libsigrok/hardware/chronovu-la/protocol.c

507 lines
15 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "protocol.h"
SR_PRIV const struct cv_profile cv_profiles[] = {
{ CHRONOVU_LA8, "LA8", "ChronoVu LA8", 8, SR_MHZ(100), 2, 0.8388608 },
{ CHRONOVU_LA16, "LA16", "ChronoVu LA16", 16, SR_MHZ(200), 4, 0.042 },
{ 0, NULL, NULL, 0, 0, 0, 0.0 },
};
/* LA8: channels are numbered 0-7. LA16: channels are numbered 0-15. */
SR_PRIV const char *cv_channel_names[] = {
"0", "1", "2", "3", "4", "5", "6", "7",
"8", "9", "10", "11", "12", "13", "14", "15",
};
static int close_usb_reset_sequencer(struct dev_context *devc);
SR_PRIV void cv_fill_samplerates_if_needed(const struct sr_dev_inst *sdi)
{
int i;
struct dev_context *devc;
devc = sdi->priv;
if (devc->samplerates[0] != 0)
return;
for (i = 0; i < 255; i++)
devc->samplerates[254 - i] = devc->prof->max_samplerate / (i + 1);
}
/**
* Check if the given samplerate is supported by the hardware.
*
* @param sdi Device instance.
* @param samplerate The samplerate (in Hz) to check.
*
* @return 1 if the samplerate is supported/valid, 0 otherwise.
*/
static int is_valid_samplerate(const struct sr_dev_inst *sdi,
uint64_t samplerate)
{
int i;
struct dev_context *devc;
devc = sdi->priv;
cv_fill_samplerates_if_needed(sdi);
for (i = 0; i < 255; i++) {
if (devc->samplerates[i] == samplerate)
return 1;
}
sr_err("Invalid samplerate (%" PRIu64 "Hz).", samplerate);
return 0;
}
/**
* Convert a samplerate (in Hz) to the 'divcount' value the device wants.
*
* The divcount value can be 0x00 - 0xfe (0xff is not valid).
*
* LA8:
* sample period = (divcount + 1) * 10ns.
* divcount = 0x00: 10ns period, 100MHz samplerate.
* divcount = 0xfe: 2550ns period, 392.15kHz samplerate.
*
* LA16:
* sample period = (divcount + 1) * 5ns.
* divcount = 0x00: 5ns period, 200MHz samplerate.
* divcount = 0xfe: 1275ns period, ~784.31kHz samplerate.
*
* @param sdi Device instance.
* @param samplerate The samplerate in Hz.
*
* @return The divcount value as needed by the hardware, or 0xff upon errors.
*/
SR_PRIV uint8_t cv_samplerate_to_divcount(const struct sr_dev_inst *sdi,
uint64_t samplerate)
{
struct dev_context *devc;
devc = sdi->priv;
if (samplerate == 0) {
sr_err("Can't convert invalid samplerate of 0 Hz.");
return 0xff;
}
if (!is_valid_samplerate(sdi, samplerate)) {
sr_err("Can't get divcount, samplerate invalid.");
return 0xff;
}
return (devc->prof->max_samplerate / samplerate) - 1;
}
/**
* Write data of a certain length to the FTDI device.
*
* @param devc The struct containing private per-device-instance data. Must not
* be NULL. devc->ftdic must not be NULL either.
* @param buf The buffer containing the data to write. Must not be NULL.
* @param size The number of bytes to write. Must be > 0.
*
* @return The number of bytes written, or a negative value upon errors.
*/
SR_PRIV int cv_write(struct dev_context *devc, uint8_t *buf, int size)
{
int bytes_written;
/* Note: Caller ensures devc/devc->ftdic/buf != NULL and size > 0. */
bytes_written = ftdi_write_data(devc->ftdic, buf, size);
if (bytes_written < 0) {
sr_err("Failed to write data (%d): %s.",
bytes_written, ftdi_get_error_string(devc->ftdic));
(void) close_usb_reset_sequencer(devc); /* Ignore errors. */
} else if (bytes_written != size) {
sr_err("Failed to write data, only %d/%d bytes written.",
size, bytes_written);
(void) close_usb_reset_sequencer(devc); /* Ignore errors. */
}
return bytes_written;
}
/**
* Read a certain amount of bytes from the FTDI device.
*
* @param devc The struct containing private per-device-instance data. Must not
* be NULL. devc->ftdic must not be NULL either.
* @param buf The buffer where the received data will be stored. Must not
* be NULL.
* @param size The number of bytes to read. Must be >= 1.
*
* @return The number of bytes read, or a negative value upon errors.
*/
static int cv_read(struct dev_context *devc, uint8_t *buf, int size)
{
int bytes_read;
/* Note: Caller ensures devc/devc->ftdic/buf != NULL and size > 0. */
bytes_read = ftdi_read_data(devc->ftdic, buf, size);
if (bytes_read < 0) {
sr_err("Failed to read data (%d): %s.",
bytes_read, ftdi_get_error_string(devc->ftdic));
} else if (bytes_read != size) {
// sr_err("Failed to read data, only %d/%d bytes read.",
// bytes_read, size);
}
return bytes_read;
}
/**
* Close the USB port and reset the sequencer logic.
*
* @param devc The struct containing private per-device-instance data.
*
* @return SR_OK upon success, SR_ERR_ARG upon invalid arguments.
*/
static int close_usb_reset_sequencer(struct dev_context *devc)
{
/* Magic sequence of bytes for resetting the sequencer logic. */
uint8_t buf[8] = {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01};
int ret;
/* Note: Caller checked that devc and devc->ftdic != NULL. */
if (devc->ftdic->usb_dev) {
/* Reset the sequencer logic, then wait 100ms. */
sr_dbg("Resetting sequencer logic.");
(void) cv_write(devc, buf, 8); /* Ignore errors. */
g_usleep(100 * 1000);
/* Purge FTDI buffers, then reset and close the FTDI device. */
sr_dbg("Purging buffers, resetting+closing FTDI device.");
/* Log errors, but ignore them (i.e., don't abort). */
if ((ret = ftdi_usb_purge_buffers(devc->ftdic)) < 0)
sr_err("Failed to purge FTDI buffers (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
if ((ret = ftdi_usb_reset(devc->ftdic)) < 0)
sr_err("Failed to reset FTDI device (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
if ((ret = ftdi_usb_close(devc->ftdic)) < 0)
sr_err("Failed to close FTDI device (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
}
/* Close USB device, deinitialize and free the FTDI context. */
ftdi_free(devc->ftdic);
devc->ftdic = NULL;
return SR_OK;
}
/**
* Reset the ChronoVu device.
*
* A reset is required after a failed read/write operation or upon timeouts.
*
* @param devc The struct containing private per-device-instance data.
*
* @return SR_OK upon success, SR_ERR upon failure.
*/
static int reset_device(struct dev_context *devc)
{
uint8_t buf[BS];
gint64 done, now;
int bytes_read;
/* Note: Caller checked that devc and devc->ftdic != NULL. */
sr_dbg("Resetting the device.");
/*
* Purge pending read data from the FTDI hardware FIFO until
* no more data is left, or a timeout occurs (after 20s).
*/
done = (20 * G_TIME_SPAN_SECOND) + g_get_monotonic_time();
do {
/* Try to read bytes until none are left (or errors occur). */
bytes_read = cv_read(devc, (uint8_t *)&buf, BS);
now = g_get_monotonic_time();
} while ((done > now) && (bytes_read > 0));
/* Reset the sequencer logic and close the USB port. */
(void) close_usb_reset_sequencer(devc); /* Ignore errors. */
sr_dbg("Device reset finished.");
return SR_OK;
}
SR_PRIV int cv_convert_trigger(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_trigger *trigger;
struct sr_trigger_stage *stage;
struct sr_trigger_match *match;
const GSList *l, *m;
uint16_t channel_bit;
devc = sdi->priv;
devc->trigger_pattern = 0x0000; /* Default to "low" trigger. */
devc->trigger_mask = 0x0000; /* Default to "don't care". */
devc->trigger_edgemask = 0x0000; /* Default to "state triggered". */
if (!(trigger = sr_session_trigger_get(sdi->session)))
return SR_OK;
if (g_slist_length(trigger->stages) > 1) {
sr_err("This device only supports 1 trigger stage.");
return SR_ERR;
}
for (l = trigger->stages; l; l = l->next) {
stage = l->data;
for (m = stage->matches; m; m = m->next) {
match = m->data;
if (!match->channel->enabled)
/* Ignore disabled channels with a trigger. */
continue;
if (devc->prof->model == CHRONOVU_LA8 &&
(match->match == SR_TRIGGER_RISING
|| match->match == SR_TRIGGER_FALLING)) {
sr_err("This model supports only simple triggers.");
return SR_ERR;
}
channel_bit = (1 << (match->channel->index));
/* state: 1 == high, edge: 1 == rising edge. */
if (match->match == SR_TRIGGER_ONE
|| match->match == SR_TRIGGER_RISING)
devc->trigger_pattern |= channel_bit;
/* LA16 (but not LA8) supports edge triggering. */
if ((devc->prof->model == CHRONOVU_LA16)) {
if (match->match == SR_TRIGGER_RISING
|| match->match == SR_TRIGGER_FALLING)
devc->trigger_edgemask |= channel_bit;
}
}
}
sr_dbg("Trigger pattern/mask/edgemask = 0x%04x / 0x%04x / 0x%04x.",
devc->trigger_pattern, devc->trigger_mask,
devc->trigger_edgemask);
return SR_OK;
}
SR_PRIV int cv_set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
{
struct dev_context *devc;
/* Note: Caller checked that sdi and sdi->priv != NULL. */
devc = sdi->priv;
sr_spew("Trying to set samplerate to %" PRIu64 "Hz.", samplerate);
cv_fill_samplerates_if_needed(sdi);
/* Check if this is a samplerate supported by the hardware. */
if (!is_valid_samplerate(sdi, samplerate)) {
sr_dbg("Failed to set invalid samplerate (%" PRIu64 "Hz).",
samplerate);
return SR_ERR;
}
devc->cur_samplerate = samplerate;
sr_dbg("Samplerate set to %" PRIu64 "Hz.", devc->cur_samplerate);
return SR_OK;
}
/**
* Get a block of data from the device.
*
* @param devc The struct containing private per-device-instance data. Must not
* be NULL. devc->ftdic must not be NULL either.
*
* @return SR_OK upon success, or SR_ERR upon errors.
*/
SR_PRIV int cv_read_block(struct dev_context *devc)
{
int i, byte_offset, m, mi, p, q, index, bytes_read;
gint64 now;
/* Note: Caller checked that devc and devc->ftdic != NULL. */
sr_spew("Reading block %d.", devc->block_counter);
bytes_read = cv_read(devc, devc->mangled_buf, BS);
/* If first block read got 0 bytes, retry until success or timeout. */
if ((bytes_read == 0) && (devc->block_counter == 0)) {
do {
sr_spew("Reading block 0 (again).");
/* Note: If bytes_read < 0 cv_read() will log errors. */
bytes_read = cv_read(devc, devc->mangled_buf, BS);
now = g_get_monotonic_time();
} while ((devc->done > now) && (bytes_read == 0));
}
/* Check if block read was successful or a timeout occured. */
if (bytes_read != BS) {
sr_err("Trigger timed out. Bytes read: %d.", bytes_read);
(void) reset_device(devc); /* Ignore errors. */
return SR_ERR;
}
/* De-mangle the data. */
sr_spew("Demangling block %d.", devc->block_counter);
byte_offset = devc->block_counter * BS;
m = byte_offset / (1024 * 1024);
mi = m * (1024 * 1024);
for (i = 0; i < BS; i++) {
if (devc->prof->model == CHRONOVU_LA8) {
p = i & (1 << 0);
index = m * 2 + (((byte_offset + i) - mi) / 2) * 16;
index += (devc->divcount == 0) ? p : (1 - p);
} else {
p = i & (1 << 0);
q = i & (1 << 1);
index = m * 4 + (((byte_offset + i) - mi) / 4) * 32;
index += q + (1 - p);
}
devc->final_buf[index] = devc->mangled_buf[i];
}
return SR_OK;
}
SR_PRIV void cv_send_block_to_session_bus(struct dev_context *devc, int block)
{
int i, idx;
uint8_t sample, expected_sample, tmp8;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
int trigger_point; /* Relative trigger point (in this block). */
/* Note: Caller ensures devc/devc->ftdic != NULL and block > 0. */
/* TODO: Implement/test proper trigger support for the LA16. */
/* Check if we can find the trigger condition in this block. */
trigger_point = -1;
expected_sample = devc->trigger_pattern & devc->trigger_mask;
for (i = 0; i < BS; i++) {
/* Don't continue if the trigger was found previously. */
if (devc->trigger_found)
break;
/*
* Also, don't continue if triggers are "don't care", i.e. if
* no trigger conditions were specified by the user. In that
* case we don't want to send an SR_DF_TRIGGER packet at all.
*/
if (devc->trigger_mask == 0x0000)
break;
sample = *(devc->final_buf + (block * BS) + i);
if ((sample & devc->trigger_mask) == expected_sample) {
trigger_point = i;
devc->trigger_found = 1;
break;
}
}
/* Swap low and high bytes of the 16-bit LA16 samples. */
if (devc->prof->model == CHRONOVU_LA16) {
for (i = 0; i < BS; i += 2) {
idx = (block * BS) + i;
tmp8 = devc->final_buf[idx];
devc->final_buf[idx] = devc->final_buf[idx + 1];
devc->final_buf[idx + 1] = tmp8;
}
}
/* If no trigger was found, send one SR_DF_LOGIC packet. */
if (trigger_point == -1) {
/* Send an SR_DF_LOGIC packet to the session bus. */
sr_spew("Sending SR_DF_LOGIC packet (%d bytes) for "
"block %d.", BS, block);
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = BS;
logic.unitsize = devc->prof->num_channels / 8;
logic.data = devc->final_buf + (block * BS);
sr_session_send(devc->cb_data, &packet);
return;
}
/*
* We found the trigger, so some special handling is needed. We have
* to send an SR_DF_LOGIC packet with the samples before the trigger
* (if any), then the SD_DF_TRIGGER packet itself, then another
* SR_DF_LOGIC packet with the samples after the trigger (if any).
*/
/* TODO: Send SR_DF_TRIGGER packet before or after the actual sample? */
/* If at least one sample is located before the trigger... */
if (trigger_point > 0) {
/* Send pre-trigger SR_DF_LOGIC packet to the session bus. */
sr_spew("Sending pre-trigger SR_DF_LOGIC packet, "
"start = %d, length = %d.", block * BS, trigger_point);
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = trigger_point;
logic.unitsize = devc->prof->num_channels / 8;
logic.data = devc->final_buf + (block * BS);
sr_session_send(devc->cb_data, &packet);
}
/* Send the SR_DF_TRIGGER packet to the session bus. */
sr_spew("Sending SR_DF_TRIGGER packet, sample = %d.",
(block * BS) + trigger_point);
packet.type = SR_DF_TRIGGER;
packet.payload = NULL;
sr_session_send(devc->cb_data, &packet);
/* If at least one sample is located after the trigger... */
if (trigger_point < (BS - 1)) {
/* Send post-trigger SR_DF_LOGIC packet to the session bus. */
sr_spew("Sending post-trigger SR_DF_LOGIC packet, "
"start = %d, length = %d.",
(block * BS) + trigger_point, BS - trigger_point);
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = BS - trigger_point;
logic.unitsize = devc->prof->num_channels / 8;
logic.data = devc->final_buf + (block * BS) + trigger_point;
sr_session_send(devc->cb_data, &packet);
}
}