617 lines
14 KiB
C
617 lines
14 KiB
C
/*
|
|
* This file is part of the libsigrok project.
|
|
*
|
|
* Copyright (C) 2017 Jan Luebbe <jluebbe@lasnet.de>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <string.h>
|
|
#include "protocol.h"
|
|
|
|
#define COMMAND_START_CAPTURE 0x01
|
|
#define COMMAND_STOP_CAPTURE 0x02
|
|
#define COMMAND_READ_EEPROM 0x07
|
|
#define COMMAND_WRITE_REG 0x80
|
|
#define COMMAND_READ_REG 0x81
|
|
#define COMMAND_WRITE_I2C 0x87
|
|
#define COMMAND_READ_I2C 0x88
|
|
#define COMMAND_WAKE_I2C 0x89
|
|
#define COMMAND_READ_FW_VER 0x8b
|
|
|
|
#define REG_LED_RED 0x0f
|
|
#define REG_LED_GREEN 0x10
|
|
#define REG_LED_BLUE 0x11
|
|
|
|
static void iterate_lfsr(const struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc = sdi->priv;
|
|
uint32_t lfsr = devc->lfsr;
|
|
int i, max;
|
|
|
|
max = (lfsr & 0x1f) + 34;
|
|
for (i = 0; i <= max; i++) {
|
|
lfsr = (lfsr >> 1) | \
|
|
((lfsr ^ \
|
|
(lfsr >> 1) ^ \
|
|
(lfsr >> 21) ^ \
|
|
(lfsr >> 31) \
|
|
) << 31);
|
|
}
|
|
sr_dbg("Iterate 0x%08x -> 0x%08x", devc->lfsr, lfsr);
|
|
devc->lfsr = lfsr;
|
|
}
|
|
|
|
static void encrypt(const struct sr_dev_inst *sdi, const uint8_t *in, uint8_t *out, uint8_t len)
|
|
{
|
|
struct dev_context *devc = sdi->priv;
|
|
uint32_t lfsr = devc->lfsr;
|
|
uint8_t value, mask;
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
value = in[i];
|
|
mask = lfsr >> (i % 4 * 8);
|
|
if (i == 0)
|
|
value = (value & 0x28) | ((value ^ mask) & ~0x28);
|
|
else
|
|
value = value ^ mask;
|
|
out[i] = value;
|
|
}
|
|
iterate_lfsr(sdi);
|
|
}
|
|
|
|
static void decrypt(const struct sr_dev_inst *sdi, uint8_t *data, uint8_t len)
|
|
{
|
|
struct dev_context *devc = sdi->priv;
|
|
uint32_t lfsr = devc->lfsr;
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
data[i] ^= (lfsr >> (i % 4 * 8));
|
|
iterate_lfsr(sdi);
|
|
}
|
|
|
|
static int transact(const struct sr_dev_inst *sdi,
|
|
const uint8_t *req, uint8_t req_len,
|
|
uint8_t *rsp, uint8_t rsp_len)
|
|
{
|
|
struct sr_usb_dev_inst *usb = sdi->conn;
|
|
uint8_t *req_enc;
|
|
uint8_t rsp_dummy[1] = {};
|
|
int ret, xfer;
|
|
|
|
if (req_len < 2 || req_len > 64 || rsp_len > 128 ||
|
|
!req || (rsp_len > 0 && !rsp))
|
|
return SR_ERR_ARG;
|
|
|
|
req_enc = g_malloc(req_len);
|
|
encrypt(sdi, req, req_enc, req_len);
|
|
|
|
ret = libusb_bulk_transfer(usb->devhdl, 1, req_enc, req_len, &xfer, 1000);
|
|
if (ret != 0) {
|
|
sr_dbg("Failed to send request 0x%02x: %s.",
|
|
req[1], libusb_error_name(ret));
|
|
return SR_ERR;
|
|
}
|
|
if (xfer != req_len) {
|
|
sr_dbg("Failed to send request 0x%02x: incorrect length "
|
|
"%d != %d.", req[1], xfer, req_len);
|
|
return SR_ERR;
|
|
}
|
|
|
|
if (req[0] == 0x20) { /* Reseed. */
|
|
return SR_OK;
|
|
} else if (rsp_len == 0) {
|
|
rsp = rsp_dummy;
|
|
rsp_len = sizeof(rsp_dummy);
|
|
}
|
|
|
|
ret = libusb_bulk_transfer(usb->devhdl, 0x80 | 1, rsp, rsp_len,
|
|
&xfer, 1000);
|
|
if (ret != 0) {
|
|
sr_dbg("Failed to receive response to request 0x%02x: %s.",
|
|
req[1], libusb_error_name(ret));
|
|
return SR_ERR;
|
|
}
|
|
if (xfer != rsp_len) {
|
|
sr_dbg("Failed to receive response to request 0x%02x: "
|
|
"incorrect length %d != %d.", req[1], xfer, rsp_len);
|
|
return SR_ERR;
|
|
}
|
|
|
|
decrypt(sdi, rsp, rsp_len);
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int reseed(const struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc = sdi->priv;
|
|
uint8_t req[] = {0x20, 0x24, 0x4b, 0x35, 0x8e};
|
|
|
|
devc->lfsr = 0;
|
|
return transact(sdi, req, sizeof(req), NULL, 0);
|
|
}
|
|
|
|
static int write_regs(const struct sr_dev_inst *sdi, uint8_t (*regs)[2], uint8_t cnt)
|
|
{
|
|
uint8_t req[64];
|
|
int i;
|
|
|
|
if (cnt < 1 || cnt > 30)
|
|
return SR_ERR_ARG;
|
|
|
|
req[0] = 0x00;
|
|
req[1] = COMMAND_WRITE_REG;
|
|
req[2] = cnt;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
req[3 + 2 * i] = regs[i][0];
|
|
req[4 + 2 * i] = regs[i][1];
|
|
}
|
|
|
|
return transact(sdi, req, 3 + (2 * cnt), NULL, 0);
|
|
}
|
|
|
|
static int write_reg(const struct sr_dev_inst *sdi,
|
|
uint8_t address, uint8_t value)
|
|
{
|
|
uint8_t regs[2] = {address, value};
|
|
|
|
return write_regs(sdi, ®s, 1);
|
|
}
|
|
|
|
static int get_firmware_version(const struct sr_dev_inst *sdi)
|
|
{
|
|
uint8_t req[2] = {0x00, COMMAND_READ_FW_VER};
|
|
uint8_t rsp[128] = {};
|
|
int ret;
|
|
|
|
ret = transact(sdi, req, sizeof(req), rsp, sizeof(rsp));
|
|
if (ret == SR_OK) {
|
|
rsp[63] = 0;
|
|
sr_dbg("fw-version: %s", rsp);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int read_i2c(const struct sr_dev_inst *sdi, uint8_t *data, uint8_t len)
|
|
{
|
|
uint8_t req[5];
|
|
uint8_t rsp[1 + 128];
|
|
int ret;
|
|
|
|
if (len < 1 || len > 128 || !data)
|
|
return SR_ERR_ARG;
|
|
|
|
req[0] = 0x00;
|
|
req[1] = COMMAND_READ_I2C;
|
|
req[2] = 0xc0; /* Fixed address */
|
|
req[3] = len;
|
|
req[4] = 0; /* Len MSB? */
|
|
|
|
ret = transact(sdi, req, sizeof(req), rsp, 1 + len);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
if (rsp[0] != 0x02) {
|
|
sr_dbg("Failed to do I2C read (0x%02x).", rsp[0]);
|
|
return SR_ERR;
|
|
}
|
|
|
|
memcpy(data, rsp + 1, len);
|
|
return SR_OK;
|
|
}
|
|
|
|
static int write_i2c(const struct sr_dev_inst *sdi, const uint8_t *data, uint8_t len)
|
|
{
|
|
uint8_t req[5 + 128];
|
|
uint8_t rsp[1];
|
|
int ret;
|
|
|
|
if (len < 1 || len > 128 || !data)
|
|
return SR_ERR_ARG;
|
|
|
|
req[0] = 0x00;
|
|
req[1] = COMMAND_WRITE_I2C;
|
|
req[2] = 0xc0; /* Fixed address */
|
|
req[3] = len;
|
|
req[4] = 0; /* Len MSB? */
|
|
memcpy(req + 5, data, len);
|
|
|
|
ret = transact(sdi, req, 5 + len, rsp, sizeof(rsp));
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
if (rsp[0] != 0x02) {
|
|
sr_dbg("Failed to do I2C write (0x%02x).", rsp[0]);
|
|
return SR_ERR;
|
|
}
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int wake_i2c(const struct sr_dev_inst *sdi)
|
|
{
|
|
uint8_t req[] = {0x00, COMMAND_WAKE_I2C};
|
|
uint8_t rsp[1] = {};
|
|
uint8_t i2c_rsp[1 + 1 + 2] = {};
|
|
int ret;
|
|
|
|
ret = transact(sdi, req, sizeof(req), rsp, sizeof(rsp));
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
if (rsp[0] != 0x00) {
|
|
sr_dbg("Failed to do I2C wake trigger (0x%02x).", rsp[0]);
|
|
return SR_ERR;
|
|
}
|
|
|
|
ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
|
|
if (ret != SR_OK) {
|
|
return ret;
|
|
}
|
|
if (i2c_rsp[1] != 0x11) {
|
|
sr_dbg("Failed to do I2C wake read (0x%02x).", i2c_rsp[0]);
|
|
return SR_ERR;
|
|
}
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int crypto_random(const struct sr_dev_inst *sdi, uint8_t *data)
|
|
{
|
|
uint8_t i2c_req[8] = {0x03, 0x07, 0x1b, 0x00, 0x00, 0x00, 0x24, 0xcd};
|
|
uint8_t i2c_rsp[1 + 32 + 2] = {};
|
|
int ret;
|
|
|
|
ret = write_i2c(sdi, i2c_req, sizeof(i2c_req));
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
|
|
g_usleep(100000); /* TODO: Poll instead. */
|
|
|
|
ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
|
|
if (data)
|
|
memcpy(data, i2c_rsp + 1, 32);
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int crypto_nonce(const struct sr_dev_inst *sdi, uint8_t *data)
|
|
{
|
|
uint8_t i2c_req[6 + 20 + 2] = {0x03, 0x1b, 0x16, 0x00, 0x00, 0x00};
|
|
uint8_t i2c_rsp[1 + 32 + 2] = {};
|
|
int ret;
|
|
|
|
/* CRC */
|
|
i2c_req[26] = 0x7d;
|
|
i2c_req[27] = 0xe0;
|
|
|
|
ret = write_i2c(sdi, i2c_req, sizeof(i2c_req));
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
|
|
g_usleep(100000); /* TODO: Poll instead. */
|
|
|
|
ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
|
|
if (data)
|
|
memcpy(data, i2c_rsp + 1, 32);
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int crypto_sign(const struct sr_dev_inst *sdi, uint8_t *data, uint8_t *crc)
|
|
{
|
|
uint8_t i2c_req[8] = {0x03, 0x07, 0x41, 0x80, 0x00, 0x00, 0x28, 0x05};
|
|
uint8_t i2c_rsp[1 + 64 + 2] = {};
|
|
int ret;
|
|
|
|
ret = write_i2c(sdi, i2c_req, sizeof(i2c_req));
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
|
|
g_usleep(100000); /* TODO: Poll instead. */
|
|
|
|
ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
|
|
memcpy(data, i2c_rsp + 1, 64);
|
|
memcpy(crc, i2c_rsp + 1 + 64, 2);
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int authenticate(const struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc = sdi->priv;
|
|
uint8_t random[32] = {};
|
|
uint8_t nonce[32] = {};
|
|
uint8_t sig[64] = {};
|
|
uint8_t sig_crc[64] = {};
|
|
uint32_t lfsr;
|
|
int i, ret;
|
|
|
|
ret = wake_i2c(sdi);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
|
|
ret = crypto_random(sdi, random);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
sr_dbg("random: 0x%02x 0x%02x 0x%02x 0x%02x", random[0], random[1], random[2], random[3]);
|
|
|
|
ret = crypto_nonce(sdi, nonce);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
sr_dbg("nonce: 0x%02x 0x%02x 0x%02x 0x%02x", nonce[0], nonce[1], nonce[2], nonce[3]);
|
|
|
|
ret = crypto_nonce(sdi, nonce);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
sr_dbg("nonce: 0x%02x 0x%02x 0x%02x 0x%02x", nonce[0], nonce[1], nonce[2], nonce[3]);
|
|
|
|
ret = crypto_sign(sdi, sig, sig_crc);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
sr_dbg("sig: 0x%02x 0x%02x 0x%02x 0x%02x", sig[0], sig[1], sig[2], sig[3]);
|
|
sr_dbg("sig crc: 0x%02x 0x%02x", sig_crc[0], sig_crc[1]);
|
|
|
|
lfsr = 0;
|
|
for (i = 0; i < 28; i++)
|
|
lfsr ^= nonce[i] << (8 * (i % 4));
|
|
lfsr ^= sig_crc[0] | sig_crc[1] << 8;
|
|
|
|
sr_dbg("Authenticate 0x%08x -> 0x%08x", devc->lfsr, lfsr);
|
|
devc->lfsr = lfsr;
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
#if 0
|
|
static int set_led(const struct sr_dev_inst *sdi, uint8_t r, uint8_t g, uint8_t b)
|
|
{
|
|
uint8_t regs[][2] = {
|
|
{REG_LED_RED, r},
|
|
{REG_LED_GREEN, g},
|
|
{REG_LED_BLUE, b},
|
|
};
|
|
|
|
authenticate(sdi);
|
|
|
|
return write_regs(sdi, regs, G_N_ELEMENTS(regs));
|
|
}
|
|
#endif
|
|
|
|
static int configure_channels(const struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc = sdi->priv;
|
|
const struct sr_channel *c;
|
|
const GSList *l;
|
|
uint16_t mask;
|
|
|
|
devc->dig_channel_cnt = 0;
|
|
devc->dig_channel_mask = 0;
|
|
for (l = sdi->channels; l; l = l->next) {
|
|
c = l->data;
|
|
if (!c->enabled)
|
|
continue;
|
|
|
|
mask = 1 << c->index;
|
|
devc->dig_channel_masks[devc->dig_channel_cnt++] = mask;
|
|
devc->dig_channel_mask |= mask;
|
|
|
|
}
|
|
sr_dbg("%d channels enabled (0x%04x)",
|
|
devc->dig_channel_cnt, devc->dig_channel_mask);
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
SR_PRIV int saleae_logic_pro_init(const struct sr_dev_inst *sdi)
|
|
{
|
|
reseed(sdi);
|
|
get_firmware_version(sdi);
|
|
/* Setting the LED doesn't work yet. */
|
|
/* set_led(sdi, 0x00, 0x00, 0xff); */
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
SR_PRIV int saleae_logic_pro_prepare(const struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc = sdi->priv;
|
|
uint8_t regs_unknown[][2] = {
|
|
{0x03, 0x0f},
|
|
{0x04, 0x00},
|
|
{0x05, 0x00},
|
|
};
|
|
uint8_t regs_config[][2] = {
|
|
{0x00, 0x00},
|
|
{0x08, 0x00}, /* Analog channel mask (LSB) */
|
|
{0x09, 0x00}, /* Analog channel mask (MSB) */
|
|
{0x06, 0x01}, /* Digital channel mask (LSB) */
|
|
{0x07, 0x00}, /* Digital channel mask (MSB) */
|
|
{0x0a, 0x00}, /* Analog sample rate? */
|
|
{0x0b, 0x64}, /* Digital sample rate? */
|
|
{0x0c, 0x00},
|
|
{0x0d, 0x00}, /* Analog mux rate? */
|
|
{0x0e, 0x01}, /* Digital mux rate? */
|
|
{0x12, 0x04},
|
|
{0x13, 0x00},
|
|
{0x14, 0xff}, /* Pre-divider? */
|
|
};
|
|
uint8_t start_req[] = {0x00, 0x01};
|
|
uint8_t start_rsp[2] = {};
|
|
|
|
configure_channels(sdi);
|
|
|
|
/* Digital channel mask and muxing */
|
|
regs_config[3][1] = devc->dig_channel_mask;
|
|
regs_config[4][1] = devc->dig_channel_mask >> 8;
|
|
regs_config[9][1] = devc->dig_channel_cnt;
|
|
|
|
/* Samplerate */
|
|
switch (devc->dig_samplerate) {
|
|
case SR_MHZ(1):
|
|
regs_config[6][1] = 0x64;
|
|
break;
|
|
case SR_MHZ(2):
|
|
regs_config[6][1] = 0x32;
|
|
break;
|
|
case SR_KHZ(2500):
|
|
regs_config[6][1] = 0x28;
|
|
break;
|
|
case SR_MHZ(10):
|
|
regs_config[6][1] = 0x0a;
|
|
break;
|
|
case SR_MHZ(25):
|
|
regs_config[6][1] = 0x04;
|
|
regs_config[12][1] = 0x80;
|
|
break;
|
|
case SR_MHZ(50):
|
|
regs_config[6][1] = 0x02;
|
|
regs_config[12][1] = 0x40;
|
|
break;
|
|
default:
|
|
return SR_ERR_ARG;
|
|
}
|
|
|
|
authenticate(sdi);
|
|
|
|
write_reg(sdi, 0x15, 0x03);
|
|
write_regs(sdi, regs_unknown, G_N_ELEMENTS(regs_unknown));
|
|
write_regs(sdi, regs_config, G_N_ELEMENTS(regs_config));
|
|
|
|
transact(sdi, start_req, sizeof(start_req), start_rsp, sizeof(start_rsp));
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
SR_PRIV int saleae_logic_pro_start(const struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc = sdi->priv;
|
|
|
|
devc->conv_size = 0;
|
|
devc->batch_index = 0;
|
|
|
|
write_reg(sdi, 0x00, 0x01);
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
SR_PRIV int saleae_logic_pro_stop(const struct sr_dev_inst *sdi)
|
|
{
|
|
uint8_t stop_req[] = {0x00, 0x02};
|
|
uint8_t stop_rsp[2] = {};
|
|
|
|
write_reg(sdi, 0x00, 0x00);
|
|
transact(sdi, stop_req, sizeof(stop_req), stop_rsp, sizeof(stop_rsp));
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static void saleae_logic_pro_send_data(const struct sr_dev_inst *sdi,
|
|
void *data, size_t length, size_t unitsize)
|
|
{
|
|
const struct sr_datafeed_logic logic = {
|
|
.length = length,
|
|
.unitsize = unitsize,
|
|
.data = data
|
|
};
|
|
|
|
const struct sr_datafeed_packet packet = {
|
|
.type = SR_DF_LOGIC,
|
|
.payload = &logic
|
|
};
|
|
|
|
sr_session_send(sdi, &packet);
|
|
}
|
|
|
|
/*
|
|
* One batch from the device consists of 32 samples per active digital channel.
|
|
* This stream of batches is packed into USB packets with 16384 bytes each.
|
|
*/
|
|
static void saleae_logic_pro_convert_data(const struct sr_dev_inst *sdi,
|
|
const uint32_t *src, size_t srccnt)
|
|
{
|
|
struct dev_context *devc = sdi->priv;
|
|
uint8_t *dst = devc->conv_buffer;
|
|
uint32_t samples;
|
|
uint16_t channel_mask;
|
|
unsigned int sample_index, batch_index;
|
|
uint16_t *dst_batch;
|
|
|
|
/* Copy partial batch to the beginning. */
|
|
memcpy(dst, dst + devc->conv_size, CONV_BATCH_SIZE);
|
|
/* Reset converted size. */
|
|
devc->conv_size = 0;
|
|
|
|
batch_index = devc->batch_index;
|
|
while (srccnt--) {
|
|
samples = *src++;
|
|
dst_batch = (uint16_t*)dst;
|
|
|
|
/* First index of the batch. */
|
|
if (batch_index == 0)
|
|
memset(dst, 0, CONV_BATCH_SIZE);
|
|
|
|
/* Convert one channel. */
|
|
channel_mask = devc->dig_channel_masks[batch_index];
|
|
for (sample_index = 0; sample_index <= 31; sample_index++)
|
|
if ((samples >> (31 - sample_index)) & 1)
|
|
dst_batch[sample_index] |= channel_mask;
|
|
|
|
/* Last index of the batch. */
|
|
if (++batch_index == devc->dig_channel_cnt) {
|
|
devc->conv_size += CONV_BATCH_SIZE;
|
|
batch_index = 0;
|
|
dst += CONV_BATCH_SIZE;
|
|
}
|
|
}
|
|
devc->batch_index = batch_index;
|
|
}
|
|
|
|
SR_PRIV void LIBUSB_CALL saleae_logic_pro_receive_data(struct libusb_transfer *transfer)
|
|
{
|
|
const struct sr_dev_inst *sdi = transfer->user_data;
|
|
struct dev_context *devc = sdi->priv;
|
|
int ret;
|
|
|
|
switch (transfer->status) {
|
|
case LIBUSB_TRANSFER_NO_DEVICE:
|
|
sr_dbg("FIXME no device");
|
|
return;
|
|
case LIBUSB_TRANSFER_COMPLETED:
|
|
case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */
|
|
break;
|
|
default:
|
|
/* FIXME */
|
|
return;
|
|
}
|
|
|
|
saleae_logic_pro_convert_data(sdi, (uint32_t*)transfer->buffer, 16 * 1024 / 4);
|
|
saleae_logic_pro_send_data(sdi, devc->conv_buffer, devc->conv_size, 2);
|
|
|
|
if ((ret = libusb_submit_transfer(transfer)) != LIBUSB_SUCCESS)
|
|
sr_dbg("FIXME resubmit failed");
|
|
}
|