|
|
} else {
|
|
/* Simple trigger support (event). */
|
|
if (match->match == SR_TRIGGER_ONE) {
|
|
devc->trigger.simplevalue |= channelbit;
|
|
devc->trigger.simplemask |= channelbit;
|
|
}
|
|
else if (match->match == SR_TRIGGER_ZERO) {
|
|
devc->trigger.simplevalue &= ~channelbit;
|
|
devc->trigger.simplemask |= channelbit;
|
|
}
|
|
else if (match->match == SR_TRIGGER_FALLING) {
|
|
devc->trigger.fallingmask |= channelbit;
|
|
++trigger_set;
|
|
}
|
|
else if (match->match == SR_TRIGGER_RISING) {
|
|
devc->trigger.risingmask |= channelbit;
|
|
++trigger_set;
|
|
}
|
|
|
|
/*
|
|
* Actually, Sigma supports 2 rising/falling triggers,
|
|
* but they are ORed and the current trigger syntax
|
|
* does not permit ORed triggers.
|
|
*/
|
|
if (trigger_set > 1) {
|
|
sr_err("Only 1 rising/falling trigger "
|
|
"is supported.");
|
|
return SR_ERR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int dev_close(struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc;
|
|
|
|
devc = sdi->priv;
|
|
|
|
/* TODO */
|
|
if (sdi->status == SR_ST_ACTIVE)
|
|
ftdi_usb_close(&devc->ftdic);
|
|
|
|
sdi->status = SR_ST_INACTIVE;
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int cleanup(void)
|
|
{
|
|
return dev_clear();
|
|
}
|
|
|
|
static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
|
|
const struct sr_channel_group *cg)
|
|
{
|
|
struct dev_context *devc;
|
|
|
|
(void)cg;
|
|
|
|
if (!sdi)
|
|
return SR_ERR;
|
|
devc = sdi->priv;
|
|
|
|
switch (id) {
|
|
case SR_CONF_SAMPLERATE:
|
|
*data = g_variant_new_uint64(devc->cur_samplerate);
|
|
break;
|
|
case SR_CONF_LIMIT_MSEC:
|
|
*data = g_variant_new_uint64(devc->limit_msec);
|
|
break;
|
|
case SR_CONF_CAPTURE_RATIO:
|
|
*data = g_variant_new_uint64(devc->capture_ratio);
|
|
break;
|
|
default:
|
|
return SR_ERR_NA;
|
|
}
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
|
|
const struct sr_channel_group *cg)
|
|
{
|
|
struct dev_context *devc;
|
|
uint64_t tmp;
|
|
int ret;
|
|
|
|
(void)cg;
|
|
|
|
if (sdi->status != SR_ST_ACTIVE)
|
|
return SR_ERR_DEV_CLOSED;
|
|
|
|
devc = sdi->priv;
|
|
|
|
ret = SR_OK;
|
|
switch (id) {
|
|
case SR_CONF_SAMPLERATE:
|
|
ret = set_samplerate(sdi, g_variant_get_uint64(data));
|
|
break;
|
|
case SR_CONF_LIMIT_MSEC:
|
|
tmp = g_variant_get_uint64(data);
|
|
if (tmp > 0)
|
|
devc->limit_msec = g_variant_get_uint64(data);
|
|
else
|
|
ret = SR_ERR;
|
|
break;
|
|
case SR_CONF_LIMIT_SAMPLES:
|
|
tmp = g_variant_get_uint64(data);
|
|
devc->limit_msec = tmp * 1000 / devc->cur_samplerate;
|
|
break;
|
|
case SR_CONF_CAPTURE_RATIO:
|
|
tmp = g_variant_get_uint64(data);
|
|
if (tmp <= 100)
|
|
devc->capture_ratio = tmp;
|
|
else
|
|
ret = SR_ERR;
|
|
break;
|
|
default:
|
|
ret = SR_ERR_NA;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
|
|
const struct sr_channel_group *cg)
|
|
{
|
|
GVariant *gvar;
|
|
GVariantBuilder gvb;
|
|
|
|
(void)sdi;
|
|
(void)cg;
|
|
|
|
switch (key) {
|
|
case SR_CONF_DEVICE_OPTIONS:
|
|
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
|
|
hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
|
|
break;
|
|
case SR_CONF_SAMPLERATE:
|
|
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
|
|
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
|
|
ARRAY_SIZE(samplerates), sizeof(uint64_t));
|
|
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
|
|
*data = g_variant_builder_end(&gvb);
|
|
break;
|
|
case SR_CONF_TRIGGER_MATCH:
|
|
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
|
|
trigger_matches, ARRAY_SIZE(trigger_matches),
|
|
sizeof(int32_t));
|
|
break;
|
|
default:
|
|
return SR_ERR_NA;
|
|
}
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
/* Software trigger to determine exact trigger position. */
|
|
static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
|
|
struct sigma_trigger *t)
|
|
{
|
|
int i;
|
|
uint16_t sample = 0;
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
if (i > 0)
|
|
last_sample = sample;
|
|
sample = samples[2 * i] | (samples[2 * i + 1] << 8);
|
|
|
|
/* Simple triggers. */
|
|
if ((sample & t->simplemask) != t->simplevalue)
|
|
continue;
|
|
|
|
/* Rising edge. */
|
|
if (((last_sample & t->risingmask) != 0) ||
|
|
((sample & t->risingmask) != t->risingmask))
|
|
continue;
|
|
|
|
/* Falling edge. */
|
|
if ((last_sample & t->fallingmask) != t->fallingmask ||
|
|
(sample & t->fallingmask) != 0)
|
|
continue;
|
|
|
|
break;
|
|
}
|
|
|
|
/* If we did not match, return original trigger pos. */
|
|
return i & 0x7;
|
|
}
|
|
|
|
|
|
/*
|
|
* Return the timestamp of "DRAM cluster".
|
|
*/
|
|
static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
|
|
{
|
|
return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
|
|
}
|
|
|
|
static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster,
|
|
unsigned int events_in_cluster,
|
|
unsigned int triggered,
|
|
struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc = sdi->priv;
|
|
struct sigma_state *ss = &devc->state;
|
|
struct sr_datafeed_packet packet;
|
|
struct sr_datafeed_logic logic;
|
|
uint16_t tsdiff, ts;
|
|
uint8_t samples[2048];
|
|
unsigned int i;
|
|
|
|
ts = sigma_dram_cluster_ts(dram_cluster);
|
|
tsdiff = ts - ss->lastts;
|
|
ss->lastts = ts;
|
|
|
|
packet.type = SR_DF_LOGIC;
|
|
packet.payload = &logic;
|
|
logic.unitsize = 2;
|
|
logic.data = samples;
|
|
|
|
/*
|
|
* First of all, send Sigrok a copy of the last sample from
|
|
* previous cluster as many times as needed to make up for
|
|
* the differential characteristics of data we get from the
|
|
* Sigma. Sigrok needs one sample of data per period.
|
|
*
|
|
* One DRAM cluster contains a timestamp and seven samples,
|
|
* the units of timestamp are "devc->period_ps" , the first
|
|
* sample in the cluster happens at the time of the timestamp
|
|
* and the remaining samples happen at timestamp +1...+6 .
|
|
*/
|
|
for (ts = 0; ts < tsdiff - (EVENTS_PER_CLUSTER - 1); ts++) {
|
|
i = ts % 1024;
|
|
samples[2 * i + 0] = ss->lastsample & 0xff;
|
|
samples[2 * i + 1] = ss->lastsample >> 8;
|
|
|
|
/*
|
|
* If we have 1024 samples ready or we're at the
|
|
* end of submitting the padding samples, submit
|
|
* the packet to Sigrok.
|
|
*/
|
|
if ((i == 1023) || (ts == (tsdiff - EVENTS_PER_CLUSTER))) {
|
|
logic.length = (i + 1) * logic.unitsize;
|
|
sr_session_send(devc->cb_data, &packet);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Parse the samples in current cluster and prepare them
|
|
* to be submitted to Sigrok.
|
|
*/
|
|
for (i = 0; i < events_in_cluster; i++) {
|
|
samples[2 * i + 1] = dram_cluster->samples[i].sample_lo;
|
|
samples[2 * i + 0] = dram_cluster->samples[i].sample_hi;
|
|
}
|
|
|
|
/* Send data up to trigger point (if triggered). */
|
|
int trigger_offset = 0;
|
|
if (triggered) {
|
|
/*
|
|
* Trigger is not always accurate to sample because of
|
|
* pipeline delay. However, it always triggers before
|
|
* the actual event. We therefore look at the next
|
|
* samples to pinpoint the exact position of the trigger.
|
|
*/
|
|
trigger_offset = get_trigger_offset(samples,
|
|
ss->lastsample, &devc->trigger);
|
|
|
|
if (trigger_offset > 0) {
|
|
packet.type = SR_DF_LOGIC;
|
|
logic.length = trigger_offset * logic.unitsize;
|
|
sr_session_send(devc->cb_data, &packet);
|
|
events_in_cluster -= trigger_offset;
|
|
}
|
|
|
|
/* Only send trigger if explicitly enabled. */
|
|
if (devc->use_triggers) {
|
|
packet.type = SR_DF_TRIGGER;
|
|
sr_session_send(devc->cb_data, &packet);
|
|
}
|
|
}
|
|
|
|
if (events_in_cluster > 0) {
|
|
packet.type = SR_DF_LOGIC;
|
|
logic.length = events_in_cluster * logic.unitsize;
|
|
logic.data = samples + (trigger_offset * logic.unitsize);
|
|
sr_session_send(devc->cb_data, &packet);
|
|
}
|
|
|
|
ss->lastsample =
|
|
samples[2 * (events_in_cluster - 1) + 0] |
|
|
(samples[2 * (events_in_cluster - 1) + 1] << 8);
|
|
|
|
}
|
|
|
|
/*
|
|
* Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
|
|
* Each event is 20ns apart, and can contain multiple samples.
|
|
*
|
|
* For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
|
|
* For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
|
|
* For 50 MHz and below, events contain one sample for each channel,
|
|
* spread 20 ns apart.
|
|
*/
|
|
static int decode_chunk_ts(struct sigma_dram_line *dram_line,
|
|
uint16_t events_in_line,
|
|
uint32_t trigger_event,
|
|
void *cb_data)
|
|
{
|
|
struct sigma_dram_cluster *dram_cluster;
|
|
struct sr_dev_inst *sdi = cb_data;
|
|
struct dev_context *devc = sdi->priv;
|
|
unsigned int clusters_in_line =
|
|
(events_in_line + (EVENTS_PER_CLUSTER - 1)) / EVENTS_PER_CLUSTER;
|
|
unsigned int events_in_cluster;
|
|
unsigned int i;
|
|
uint32_t trigger_cluster = ~0, triggered = 0;
|
|
|
|
/* Check if trigger is in this chunk. */
|
|
if (trigger_event < (64 * 7)) {
|
|
if (devc->cur_samplerate <= SR_MHZ(50)) {
|
|
trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
|
|
trigger_event);
|
|
}
|
|
|
|
/* Find in which cluster the trigger occured. */
|
|
trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
|
|
}
|
|
|
|
/* For each full DRAM cluster. */
|
|
for (i = 0; i < clusters_in_line; i++) {
|
|
dram_cluster = &dram_line->cluster[i];
|
|
|
|
/* The last cluster might not be full. */
|
|
if ((i == clusters_in_line - 1) &&
|
|
(events_in_line % EVENTS_PER_CLUSTER)) {
|
|
events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
|
|
} else {
|
|
events_in_cluster = EVENTS_PER_CLUSTER;
|
|
}
|
|
|
|
triggered = (i == trigger_cluster);
|
|
sigma_decode_dram_cluster(dram_cluster, events_in_cluster,
|
|
triggered, sdi);
|
|
}
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int download_capture(struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc = sdi->priv;
|
|
const uint32_t chunks_per_read = 32;
|
|
struct sigma_dram_line *dram_line;
|
|
int bufsz;
|
|
uint32_t stoppos, triggerpos;
|
|
struct sr_datafeed_packet packet;
|
|
uint8_t modestatus;
|
|
|
|
uint32_t i;
|
|
uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
|
|
uint32_t dl_events_in_line = 64 * 7;
|
|
uint32_t trg_line = ~0, trg_event = ~0;
|
|
|
|
dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
|
|
if (!dram_line)
|
|
return FALSE;
|
|
|
|
sr_info("Downloading sample data.");
|
|
|
|
/* Stop acquisition. */
|
|
sigma_set_register(WRITE_MODE, 0x11, devc);
|
|
|
|
/* Set SDRAM Read Enable. */
|
|
sigma_set_register(WRITE_MODE, 0x02, devc);
|
|
|
|
/* Get the current position. */
|
|
sigma_read_pos(&stoppos, &triggerpos, devc);
|
|
|
|
/* Check if trigger has fired. */
|
|
modestatus = sigma_get_register(READ_MODE, devc);
|
|
if (modestatus & 0x20) {
|
|
trg_line = triggerpos >> 9;
|
|
trg_event = triggerpos & 0x1ff;
|
|
}
|
|
|
|
/*
|
|
* Determine how many 1024b "DRAM lines" do we need to read from the
|
|
* Sigma so we have a complete set of samples. Note that the last
|
|
* line can be only partial, containing less than 64 clusters.
|
|
*/
|
|
dl_lines_total = (stoppos >> 9) + 1;
|
|
|
|
dl_lines_done = 0;
|
|
|
|
while (dl_lines_total > dl_lines_done) {
|
|
/* We can download only up-to 32 DRAM lines in one go! */
|
|
dl_lines_curr = MIN(chunks_per_read, dl_lines_total);
|
|
|
|
bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr,
|
|
(uint8_t *)dram_line, devc);
|
|
/* TODO: Check bufsz. For now, just avoid compiler warnings. */
|
|
(void)bufsz;
|
|
|
|
/* This is the first DRAM line, so find the initial timestamp. */
|
|
if (dl_lines_done == 0) {
|
|
devc->state.lastts =
|
|
sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
|
|
devc->state.lastsample = 0;
|
|
}
|
|
|
|
for (i = 0; i < dl_lines_curr; i++) {
|
|
uint32_t trigger_event = ~0;
|
|
/* The last "DRAM line" can be only partially full. */
|
|
if (dl_lines_done + i == dl_lines_total - 1)
|
|
dl_events_in_line = stoppos & 0x1ff;
|
|
|
|
/* Test if the trigger happened on this line. */
|
|
if (dl_lines_done + i == trg_line)
|
|
trigger_event = trg_event;
|
|
|
|
decode_chunk_ts(dram_line + i, dl_events_in_line,
|
|
trigger_event, sdi);
|
|
}
|
|
|
|
dl_lines_done += dl_lines_curr;
|
|
}
|
|
|
|
/* All done. */
|
|
packet.type = SR_DF_END;
|
|
sr_session_send(sdi, &packet);
|
|
|
|
dev_acquisition_stop(sdi, sdi);
|
|
|
|
g_free(dram_line);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Handle the Sigma when in CAPTURE mode. This function checks:
|
|
* - Sampling time ended
|
|
* - DRAM capacity overflow
|
|
* This function triggers download of the samples from Sigma
|
|
* in case either of the above conditions is true.
|
|
*/
|
|
static int sigma_capture_mode(struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc = sdi->priv;
|
|
|
|
uint64_t running_msec;
|
|
struct timeval tv;
|
|
|
|
uint32_t stoppos, triggerpos;
|
|
|
|
/* Check if the selected sampling duration passed. */
|
|
gettimeofday(&tv, 0);
|
|
running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
|
|
(tv.tv_usec - devc->start_tv.tv_usec) / 1000;
|
|
if (running_msec >= devc->limit_msec)
|
|
return download_capture(sdi);
|
|
|
|
/* Get the position in DRAM to which the FPGA is writing now. */
|
|
sigma_read_pos(&stoppos, &triggerpos, devc);
|
|
/* Test if DRAM is full and if so, download the data. */
|
|
if ((stoppos >> 9) == 32767)
|
|
return download_capture(sdi);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static int receive_data(int fd, int revents, void *cb_data)
|
|
{
|
|
struct sr_dev_inst *sdi;
|
|
struct dev_context *devc;
|
|
|
|
(void)fd;
|
|
(void)revents;
|
|
|
|
sdi = cb_data;
|
|
devc = sdi->priv;
|
|
|
|
if (devc->state.state == SIGMA_IDLE)
|
|
return TRUE;
|
|
|
|
if (devc->state.state == SIGMA_CAPTURE)
|
|
return sigma_capture_mode(sdi);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Build a LUT entry used by the trigger functions. */
|
|
static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
|
|
{
|
|
int i, j, k, bit;
|
|
|
|
/* For each quad channel. */
|
|
for (i = 0; i < 4; ++i) {
|
|
entry[i] = 0xffff;
|
|
|
|
/* For each bit in LUT. */
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
/* For each channel in quad. */
|
|
for (k = 0; k < 4; ++k) {
|
|
bit = 1 << (i * 4 + k);
|
|
|
|
/* Set bit in entry */
|
|
if ((mask & bit) &&
|
|
((!(value & bit)) !=
|
|
(!(j & (1 << k)))))
|
|
entry[i] &= ~(1 << j);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Add a logical function to LUT mask. */
|
|
static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
|
|
int index, int neg, uint16_t *mask)
|
|
{
|
|
int i, j;
|
|
int x[2][2], tmp, a, b, aset, bset, rset;
|
|
|
|
memset(x, 0, 4 * sizeof(int));
|
|
|
|
/* Trigger detect condition. */
|
|
switch (oper) {
|
|
case OP_LEVEL:
|
|
x[0][1] = 1;
|
|
x[1][1] = 1;
|
|
break;
|
|
case OP_NOT:
|
|
x[0][0] = 1;
|
|
x[1][0] = 1;
|
|
break;
|
|
case OP_RISE:
|
|
x[0][1] = 1;
|
|
break;
|
|
case OP_FALL:
|
|
x[1][0] = 1;
|
|
break;
|
|
case OP_RISEFALL:
|
|
x[0][1] = 1;
|
|
x[1][0] = 1;
|
|
break;
|
|
case OP_NOTRISE:
|
|
x[1][1] = 1;
|
|
x[0][0] = 1;
|
|
x[1][0] = 1;
|
|
break;
|
|
case OP_NOTFALL:
|
|
x[1][1] = 1;
|
|
x[0][0] = 1;
|
|
x[0][1] = 1;
|
|
break;
|
|
case OP_NOTRISEFALL:
|
|
x[1][1] = 1;
|
|
x[0][0] = 1;
|
|
break;
|
|
}
|
|
|
|
/* Transpose if neg is set. */
|
|
if (neg) {
|
|
for (i = 0; i < 2; ++i) {
|
|
for (j = 0; j < 2; ++j) {
|
|
tmp = x[i][j];
|
|
x[i][j] = x[1-i][1-j];
|
|
x[1-i][1-j] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Update mask with function. */
|
|
for (i = 0; i < 16; ++i) {
|
|
a = (i >> (2 * index + 0)) & 1;
|
|
b = (i >> (2 * index + 1)) & 1;
|
|
|
|
aset = (*mask >> i) & 1;
|
|
bset = x[b][a];
|
|
|
|
if (func == FUNC_AND || func == FUNC_NAND)
|
|
rset = aset & bset;
|
|
else if (func == FUNC_OR || func == FUNC_NOR)
|
|
rset = aset | bset;
|
|
else if (func == FUNC_XOR || func == FUNC_NXOR)
|
|
rset = aset ^ bset;
|
|
|
|
if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
|
|
rset = !rset;
|
|
|
|
*mask &= ~(1 << i);
|
|
|
|
if (rset)
|
|
*mask |= 1 << i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build trigger LUTs used by 50 MHz and lower sample rates for supporting
|
|
* simple pin change and state triggers. Only two transitions (rise/fall) can be
|
|
* set at any time, but a full mask and value can be set (0/1).
|
|
*/
|
|
static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
|
|
{
|
|
int i,j;
|
|
uint16_t masks[2] = { 0, 0 };
|
|
|
|
memset(lut, 0, sizeof(struct triggerlut));
|
|
|
|
/* Contant for simple triggers. */
|
|
lut->m4 = 0xa000;
|
|
|
|
/* Value/mask trigger support. */
|
|
build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
|
|
lut->m2d);
|
|
|
|
/* Rise/fall trigger support. */
|
|
for (i = 0, j = 0; i < 16; ++i) {
|
|
if (devc->trigger.risingmask & (1 << i) ||
|
|
devc->trigger.fallingmask & (1 << i))
|
|
masks[j++] = 1 << i;
|
|
}
|
|
|
|
build_lut_entry(masks[0], masks[0], lut->m0d);
|
|
build_lut_entry(masks[1], masks[1], lut->m1d);
|
|
|
|
/* Add glue logic */
|
|
if (masks[0] || masks[1]) {
|
|
/* Transition trigger. */
|
|
if (masks[0] & devc->trigger.risingmask)
|
|
add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
|
|
if (masks[0] & devc->trigger.fallingmask)
|
|
add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
|
|
if (masks[1] & devc->trigger.risingmask)
|
|
add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
|
|
if (masks[1] & devc->trigger.fallingmask)
|
|
add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
|
|
} else {
|
|
/* Only value/mask trigger. */
|
|
lut->m3 = 0xffff;
|
|
}
|
|
|
|
/* Triggertype: event. */
|
|
lut->params.selres = 3;
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
|
|
{
|
|
struct dev_context *devc;
|
|
struct clockselect_50 clockselect;
|
|
int frac, triggerpin, ret;
|
|
uint8_t triggerselect = 0;
|
|
struct triggerinout triggerinout_conf;
|
|
struct triggerlut lut;
|
|
|
|
if (sdi->status != SR_ST_ACTIVE)
|
|
return SR_ERR_DEV_CLOSED;
|
|
|
|
devc = sdi->priv;
|
|
|
|
if (convert_trigger(sdi) != SR_OK) {
|
|
sr_err("Failed to configure triggers.");
|
|
return SR_ERR;
|
|
}
|
|
|
|
/* If the samplerate has not been set, default to 200 kHz. */
|
|
if (devc->cur_firmware == -1) {
|
|
if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
|
|
return ret;
|
|
}
|
|
|
|
/* Enter trigger programming mode. */
|
|
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
|
|
|
|
/* 100 and 200 MHz mode. */
|
|
if (devc->cur_samplerate >= SR_MHZ(100)) {
|
|
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
|
|
|
|
/* Find which pin to trigger on from mask. */
|
|
for (triggerpin = 0; triggerpin < 8; ++triggerpin)
|
|
if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
|
|
(1 << triggerpin))
|
|
break;
|
|
|
|
/* Set trigger pin and light LED on trigger. */
|
|
triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
|
|
|
|
/* Default rising edge. */
|
|
if (devc->trigger.fallingmask)
|
|
triggerselect |= 1 << 3;
|
|
|
|
/* All other modes. */
|
|
} else if (devc->cur_samplerate <= SR_MHZ(50)) {
|
|
build_basic_trigger(&lut, devc);
|
|
|
|
sigma_write_trigger_lut(&lut, devc);
|
|
|
|
triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
|
|
}
|
|
|
|
/* Setup trigger in and out pins to default values. */
|
|
memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
|
|
triggerinout_conf.trgout_bytrigger = 1;
|
|
triggerinout_conf.trgout_enable = 1;
|
|
|
|
sigma_write_register(WRITE_TRIGGER_OPTION,
|
|
(uint8_t *) &triggerinout_conf,
|
|
sizeof(struct triggerinout), devc);
|
|
|
|
/* Go back to normal mode. */
|
|
sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
|
|
|
|
/* Set clock select register. */
|
|
if (devc->cur_samplerate == SR_MHZ(200))
|
|
/* Enable 4 channels. */
|
|
sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
|
|
else if (devc->cur_samplerate == SR_MHZ(100))
|
|
/* Enable 8 channels. */
|
|
sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
|
|
else {
|
|
/*
|
|
* 50 MHz mode (or fraction thereof). Any fraction down to
|
|
* 50 MHz / 256 can be used, but is not supported by sigrok API.
|
|
*/
|
|
frac = SR_MHZ(50) / devc->cur_samplerate - 1;
|
|
|
|
clockselect.async = 0;
|
|
clockselect.fraction = frac;
|
|
clockselect.disabled_channels = 0;
|
|
|
|
sigma_write_register(WRITE_CLOCK_SELECT,
|
|
(uint8_t *) &clockselect,
|
|
sizeof(clockselect), devc);
|
|
}
|
|
|
|
/* Setup maximum post trigger time. */
|
|
sigma_set_register(WRITE_POST_TRIGGER,
|
|
(devc->capture_ratio * 255) / 100, devc);
|
|
|
|
/* Start acqusition. */
|
|
gettimeofday(&devc->start_tv, 0);
|
|
sigma_set_register(WRITE_MODE, 0x0d, devc);
|
|
|
|
devc->cb_data = cb_data;
|
|
|
|
/* Send header packet to the session bus. */
|
|
std_session_send_df_header(cb_data, LOG_PREFIX);
|
|
|
|
/* Add capture source. */
|
|
sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
|
|
|
|
devc->state.state = SIGMA_CAPTURE;
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
|
|
{
|
|
struct dev_context *devc;
|
|
|
|
(void)cb_data;
|
|
|
|
devc = sdi->priv;
|
|
devc->state.state = SIGMA_IDLE;
|
|
|
|
sr_source_remove(0);
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
|
|
.name = "asix-sigma",
|
|
.longname = "ASIX SIGMA/SIGMA2",
|
|
.api_version = 1,
|
|
.init = init,
|
|
.cleanup = cleanup,
|
|
.scan = scan,
|
|
.dev_list = dev_list,
|
|
.dev_clear = dev_clear,
|
|
.config_get = config_get,
|
|
.config_set = config_set,
|
|
.config_list = config_list,
|
|
.dev_open = dev_open,
|
|
.dev_close = dev_close,
|
|
.dev_acquisition_start = dev_acquisition_start,
|
|
.dev_acquisition_stop = dev_acquisition_stop,
|
|
.priv = NULL,
|
|
};
|