libsigrok/hardware/asix-sigma/asix-sigma.c

1428 lines
33 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2010 Håvard Espeland <gus@ping.uio.no>,
* Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
* Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* ASIX SIGMA Logic Analyzer Driver
*/
#include <glib.h>
#include <glib/gstdio.h>
#include <ftdi.h>
#include <string.h>
#include <zlib.h>
#include "sigrok.h"
#include "sigrok-internal.h"
#include "asix-sigma.h"
#define USB_VENDOR 0xa600
#define USB_PRODUCT 0xa000
#define USB_DESCRIPTION "ASIX SIGMA"
#define USB_VENDOR_NAME "ASIX"
#define USB_MODEL_NAME "SIGMA"
#define USB_MODEL_VERSION ""
#define TRIGGER_TYPES "rf10"
#define NUM_PROBES 16
static GSList *dev_insts = NULL;
static uint64_t supported_samplerates[] = {
SR_KHZ(200),
SR_KHZ(250),
SR_KHZ(500),
SR_MHZ(1),
SR_MHZ(5),
SR_MHZ(10),
SR_MHZ(25),
SR_MHZ(50),
SR_MHZ(100),
SR_MHZ(200),
0,
};
/*
* Probe numbers seem to go from 1-16, according to this image:
* http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
* (the cable has two additional GND pins, and a TI and TO pin)
*/
static const char *probe_names[NUM_PROBES + 1] = {
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
NULL,
};
static struct sr_samplerates samplerates = {
0,
0,
0,
supported_samplerates,
};
static int hwcaps[] = {
SR_HWCAP_LOGIC_ANALYZER,
SR_HWCAP_SAMPLERATE,
SR_HWCAP_CAPTURE_RATIO,
SR_HWCAP_PROBECONFIG,
SR_HWCAP_LIMIT_MSEC,
0,
};
/* Force the FPGA to reboot. */
static uint8_t suicide[] = {
0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
};
/* Prepare to upload firmware (FPGA specific). */
static uint8_t init[] = {
0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
};
/* Initialize the logic analyzer mode. */
static uint8_t logic_mode_start[] = {
0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
};
static const char *firmware_files[] = {
"asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
"asix-sigma-100.fw", /* 100 MHz */
"asix-sigma-200.fw", /* 200 MHz */
"asix-sigma-50sync.fw", /* Synchronous clock from pin */
"asix-sigma-phasor.fw", /* Frequency counter */
};
static int hw_dev_acquisition_stop(int dev_index, void *cb_data);
static int sigma_read(void *buf, size_t size, struct context *ctx)
{
int ret;
ret = ftdi_read_data(&ctx->ftdic, (unsigned char *)buf, size);
if (ret < 0) {
sr_err("sigma: ftdi_read_data failed: %s",
ftdi_get_error_string(&ctx->ftdic));
}
return ret;
}
static int sigma_write(void *buf, size_t size, struct context *ctx)
{
int ret;
ret = ftdi_write_data(&ctx->ftdic, (unsigned char *)buf, size);
if (ret < 0) {
sr_err("sigma: ftdi_write_data failed: %s",
ftdi_get_error_string(&ctx->ftdic));
} else if ((size_t) ret != size) {
sr_err("sigma: ftdi_write_data did not complete write.");
}
return ret;
}
static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
struct context *ctx)
{
size_t i;
uint8_t buf[len + 2];
int idx = 0;
buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
for (i = 0; i < len; ++i) {
buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
}
return sigma_write(buf, idx, ctx);
}
static int sigma_set_register(uint8_t reg, uint8_t value, struct context *ctx)
{
return sigma_write_register(reg, &value, 1, ctx);
}
static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
struct context *ctx)
{
uint8_t buf[3];
buf[0] = REG_ADDR_LOW | (reg & 0xf);
buf[1] = REG_ADDR_HIGH | (reg >> 4);
buf[2] = REG_READ_ADDR;
sigma_write(buf, sizeof(buf), ctx);
return sigma_read(data, len, ctx);
}
static uint8_t sigma_get_register(uint8_t reg, struct context *ctx)
{
uint8_t value;
if (1 != sigma_read_register(reg, &value, 1, ctx)) {
sr_err("sigma: sigma_get_register: 1 byte expected");
return 0;
}
return value;
}
static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
struct context *ctx)
{
uint8_t buf[] = {
REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
};
uint8_t result[6];
sigma_write(buf, sizeof(buf), ctx);
sigma_read(result, sizeof(result), ctx);
*triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
*stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
/* Not really sure why this must be done, but according to spec. */
if ((--*stoppos & 0x1ff) == 0x1ff)
stoppos -= 64;
if ((*--triggerpos & 0x1ff) == 0x1ff)
triggerpos -= 64;
return 1;
}
static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
uint8_t *data, struct context *ctx)
{
size_t i;
uint8_t buf[4096];
int idx = 0;
/* Send the startchunk. Index start with 1. */
buf[0] = startchunk >> 8;
buf[1] = startchunk & 0xff;
sigma_write_register(WRITE_MEMROW, buf, 2, ctx);
/* Read the DRAM. */
buf[idx++] = REG_DRAM_BLOCK;
buf[idx++] = REG_DRAM_WAIT_ACK;
for (i = 0; i < numchunks; ++i) {
/* Alternate bit to copy from DRAM to cache. */
if (i != (numchunks - 1))
buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
if (i != (numchunks - 1))
buf[idx++] = REG_DRAM_WAIT_ACK;
}
sigma_write(buf, idx, ctx);
return sigma_read(data, numchunks * CHUNK_SIZE, ctx);
}
/* Upload trigger look-up tables to Sigma. */
static int sigma_write_trigger_lut(struct triggerlut *lut, struct context *ctx)
{
int i;
uint8_t tmp[2];
uint16_t bit;
/* Transpose the table and send to Sigma. */
for (i = 0; i < 16; ++i) {
bit = 1 << i;
tmp[0] = tmp[1] = 0;
if (lut->m2d[0] & bit)
tmp[0] |= 0x01;
if (lut->m2d[1] & bit)
tmp[0] |= 0x02;
if (lut->m2d[2] & bit)
tmp[0] |= 0x04;
if (lut->m2d[3] & bit)
tmp[0] |= 0x08;
if (lut->m3 & bit)
tmp[0] |= 0x10;
if (lut->m3s & bit)
tmp[0] |= 0x20;
if (lut->m4 & bit)
tmp[0] |= 0x40;
if (lut->m0d[0] & bit)
tmp[1] |= 0x01;
if (lut->m0d[1] & bit)
tmp[1] |= 0x02;
if (lut->m0d[2] & bit)
tmp[1] |= 0x04;
if (lut->m0d[3] & bit)
tmp[1] |= 0x08;
if (lut->m1d[0] & bit)
tmp[1] |= 0x10;
if (lut->m1d[1] & bit)
tmp[1] |= 0x20;
if (lut->m1d[2] & bit)
tmp[1] |= 0x40;
if (lut->m1d[3] & bit)
tmp[1] |= 0x80;
sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
ctx);
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, ctx);
}
/* Send the parameters */
sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
sizeof(lut->params), ctx);
return SR_OK;
}
/* Generate the bitbang stream for programming the FPGA. */
static int bin2bitbang(const char *filename,
unsigned char **buf, size_t *buf_size)
{
FILE *f;
long file_size;
unsigned long offset = 0;
unsigned char *p;
uint8_t *compressed_buf, *firmware;
uLongf csize, fwsize;
const int buffer_size = 65536;
size_t i;
int c, ret, bit, v;
uint32_t imm = 0x3f6df2ab;
f = g_fopen(filename, "rb");
if (!f) {
sr_err("sigma: g_fopen(\"%s\", \"rb\")", filename);
return SR_ERR;
}
if (-1 == fseek(f, 0, SEEK_END)) {
sr_err("sigma: fseek on %s failed", filename);
fclose(f);
return SR_ERR;
}
file_size = ftell(f);
fseek(f, 0, SEEK_SET);
if (!(compressed_buf = g_try_malloc(file_size))) {
sr_err("sigma: %s: compressed_buf malloc failed", __func__);
fclose(f);
return SR_ERR_MALLOC;
}
if (!(firmware = g_try_malloc(buffer_size))) {
sr_err("sigma: %s: firmware malloc failed", __func__);
fclose(f);
g_free(compressed_buf);
return SR_ERR_MALLOC;
}
csize = 0;
while ((c = getc(f)) != EOF) {
imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
compressed_buf[csize++] = c ^ imm;
}
fclose(f);
fwsize = buffer_size;
ret = uncompress(firmware, &fwsize, compressed_buf, csize);
if (ret < 0) {
g_free(compressed_buf);
g_free(firmware);
sr_err("sigma: Could not unpack Sigma firmware. "
"(Error %d).", ret);
return SR_ERR;
}
g_free(compressed_buf);
*buf_size = fwsize * 2 * 8;
*buf = p = (unsigned char *)g_try_malloc(*buf_size);
if (!p) {
sr_err("sigma: %s: buf/p malloc failed", __func__);
g_free(compressed_buf);
g_free(firmware);
return SR_ERR_MALLOC;
}
for (i = 0; i < fwsize; ++i) {
for (bit = 7; bit >= 0; --bit) {
v = firmware[i] & 1 << bit ? 0x40 : 0x00;
p[offset++] = v | 0x01;
p[offset++] = v;
}
}
g_free(firmware);
if (offset != *buf_size) {
g_free(*buf);
sr_err("sigma: Error reading firmware %s "
"offset=%ld, file_size=%ld, buf_size=%zd.",
filename, offset, file_size, *buf_size);
return SR_ERR;
}
return SR_OK;
}
static int hw_init(const char *devinfo)
{
struct sr_dev_inst *sdi;
struct context *ctx;
/* Avoid compiler warnings. */
(void)devinfo;
if (!(ctx = g_try_malloc(sizeof(struct context)))) {
sr_err("sigma: %s: ctx malloc failed", __func__);
return 0; /* FIXME: Should be SR_ERR_MALLOC. */
}
ftdi_init(&ctx->ftdic);
/* Look for SIGMAs. */
if (ftdi_usb_open_desc(&ctx->ftdic, USB_VENDOR, USB_PRODUCT,
USB_DESCRIPTION, NULL) < 0)
goto free;
ctx->cur_samplerate = 0;
ctx->period_ps = 0;
ctx->limit_msec = 0;
ctx->cur_firmware = -1;
ctx->num_probes = 0;
ctx->samples_per_event = 0;
ctx->capture_ratio = 50;
ctx->use_triggers = 0;
/* Register SIGMA device. */
if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
USB_MODEL_NAME, USB_MODEL_VERSION))) {
sr_err("sigma: %s: sdi was NULL", __func__);
goto free;
}
sdi->priv = ctx;
dev_insts = g_slist_append(dev_insts, sdi);
/* We will open the device again when we need it. */
ftdi_usb_close(&ctx->ftdic);
return 1;
free:
g_free(ctx);
return 0;
}
static int upload_firmware(int firmware_idx, struct context *ctx)
{
int ret;
unsigned char *buf;
unsigned char pins;
size_t buf_size;
unsigned char result[32];
char firmware_path[128];
/* Make sure it's an ASIX SIGMA. */
if ((ret = ftdi_usb_open_desc(&ctx->ftdic,
USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
sr_err("sigma: ftdi_usb_open failed: %s",
ftdi_get_error_string(&ctx->ftdic));
return 0;
}
if ((ret = ftdi_set_bitmode(&ctx->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
sr_err("sigma: ftdi_set_bitmode failed: %s",
ftdi_get_error_string(&ctx->ftdic));
return 0;
}
/* Four times the speed of sigmalogan - Works well. */
if ((ret = ftdi_set_baudrate(&ctx->ftdic, 750000)) < 0) {
sr_err("sigma: ftdi_set_baudrate failed: %s",
ftdi_get_error_string(&ctx->ftdic));
return 0;
}
/* Force the FPGA to reboot. */
sigma_write(suicide, sizeof(suicide), ctx);
sigma_write(suicide, sizeof(suicide), ctx);
sigma_write(suicide, sizeof(suicide), ctx);
sigma_write(suicide, sizeof(suicide), ctx);
/* Prepare to upload firmware (FPGA specific). */
sigma_write(init, sizeof(init), ctx);
ftdi_usb_purge_buffers(&ctx->ftdic);
/* Wait until the FPGA asserts INIT_B. */
while (1) {
ret = sigma_read(result, 1, ctx);
if (result[0] & 0x20)
break;
}
/* Prepare firmware. */
snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
firmware_files[firmware_idx]);
if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
sr_err("sigma: An error occured while reading the firmware: %s",
firmware_path);
return ret;
}
/* Upload firmare. */
sigma_write(buf, buf_size, ctx);
g_free(buf);
if ((ret = ftdi_set_bitmode(&ctx->ftdic, 0x00, BITMODE_RESET)) < 0) {
sr_err("sigma: ftdi_set_bitmode failed: %s",
ftdi_get_error_string(&ctx->ftdic));
return SR_ERR;
}
ftdi_usb_purge_buffers(&ctx->ftdic);
/* Discard garbage. */
while (1 == sigma_read(&pins, 1, ctx))
;
/* Initialize the logic analyzer mode. */
sigma_write(logic_mode_start, sizeof(logic_mode_start), ctx);
/* Expect a 3 byte reply. */
ret = sigma_read(result, 3, ctx);
if (ret != 3 ||
result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
sr_err("sigma: Configuration failed. Invalid reply received.");
return SR_ERR;
}
ctx->cur_firmware = firmware_idx;
return SR_OK;
}
static int hw_dev_open(int dev_index)
{
struct sr_dev_inst *sdi;
struct context *ctx;
int ret;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
return SR_ERR;
ctx = sdi->priv;
/* Make sure it's an ASIX SIGMA. */
if ((ret = ftdi_usb_open_desc(&ctx->ftdic,
USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
sr_err("sigma: ftdi_usb_open failed: %s",
ftdi_get_error_string(&ctx->ftdic));
return 0;
}
sdi->status = SR_ST_ACTIVE;
return SR_OK;
}
static int set_samplerate(struct sr_dev_inst *sdi, uint64_t samplerate)
{
int i, ret;
struct context *ctx = sdi->priv;
for (i = 0; supported_samplerates[i]; i++) {
if (supported_samplerates[i] == samplerate)
break;
}
if (supported_samplerates[i] == 0)
return SR_ERR_SAMPLERATE;
if (samplerate <= SR_MHZ(50)) {
ret = upload_firmware(0, ctx);
ctx->num_probes = 16;
}
if (samplerate == SR_MHZ(100)) {
ret = upload_firmware(1, ctx);
ctx->num_probes = 8;
}
else if (samplerate == SR_MHZ(200)) {
ret = upload_firmware(2, ctx);
ctx->num_probes = 4;
}
ctx->cur_samplerate = samplerate;
ctx->period_ps = 1000000000000 / samplerate;
ctx->samples_per_event = 16 / ctx->num_probes;
ctx->state.state = SIGMA_IDLE;
sr_info("sigma: Firmware uploaded");
return ret;
}
/*
* In 100 and 200 MHz mode, only a single pin rising/falling can be
* set as trigger. In other modes, two rising/falling triggers can be set,
* in addition to value/mask trigger for any number of probes.
*
* The Sigma supports complex triggers using boolean expressions, but this
* has not been implemented yet.
*/
static int configure_probes(struct sr_dev_inst *sdi, GSList *probes)
{
struct context *ctx = sdi->priv;
struct sr_probe *probe;
GSList *l;
int trigger_set = 0;
int probebit;
memset(&ctx->trigger, 0, sizeof(struct sigma_trigger));
for (l = probes; l; l = l->next) {
probe = (struct sr_probe *)l->data;
probebit = 1 << (probe->index - 1);
if (!probe->enabled || !probe->trigger)
continue;
if (ctx->cur_samplerate >= SR_MHZ(100)) {
/* Fast trigger support. */
if (trigger_set) {
sr_err("sigma: ASIX SIGMA only supports a single "
"pin trigger in 100 and 200MHz mode.");
return SR_ERR;
}
if (probe->trigger[0] == 'f')
ctx->trigger.fallingmask |= probebit;
else if (probe->trigger[0] == 'r')
ctx->trigger.risingmask |= probebit;
else {
sr_err("sigma: ASIX SIGMA only supports "
"rising/falling trigger in 100 "
"and 200MHz mode.");
return SR_ERR;
}
++trigger_set;
} else {
/* Simple trigger support (event). */
if (probe->trigger[0] == '1') {
ctx->trigger.simplevalue |= probebit;
ctx->trigger.simplemask |= probebit;
}
else if (probe->trigger[0] == '0') {
ctx->trigger.simplevalue &= ~probebit;
ctx->trigger.simplemask |= probebit;
}
else if (probe->trigger[0] == 'f') {
ctx->trigger.fallingmask |= probebit;
++trigger_set;
}
else if (probe->trigger[0] == 'r') {
ctx->trigger.risingmask |= probebit;
++trigger_set;
}
/*
* Actually, Sigma supports 2 rising/falling triggers,
* but they are ORed and the current trigger syntax
* does not permit ORed triggers.
*/
if (trigger_set > 1) {
sr_err("sigma: ASIX SIGMA only supports 1 "
"rising/falling triggers.");
return SR_ERR;
}
}
if (trigger_set)
ctx->use_triggers = 1;
}
return SR_OK;
}
static int hw_dev_close(int dev_index)
{
struct sr_dev_inst *sdi;
struct context *ctx;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) {
sr_err("sigma: %s: sdi was NULL", __func__);
return SR_ERR_BUG;
}
if (!(ctx = sdi->priv)) {
sr_err("sigma: %s: sdi->priv was NULL", __func__);
return SR_ERR_BUG;
}
/* TODO */
if (sdi->status == SR_ST_ACTIVE)
ftdi_usb_close(&ctx->ftdic);
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int hw_cleanup(void)
{
GSList *l;
struct sr_dev_inst *sdi;
int ret = SR_OK;
/* Properly close all devices. */
for (l = dev_insts; l; l = l->next) {
if (!(sdi = l->data)) {
/* Log error, but continue cleaning up the rest. */
sr_err("sigma: %s: sdi was NULL, continuing", __func__);
ret = SR_ERR_BUG;
continue;
}
sr_dev_inst_free(sdi);
}
g_slist_free(dev_insts);
dev_insts = NULL;
return ret;
}
static void *hw_dev_info_get(int dev_index, int dev_info_id)
{
struct sr_dev_inst *sdi;
struct context *ctx;
void *info = NULL;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) {
sr_err("sigma: %s: sdi was NULL", __func__);
return NULL;
}
ctx = sdi->priv;
switch (dev_info_id) {
case SR_DI_INST:
info = sdi;
break;
case SR_DI_NUM_PROBES:
info = GINT_TO_POINTER(NUM_PROBES);
break;
case SR_DI_PROBE_NAMES:
info = probe_names;
break;
case SR_DI_SAMPLERATES:
info = &samplerates;
break;
case SR_DI_TRIGGER_TYPES:
info = (char *)TRIGGER_TYPES;
break;
case SR_DI_CUR_SAMPLERATE:
info = &ctx->cur_samplerate;
break;
}
return info;
}
static int hw_dev_status_get(int dev_index)
{
struct sr_dev_inst *sdi;
sdi = sr_dev_inst_get(dev_insts, dev_index);
if (sdi)
return sdi->status;
else
return SR_ST_NOT_FOUND;
}
static int *hw_hwcap_get_all(void)
{
return hwcaps;
}
static int hw_dev_config_set(int dev_index, int hwcap, void *value)
{
struct sr_dev_inst *sdi;
struct context *ctx;
int ret;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
return SR_ERR;
ctx = sdi->priv;
if (hwcap == SR_HWCAP_SAMPLERATE) {
ret = set_samplerate(sdi, *(uint64_t *)value);
} else if (hwcap == SR_HWCAP_PROBECONFIG) {
ret = configure_probes(sdi, value);
} else if (hwcap == SR_HWCAP_LIMIT_MSEC) {
ctx->limit_msec = *(uint64_t *)value;
if (ctx->limit_msec > 0)
ret = SR_OK;
else
ret = SR_ERR;
} else if (hwcap == SR_HWCAP_CAPTURE_RATIO) {
ctx->capture_ratio = *(uint64_t *)value;
if (ctx->capture_ratio < 0 || ctx->capture_ratio > 100)
ret = SR_ERR;
else
ret = SR_OK;
} else {
ret = SR_ERR;
}
return ret;
}
/* Software trigger to determine exact trigger position. */
static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
struct sigma_trigger *t)
{
int i;
for (i = 0; i < 8; ++i) {
if (i > 0)
last_sample = samples[i-1];
/* Simple triggers. */
if ((samples[i] & t->simplemask) != t->simplevalue)
continue;
/* Rising edge. */
if ((last_sample & t->risingmask) != 0 || (samples[i] &
t->risingmask) != t->risingmask)
continue;
/* Falling edge. */
if ((last_sample & t->fallingmask) != t->fallingmask ||
(samples[i] & t->fallingmask) != 0)
continue;
break;
}
/* If we did not match, return original trigger pos. */
return i & 0x7;
}
/*
* Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
* Each event is 20ns apart, and can contain multiple samples.
*
* For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
* For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
* For 50 MHz and below, events contain one sample for each channel,
* spread 20 ns apart.
*/
static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
uint16_t *lastsample, int triggerpos,
uint16_t limit_chunk, void *cb_data)
{
struct sr_dev_inst *sdi = cb_data;
struct context *ctx = sdi->priv;
uint16_t tsdiff, ts;
uint16_t samples[65536 * ctx->samples_per_event];
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
int i, j, k, l, numpad, tosend;
size_t n = 0, sent = 0;
int clustersize = EVENTS_PER_CLUSTER * ctx->samples_per_event;
uint16_t *event;
uint16_t cur_sample;
int triggerts = -1;
/* Check if trigger is in this chunk. */
if (triggerpos != -1) {
if (ctx->cur_samplerate <= SR_MHZ(50))
triggerpos -= EVENTS_PER_CLUSTER - 1;
if (triggerpos < 0)
triggerpos = 0;
/* Find in which cluster the trigger occured. */
triggerts = triggerpos / 7;
}
/* For each ts. */
for (i = 0; i < 64; ++i) {
ts = *(uint16_t *) &buf[i * 16];
tsdiff = ts - *lastts;
*lastts = ts;
/* Decode partial chunk. */
if (limit_chunk && ts > limit_chunk)
return SR_OK;
/* Pad last sample up to current point. */
numpad = tsdiff * ctx->samples_per_event - clustersize;
if (numpad > 0) {
for (j = 0; j < numpad; ++j)
samples[j] = *lastsample;
n = numpad;
}
/* Send samples between previous and this timestamp to sigrok. */
sent = 0;
while (sent < n) {
tosend = MIN(2048, n - sent);
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = tosend * sizeof(uint16_t);
logic.unitsize = 2;
logic.data = samples + sent;
sr_session_send(ctx->session_dev_id, &packet);
sent += tosend;
}
n = 0;
event = (uint16_t *) &buf[i * 16 + 2];
cur_sample = 0;
/* For each event in cluster. */
for (j = 0; j < 7; ++j) {
/* For each sample in event. */
for (k = 0; k < ctx->samples_per_event; ++k) {
cur_sample = 0;
/* For each probe. */
for (l = 0; l < ctx->num_probes; ++l)
cur_sample |= (!!(event[j] & (1 << (l *
ctx->samples_per_event + k)))) << l;
samples[n++] = cur_sample;
}
}
/* Send data up to trigger point (if triggered). */
sent = 0;
if (i == triggerts) {
/*
* Trigger is not always accurate to sample because of
* pipeline delay. However, it always triggers before
* the actual event. We therefore look at the next
* samples to pinpoint the exact position of the trigger.
*/
tosend = get_trigger_offset(samples, *lastsample,
&ctx->trigger);
if (tosend > 0) {
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = tosend * sizeof(uint16_t);
logic.unitsize = 2;
logic.data = samples;
sr_session_send(ctx->session_dev_id, &packet);
sent += tosend;
}
/* Only send trigger if explicitly enabled. */
if (ctx->use_triggers) {
packet.type = SR_DF_TRIGGER;
sr_session_send(ctx->session_dev_id, &packet);
}
}
/* Send rest of the chunk to sigrok. */
tosend = n - sent;
if (tosend > 0) {
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = tosend * sizeof(uint16_t);
logic.unitsize = 2;
logic.data = samples + sent;
sr_session_send(ctx->session_dev_id, &packet);
}
*lastsample = samples[n - 1];
}
return SR_OK;
}
static int receive_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi = cb_data;
struct context *ctx = sdi->priv;
struct sr_datafeed_packet packet;
const int chunks_per_read = 32;
unsigned char buf[chunks_per_read * CHUNK_SIZE];
int bufsz, numchunks, i, newchunks;
uint64_t running_msec;
struct timeval tv;
/* Avoid compiler warnings. */
(void)fd;
(void)revents;
numchunks = (ctx->state.stoppos + 511) / 512;
if (ctx->state.state == SIGMA_IDLE)
return FALSE;
if (ctx->state.state == SIGMA_CAPTURE) {
/* Check if the timer has expired, or memory is full. */
gettimeofday(&tv, 0);
running_msec = (tv.tv_sec - ctx->start_tv.tv_sec) * 1000 +
(tv.tv_usec - ctx->start_tv.tv_usec) / 1000;
if (running_msec < ctx->limit_msec && numchunks < 32767)
return FALSE;
hw_dev_acquisition_stop(sdi->index, sdi);
return FALSE;
} else if (ctx->state.state == SIGMA_DOWNLOAD) {
if (ctx->state.chunks_downloaded >= numchunks) {
/* End of samples. */
packet.type = SR_DF_END;
sr_session_send(ctx->session_dev_id, &packet);
ctx->state.state = SIGMA_IDLE;
return TRUE;
}
newchunks = MIN(chunks_per_read,
numchunks - ctx->state.chunks_downloaded);
sr_info("sigma: Downloading sample data: %.0f %%",
100.0 * ctx->state.chunks_downloaded / numchunks);
bufsz = sigma_read_dram(ctx->state.chunks_downloaded,
newchunks, buf, ctx);
/* TODO: Check bufsz. For now, just avoid compiler warnings. */
(void)bufsz;
/* Find first ts. */
if (ctx->state.chunks_downloaded == 0) {
ctx->state.lastts = *(uint16_t *) buf - 1;
ctx->state.lastsample = 0;
}
/* Decode chunks and send them to sigrok. */
for (i = 0; i < newchunks; ++i) {
int limit_chunk = 0;
/* The last chunk may potentially be only in part. */
if (ctx->state.chunks_downloaded == numchunks - 1) {
/* Find the last valid timestamp */
limit_chunk = ctx->state.stoppos % 512 + ctx->state.lastts;
}
if (ctx->state.chunks_downloaded + i == ctx->state.triggerchunk)
decode_chunk_ts(buf + (i * CHUNK_SIZE),
&ctx->state.lastts,
&ctx->state.lastsample,
ctx->state.triggerpos & 0x1ff,
limit_chunk, sdi);
else
decode_chunk_ts(buf + (i * CHUNK_SIZE),
&ctx->state.lastts,
&ctx->state.lastsample,
-1, limit_chunk, sdi);
++ctx->state.chunks_downloaded;
}
}
return TRUE;
}
/* Build a LUT entry used by the trigger functions. */
static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
{
int i, j, k, bit;
/* For each quad probe. */
for (i = 0; i < 4; ++i) {
entry[i] = 0xffff;
/* For each bit in LUT. */
for (j = 0; j < 16; ++j)
/* For each probe in quad. */
for (k = 0; k < 4; ++k) {
bit = 1 << (i * 4 + k);
/* Set bit in entry */
if ((mask & bit) &&
((!(value & bit)) !=
(!(j & (1 << k)))))
entry[i] &= ~(1 << j);
}
}
}
/* Add a logical function to LUT mask. */
static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
int index, int neg, uint16_t *mask)
{
int i, j;
int x[2][2], tmp, a, b, aset, bset, rset;
memset(x, 0, 4 * sizeof(int));
/* Trigger detect condition. */
switch (oper) {
case OP_LEVEL:
x[0][1] = 1;
x[1][1] = 1;
break;
case OP_NOT:
x[0][0] = 1;
x[1][0] = 1;
break;
case OP_RISE:
x[0][1] = 1;
break;
case OP_FALL:
x[1][0] = 1;
break;
case OP_RISEFALL:
x[0][1] = 1;
x[1][0] = 1;
break;
case OP_NOTRISE:
x[1][1] = 1;
x[0][0] = 1;
x[1][0] = 1;
break;
case OP_NOTFALL:
x[1][1] = 1;
x[0][0] = 1;
x[0][1] = 1;
break;
case OP_NOTRISEFALL:
x[1][1] = 1;
x[0][0] = 1;
break;
}
/* Transpose if neg is set. */
if (neg) {
for (i = 0; i < 2; ++i) {
for (j = 0; j < 2; ++j) {
tmp = x[i][j];
x[i][j] = x[1-i][1-j];
x[1-i][1-j] = tmp;
}
}
}
/* Update mask with function. */
for (i = 0; i < 16; ++i) {
a = (i >> (2 * index + 0)) & 1;
b = (i >> (2 * index + 1)) & 1;
aset = (*mask >> i) & 1;
bset = x[b][a];
if (func == FUNC_AND || func == FUNC_NAND)
rset = aset & bset;
else if (func == FUNC_OR || func == FUNC_NOR)
rset = aset | bset;
else if (func == FUNC_XOR || func == FUNC_NXOR)
rset = aset ^ bset;
if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
rset = !rset;
*mask &= ~(1 << i);
if (rset)
*mask |= 1 << i;
}
}
/*
* Build trigger LUTs used by 50 MHz and lower sample rates for supporting
* simple pin change and state triggers. Only two transitions (rise/fall) can be
* set at any time, but a full mask and value can be set (0/1).
*/
static int build_basic_trigger(struct triggerlut *lut, struct context *ctx)
{
int i,j;
uint16_t masks[2] = { 0, 0 };
memset(lut, 0, sizeof(struct triggerlut));
/* Contant for simple triggers. */
lut->m4 = 0xa000;
/* Value/mask trigger support. */
build_lut_entry(ctx->trigger.simplevalue, ctx->trigger.simplemask,
lut->m2d);
/* Rise/fall trigger support. */
for (i = 0, j = 0; i < 16; ++i) {
if (ctx->trigger.risingmask & (1 << i) ||
ctx->trigger.fallingmask & (1 << i))
masks[j++] = 1 << i;
}
build_lut_entry(masks[0], masks[0], lut->m0d);
build_lut_entry(masks[1], masks[1], lut->m1d);
/* Add glue logic */
if (masks[0] || masks[1]) {
/* Transition trigger. */
if (masks[0] & ctx->trigger.risingmask)
add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
if (masks[0] & ctx->trigger.fallingmask)
add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
if (masks[1] & ctx->trigger.risingmask)
add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
if (masks[1] & ctx->trigger.fallingmask)
add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
} else {
/* Only value/mask trigger. */
lut->m3 = 0xffff;
}
/* Triggertype: event. */
lut->params.selres = 3;
return SR_OK;
}
static int hw_dev_acquisition_start(int dev_index, void *cb_data)
{
struct sr_dev_inst *sdi;
struct context *ctx;
struct sr_datafeed_packet packet;
struct sr_datafeed_header header;
struct clockselect_50 clockselect;
int frac, triggerpin, ret;
uint8_t triggerselect;
struct triggerinout triggerinout_conf;
struct triggerlut lut;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
return SR_ERR;
ctx = sdi->priv;
/* If the samplerate has not been set, default to 200 kHz. */
if (ctx->cur_firmware == -1) {
if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
return ret;
}
/* Enter trigger programming mode. */
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, ctx);
/* 100 and 200 MHz mode. */
if (ctx->cur_samplerate >= SR_MHZ(100)) {
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, ctx);
/* Find which pin to trigger on from mask. */
for (triggerpin = 0; triggerpin < 8; ++triggerpin)
if ((ctx->trigger.risingmask | ctx->trigger.fallingmask) &
(1 << triggerpin))
break;
/* Set trigger pin and light LED on trigger. */
triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
/* Default rising edge. */
if (ctx->trigger.fallingmask)
triggerselect |= 1 << 3;
/* All other modes. */
} else if (ctx->cur_samplerate <= SR_MHZ(50)) {
build_basic_trigger(&lut, ctx);
sigma_write_trigger_lut(&lut, ctx);
triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
}
/* Setup trigger in and out pins to default values. */
memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
triggerinout_conf.trgout_bytrigger = 1;
triggerinout_conf.trgout_enable = 1;
sigma_write_register(WRITE_TRIGGER_OPTION,
(uint8_t *) &triggerinout_conf,
sizeof(struct triggerinout), ctx);
/* Go back to normal mode. */
sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, ctx);
/* Set clock select register. */
if (ctx->cur_samplerate == SR_MHZ(200))
/* Enable 4 probes. */
sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, ctx);
else if (ctx->cur_samplerate == SR_MHZ(100))
/* Enable 8 probes. */
sigma_set_register(WRITE_CLOCK_SELECT, 0x00, ctx);
else {
/*
* 50 MHz mode (or fraction thereof). Any fraction down to
* 50 MHz / 256 can be used, but is not supported by sigrok API.
*/
frac = SR_MHZ(50) / ctx->cur_samplerate - 1;
clockselect.async = 0;
clockselect.fraction = frac;
clockselect.disabled_probes = 0;
sigma_write_register(WRITE_CLOCK_SELECT,
(uint8_t *) &clockselect,
sizeof(clockselect), ctx);
}
/* Setup maximum post trigger time. */
sigma_set_register(WRITE_POST_TRIGGER,
(ctx->capture_ratio * 255) / 100, ctx);
/* Start acqusition. */
gettimeofday(&ctx->start_tv, 0);
sigma_set_register(WRITE_MODE, 0x0d, ctx);
ctx->session_dev_id = cb_data;
/* Send header packet to the session bus. */
packet.type = SR_DF_HEADER;
packet.payload = &header;
header.feed_version = 1;
gettimeofday(&header.starttime, NULL);
header.samplerate = ctx->cur_samplerate;
header.num_logic_probes = ctx->num_probes;
sr_session_send(ctx->session_dev_id, &packet);
/* Add capture source. */
sr_source_add(0, G_IO_IN, 10, receive_data, sdi);
ctx->state.state = SIGMA_CAPTURE;
return SR_OK;
}
static int hw_dev_acquisition_stop(int dev_index, void *cb_data)
{
struct sr_dev_inst *sdi;
struct context *ctx;
uint8_t modestatus;
/* Avoid compiler warnings. */
(void)cb_data;
if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) {
sr_err("sigma: %s: sdi was NULL", __func__);
return SR_ERR_BUG;
}
if (!(ctx = sdi->priv)) {
sr_err("sigma: %s: sdi->priv was NULL", __func__);
return SR_ERR_BUG;
}
/* Stop acquisition. */
sigma_set_register(WRITE_MODE, 0x11, ctx);
/* Set SDRAM Read Enable. */
sigma_set_register(WRITE_MODE, 0x02, ctx);
/* Get the current position. */
sigma_read_pos(&ctx->state.stoppos, &ctx->state.triggerpos, ctx);
/* Check if trigger has fired. */
modestatus = sigma_get_register(READ_MODE, ctx);
if (modestatus & 0x20)
ctx->state.triggerchunk = ctx->state.triggerpos / 512;
else
ctx->state.triggerchunk = -1;
ctx->state.chunks_downloaded = 0;
ctx->state.state = SIGMA_DOWNLOAD;
return SR_OK;
}
SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
.name = "asix-sigma",
.longname = "ASIX SIGMA",
.api_version = 1,
.init = hw_init,
.cleanup = hw_cleanup,
.dev_open = hw_dev_open,
.dev_close = hw_dev_close,
.dev_info_get = hw_dev_info_get,
.dev_status_get = hw_dev_status_get,
.hwcap_get_all = hw_hwcap_get_all,
.dev_config_set = hw_dev_config_set,
.dev_acquisition_start = hw_dev_acquisition_start,
.dev_acquisition_stop = hw_dev_acquisition_stop,
};