2021-04-25 08:27:21 +00:00
|
|
|
import logging
|
|
|
|
import random
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
import h5py
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy
|
|
|
|
import scipy.signal
|
|
|
|
import tqdm
|
|
|
|
|
|
|
|
import numpy_popcount
|
|
|
|
|
|
|
|
|
|
|
|
AES_SBOX = numpy.array([
|
|
|
|
# 0 1 2 3 4 5 6 7 8 9 A B C D E F
|
|
|
|
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
|
|
|
|
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
|
|
|
|
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
|
|
|
|
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
|
|
|
|
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
|
|
|
|
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
|
|
|
|
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
|
|
|
|
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
|
|
|
|
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
|
|
|
|
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
|
|
|
|
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
|
|
|
|
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
|
|
|
|
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
|
|
|
|
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
|
|
|
|
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
|
|
|
|
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
|
|
|
|
], dtype='uint8')
|
|
|
|
|
|
|
|
|
|
|
|
def align(db, ntraces):
|
|
|
|
logger.info("aligning traces")
|
|
|
|
traces = db["traces"]
|
|
|
|
reference = traces[0].astype("double")
|
|
|
|
alignments = numpy.zeros(ntraces, "int64")
|
|
|
|
lags = scipy.signal.correlation_lags(len(reference), len(reference))
|
|
|
|
for i in tqdm.trange(1, ntraces):
|
|
|
|
trace = traces[i].astype("double")
|
|
|
|
corr = scipy.signal.correlate(reference, trace)
|
|
|
|
|
|
|
|
max_idxs = corr.argsort()[-10:][::-1]
|
|
|
|
max_corr = 0
|
|
|
|
max_idx = -1
|
|
|
|
for idx in max_idxs:
|
|
|
|
lag = lags[idx]
|
|
|
|
if lag == 0:
|
|
|
|
s_ref = reference
|
|
|
|
s_trs = trace
|
|
|
|
elif lag < 0:
|
|
|
|
s_ref = reference[:lag]
|
|
|
|
s_trs = trace[-lag:]
|
|
|
|
else:
|
|
|
|
s_ref = reference[lag:]
|
|
|
|
s_trs = trace[:-lag]
|
|
|
|
pcorr = numpy.corrcoef(s_ref, s_trs)[1,0]
|
|
|
|
if pcorr > max_corr:
|
|
|
|
max_corr = pcorr
|
|
|
|
max_idx = idx
|
|
|
|
|
|
|
|
lag = lags[max_idx]
|
|
|
|
alignments[i] = lag
|
|
|
|
|
|
|
|
alignments -= numpy.min(alignments)
|
2021-04-26 03:04:48 +00:00
|
|
|
max_start = max(alignments)
|
|
|
|
min_end = 700
|
2021-04-25 08:27:21 +00:00
|
|
|
|
|
|
|
traces = numpy.zeros((ntraces, 800), 'double')
|
|
|
|
for i in range(ntraces):
|
|
|
|
traces[i, alignments[i]:alignments[i]+700] = db["traces"][i]
|
|
|
|
|
2021-04-26 03:04:48 +00:00
|
|
|
return traces[:, max_start:min_end]
|
2021-04-25 08:27:21 +00:00
|
|
|
|
|
|
|
|
2021-04-26 03:04:48 +00:00
|
|
|
# P - (n,m) array of n predictions for each of the m candidates
|
|
|
|
# O - (n,t) array of n traces with t samples each
|
|
|
|
# returns an (m,t) correlation matrix of m traces t samples each
|
|
|
|
class Correlator:
|
|
|
|
def __init__(self, P):
|
|
|
|
self.P = P - numpy.mean(P, axis=0)
|
|
|
|
self.tmp1 = numpy.einsum("nm,nm->m", self.P, self.P, optimize='optimal')
|
|
|
|
self.P = self.P.transpose()
|
2021-04-25 08:27:21 +00:00
|
|
|
|
2021-04-26 03:04:48 +00:00
|
|
|
def corr_submatrix(self, O):
|
|
|
|
O -= numpy.mean(O, axis=0)
|
|
|
|
numerator = self.P @ O
|
|
|
|
tmp2 = numpy.einsum("nt,nt->t", O, O, optimize='optimal')
|
|
|
|
denominator = numpy.sqrt(numpy.outer(self.tmp1, tmp2))
|
|
|
|
return numerator / denominator
|
2021-04-25 08:27:21 +00:00
|
|
|
|
2021-04-26 03:04:48 +00:00
|
|
|
|
|
|
|
def attack_firstorder(db, traces, ntraces):
|
|
|
|
logger.info("making first order model")
|
2021-04-25 08:27:21 +00:00
|
|
|
model = numpy.repeat(numpy.arange(256, dtype='uint8'), ntraces).reshape((256, ntraces))
|
|
|
|
for i in tqdm.trange(ntraces):
|
|
|
|
(pt, ct, key, mask, desync) = db["metadata"][i]
|
|
|
|
pt_v = pt[2]
|
|
|
|
mask_v = mask[15]
|
|
|
|
model[:, i] = AES_SBOX[model[:, i] ^ pt_v] ^ mask_v
|
2021-04-26 03:04:48 +00:00
|
|
|
model = numpy_popcount.popcount(model).astype("double").transpose()
|
2021-04-25 09:16:33 +00:00
|
|
|
|
|
|
|
# boring, slow, uses too much RAM
|
|
|
|
# input_matrix = numpy.vstack((model, traces.transpose()))
|
|
|
|
# coefs = numpy.corrcoef(input_matrix)[0:256, 256:]
|
|
|
|
|
|
|
|
# uwu
|
2021-04-26 03:04:48 +00:00
|
|
|
correlator = Correlator(model)
|
|
|
|
coefs = correlator.corr_submatrix(traces)
|
2021-04-25 09:16:33 +00:00
|
|
|
|
|
|
|
# plot absmax
|
2021-04-25 08:27:21 +00:00
|
|
|
coefs = numpy.abs(coefs)
|
|
|
|
max_by_key = numpy.max(coefs, axis=1)
|
|
|
|
plt.plot(max_by_key)
|
|
|
|
plt.show()
|
|
|
|
|
2021-04-26 03:04:48 +00:00
|
|
|
|
|
|
|
def attack_secondorder(db, traces, ntraces):
|
|
|
|
logger.info("making second order model")
|
|
|
|
model = numpy.repeat(numpy.arange(256, dtype='uint8'), ntraces).reshape((256, ntraces))
|
|
|
|
for i in tqdm.trange(ntraces):
|
|
|
|
(pt, ct, key, mask, desync) = db["metadata"][i]
|
|
|
|
pt_v = pt[2]
|
|
|
|
mask_v = mask[15]
|
|
|
|
model[:, i] = AES_SBOX[model[:, i] ^ pt_v]
|
|
|
|
model = numpy_popcount.popcount(model).astype("double").transpose()
|
|
|
|
|
|
|
|
logger.info("making second order combinations")
|
|
|
|
nticks = traces.shape[1]
|
|
|
|
traces_x = numpy.zeros((ntraces, nticks*(nticks - 1)//2), 'double')
|
|
|
|
tx_i = 0
|
|
|
|
for i in tqdm.trange(nticks):
|
|
|
|
for j in range(i+1, nticks):
|
|
|
|
traces_x[:, tx_i] = numpy.abs(traces[:, i] - traces[:, j])
|
|
|
|
tx_i += 1
|
|
|
|
|
|
|
|
logger.info("doing corr")
|
|
|
|
correlator = Correlator(model)
|
|
|
|
ncolumns = 10
|
|
|
|
step = traces_x.shape[1] // ncolumns
|
|
|
|
all_coefs = []
|
|
|
|
for i in tqdm.trange(ncolumns):
|
|
|
|
start = i * step
|
|
|
|
end = (i + 1) * step
|
|
|
|
coefs = correlator.corr_submatrix(traces_x[:, start:end])
|
|
|
|
|
|
|
|
all_coefs.append(coefs)
|
|
|
|
|
|
|
|
all_coefs = numpy.hstack(all_coefs)
|
|
|
|
|
|
|
|
all_coefs = numpy.abs(all_coefs)
|
|
|
|
max_by_key = numpy.max(all_coefs, axis=1)
|
|
|
|
plt.plot(max_by_key)
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
def main(db):
|
|
|
|
ntraces = 2000
|
|
|
|
traces = align(db, ntraces)
|
|
|
|
|
|
|
|
# for i in range(10):
|
|
|
|
# plt.plot(traces[i], color=numpy.hstack((numpy.random.random(3), [0.5])))
|
2021-04-25 08:27:21 +00:00
|
|
|
# plt.show()
|
|
|
|
|
2021-04-26 03:04:48 +00:00
|
|
|
attack_firstorder(db, traces, ntraces)
|
|
|
|
attack_secondorder(db, traces, ntraces)
|
|
|
|
|
2021-04-25 08:27:21 +00:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
from tqdm.contrib.logging import logging_redirect_tqdm
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
with logging_redirect_tqdm():
|
2021-04-25 08:27:56 +00:00
|
|
|
db = h5py.File("./ASCAD_databases/ASCAD_desync100.h5", "r")
|
2021-04-25 08:27:21 +00:00
|
|
|
main(db["Attack_traces"])
|